1
|
Qi H, Zhuang Z, Liu J, Huang S, Wang Q, Wang Q, Li H, Wan Y. Potential to Ensure Safe Production of Water Spinach in Heavy Metals-Contaminated Soil by Substituting Chemical Fertilizer with Organic Fertilizer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2935. [PMID: 39458882 PMCID: PMC11511237 DOI: 10.3390/plants13202935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Organic fertilizers are widely used to improve soil quality. However, their potential for ensuring the safe production of vegetables in soils with varying levels of heavy metals pollution remains inadequately explored. Here, we conducted a pot experiment to investigate the effects of substituting chemical fertilizers with organic fertilizer on the HMs accumulation in water spinach by simulating soils with different levels of HMs pollution. The results showed that the organic fertilizer significantly increased the soil pH, cation exchange capacity (CEC), and organic matter (OM). Furthermore, it led to a reduction in the soil DTPA-Cd and DTPA-Pb levels by 3.3-20.6% and 22.4-47.3%, respectively, whereas the DTPA-As levels increased by 0.07-7.7 times. The organic fertilizer effectively reduced the Cd and Pb content in water spinach below the safety limits when the added Cd content in the soil was less than 2 mg/kg and the Pb content was equal to or less than 90 mg/kg. However, its efficacy in reducing As accumulation in water spinach was limited, emphasizing the need for caution when using organic fertilizers in As-contaminated soils. Our results provide valuable insights for the scientific and precise utilization of organic fertilizers, thereby contributing to the safe production of vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; (H.Q.); (Z.Z.); (J.L.); (S.H.); (Q.W.); (Q.W.); (H.L.)
| |
Collapse
|
2
|
Wang M, Song G, Zheng Z, Song Z, Mi X. Phytoremediation of molybdenum (Mo)-contaminated soil using plant and humic substance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117011. [PMID: 39241608 DOI: 10.1016/j.ecoenv.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The severity of soil molybdenum (Mo) pollution is increasing, and effective management of contaminated soil is essential for the sustainable development of soil. To investigate this, a pot experiment was carried out to assess the impact of different rates of humic acid (HA) and fulvic acid (FA) on the mobility of Mo in soil solution and its uptake by alfalfa, wheat and green bristlegrass. The concentration of Mo in Plants and soil was determined using an Atomic Absorption Spectrophotometer. The findings revealed that the application of HA led to an increase in Mo accumulation in the shoot and root of green bristlegrass and wheat, ranging from 10.56 % to 28.73 % and 62.15-115.79 % (shoot), and 17.52-46.53 % and 6.29-81.25 % (root), respectively. Nonetheless, the use of HA resulted in a slight inhibition of plant Mo uptake, leading to reduced Mo accumulation in alfalfa roots compared to the control treatment (from 3284.49 mg/kg to 2140.78-2813.54 mg/kg). On the other hand, the application of FA decreased Mo accumulation in the wheat shoot (from 909.92 mg/kg to 338.54-837.45 mg/kg). Furthermore, the bioavailability of green bristlegrass (with HA) and wheat (with FA) decreased, and the percentage of residual fraction of Mo increased (from 0.39 % to 0.78-0.96 %, from 3.95 % to 3.97∼ 4.34 %). This study aims to elucidate the ternary interaction among Mo, humic substances, and plants (alfalfa, wheat, and green bristlegrass), to enhance both the activation and hyperaccumulation of Mo simultaneously.
Collapse
Affiliation(s)
- Mengmeng Wang
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Gangfu Song
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China.
| | - Zhihong Zheng
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Zhixin Song
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Xiao Mi
- North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China.
| |
Collapse
|
3
|
Turek-Szytow J, Michalska J, Dudło A, Krzemiński P, Ribeiro AL, Nowak B, Kobyłecki R, Zarzycki R, Golba S, Surmacz-Górska J. Soil application potential of post-sorbents produced by co-sorption of humic substances and nutrients from sludge anaerobic digestion reject water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122465. [PMID: 39332303 DOI: 10.1016/j.jenvman.2024.122465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/29/2024]
Abstract
This study introduces a novel soil conditioning approach using humic substances (HSs) and nutrients co-recovered from reject water from sewage sludge anaerobic digestion. For the first time, HSs and nutrients were simultaneously recovered through sorption on low-cost, environmentally inert materials: natural rock opoka (OP) and waste autoclaved aerated concrete (WAAC). This innovative application of OP and WAAC as carriers and delivery agents for soil-relevant substances offers potential for resource recovery and soil conditioning. Results indicate that the post-sorption opoka (PS-OP) and post-sorption waste autoclaved aerated concrete (PS-WAAC) effectively release retained HSs at 350-480 μg g⁻1 d⁻1, respectively. These materials also show potential as NPK fertilizers, releasing 280-430 μg g⁻1 d⁻1 N-NH₄⁺, 80-150 μg g⁻1 d⁻1 P-PO₄³⁻, and 270-350 μg g⁻1 d⁻1 K⁺. Additionally, PS-OP demonstrated promising fungicide properties, reducing P. diachenii growth by 31% at a concentration of 1 g L⁻1. A two-way ANOVA indicated that the effects of PS-OP and PS-WAAC on soil physicochemical and biological parameters varied with plant species. Both post-sorbents improved the quality of soil collected from sand mining area, increasing cation exchange capacity by 7%-85% and organic matter content by 10%-58%. They also enhanced the functional potential of soil microbial communities, increasing their metabolic activities by 23%-36% in soils sown with clover and by 33%-39% in soils sown with rapeseed. An opposite effect was observed in soils sown with sorghum, suggesting these amendments may not universally act as plant biostimulants. The effectiveness of these post-sorbents in enhancing plant growth varied depending on plant species and the mineral base of the post-sorbent. PS-OP increased the total length of clover and sorghum by 41% and 36%, and their fresh biomass by 82% and 80%, respectively. In turn, PS-WAAC increased the total length of clover and sorghum by 76% and 17%, and their fresh biomass by 29% and 15%, respectively. It was notably more effective than PS-OP for rapeseed. This study proposes a strategy to decrease reliance on non-renewable resources and costly sorbents while minimizing environmental impact. It shows that PS-OP and PS-WAAC can enhance soil quality, microbial activity, and plant growth. Given their origins, these amendments are recommended for soil remediation, particularly in degraded areas. Future research should focus on optimizing their application across various plant species to maximize effectiveness.
Collapse
Affiliation(s)
- Jolanta Turek-Szytow
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland; Centre for Biotechnology at Silesian University of Technology, Krzywoustego 8, 44-100, Gliwice, Poland
| | - Justyna Michalska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland.
| | - Agnieszka Dudło
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| | - Paweł Krzemiński
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Anne Luise Ribeiro
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579, Oslo, Norway
| | - Bożena Nowak
- Institute of Biology, Biotechnology and Environmental protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Rafał Kobyłecki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Dąbrowskiego 73, 42-201, Czestochowa, Poland
| | - Robert Zarzycki
- Department of Advanced Energy Technologies, Faculty of Infrastructure and Environment, Częstochowa University of Technology, Dąbrowskiego 73, 42-201, Czestochowa, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia, 75 Pułku Piechoty 1A, 41-500, Chorzow, Poland
| | - Joanna Surmacz-Górska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2A, 44-100, Gliwice, Poland
| |
Collapse
|
4
|
Feng Y, Darma AI, Yang J, Wang X, Shakouri M. Protaetia brevitarsis larvae produce frass that can be used as an additive to immobilize Cd and improve fertility in alkaline soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134379. [PMID: 38733779 DOI: 10.1016/j.jhazmat.2024.134379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Bioconversion of agricultural waste by Protaetia brevitarsis larvae (PBL) holds significant promise for producing high-quality frass organic amendments. However, the effects and mechanisms of PBL frass on Cd immobilization in an alkaline environment remain poorly understood. In this study, three types of frass, namely maize straw frass (MF), rice straw frass (RF), and sawdust frass (SF), were produced by feeding PBL. The Cd immobilization efficiencies of three frass in alkaline solutions and soils were investigated through batch sorption and incubation experiments, and spectroscopic techniques were employed to elucidate the sorption mechanisms of Cd onto different frass at the molecular level. The results showed that MF proved to be an efficient sorbent for Cd in alkaline solutions (176.67-227.27 mg g-1). X-ray absorption near-edge structure (XANES) spectroscopy indicated that Cd immobilization in frass is primarily attributed to the association with organic matter (OM-Cd, 78-90%). And MF had more oxygen-containing functional groups than the other frass. In weakly alkaline soils, MF application (0.5-1.5%) significantly decreased Cd bioavailability (5.65-18.48%) and concurrently improved soil nutrients (2.21-56.79%). Redundancy analysis (RDA) unveiled that pH, CEC, and available P were important factors controlling Cd fractions. Path analysis demonstrated that MF application affected Cd bioavailability directly and indirectly by influencing soil chemical properties and nutrients. In summary, MF, the product of PBL-mediated conversion maize straw, demonstrated promise as an effective organic amendment for Cd immobilization and fertility improvement in alkaline soils.
Collapse
Affiliation(s)
- Ya Feng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aminu Inuwa Darma
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China)
| | - Jianjun Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, China).
| | - Xudong Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon S7N 2V3, Canada
| |
Collapse
|
5
|
Wang M, Song G, Zheng Z, Song Z, Mi X, Hua J, Wang Z. Effect of humic substances on the fraction of heavy metal and microbial response. Sci Rep 2024; 14:11206. [PMID: 38755178 PMCID: PMC11099172 DOI: 10.1038/s41598-024-61575-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Contamination of soils by Molybdenum (Mo) has raised increasing concern worldwide. Both fulvic acid (FA) and humic acid (HA) possess numerous positive properties, such as large specific surface areas and microporous structure that facilitates the immobilization of the heavy metal in soils. Despite these characteristics, there have been few studies on the microbiology effects of FA and HA. Therefore, this study aimed to assess the Mo immobilization effects of FA and HA, as well as the associated changes in microbial community in Mo-contaminated soils (with application rates of 0%, 0.5% and 1.0%). The result of the incubation demonstrated a decrease in soil pH (from 8.23 ~ 8.94 to 8.05 ~ 8.77). Importantly, both FA and HA reduced the exchangeable fraction and reducible fraction of Mo in the soil, thereby transforming Mo into a more stable form. Furthermore, the application of FA and HA led to an increase in the relative abundance of Actinobacteriota and Firmicutes, resulting in alterations to the microbial community structure. However, it is worth noting that due to the differing structures and properties of FA and HA, these outcomes were not entirely consistent. In summary, the aging of FA and HA in soil enhanced their capacity to immobilization Mo as a soil amendment. This suggests that they have the potential to serve as effective amendments for the remediation of Mo-contaminated soils.
Collapse
Affiliation(s)
- Mengmeng Wang
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Gangfu Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China.
| | - Zhihong Zheng
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Zhixin Song
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Xiao Mi
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China.
| | - Jiajun Hua
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| | - Zihang Wang
- North China University of Water Resources and Electric Power, Zhengzhou, 450046, People's Republic of China
| |
Collapse
|
6
|
Cui H, Zhao Y, Hu K, Xia R, Zhou J, Zhou J. Impacts of atmospheric deposition on the heavy metal mobilization and bioavailability in soils amended by lime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170082. [PMID: 38220003 DOI: 10.1016/j.scitotenv.2024.170082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Fan Q, Jiu Y, Zou D, Feng J, Zhao M, Zhang Q, Lv D, Song J, Xu Z, Ye H. Alkaline humic acid fertilizer alters the distribution, availability, and translocation of cadmium and zinc in the acidic soil-Sauropus androgynus system. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115698. [PMID: 37976927 DOI: 10.1016/j.ecoenv.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Humic acids (HA) are a popular soil additive to reduce metal availability, but they have the drawbacks of reduced effectiveness over time and a significant reduction in soil pH. An alkaline humic acid fertilizer (AHAF) combining alkaline additives with HA was developed to overcome such drawbacks. A field experiment was conducted to investigate the effects of different AHAF application rates on the physicochemical properties, bioavailability, accumulation, and translocation of Cd and Zn heavy metals in Sauropus androgynus grown in acidic soil. Based on our results, the 100AF (100% AHAF) treatment significantly increased soil pH, cation exchange capacity (CEC), and organic matter content (OM) after one year of application. Compared with the control treatment (CK), the application of different rates of AHAF resulted in a 37.1-40.3% decrease in soil exchangeable Cd fractions (Exc-Cd) and an increase in the humic acid-bound Cd fractions (HA-Cd) Fe- and Mn-oxide-bound Cd fractions (OX-Cd), and organic matter-bound Cd fractions (OM-Cd) by 9.5-64.6%, 24.8-45.1%, and 158.8-191.2%, respectively (P < 0.05). The different AHAF treatments decreased the Res-Zn, Exc-Zn, and OM-Zn fractions by 69.6-73.0%, 7.4-23.9%, and 18.1-23.2%, respectively (P < 0.05), and increased the HA-Zn fraction by 8.4-28.1%. In the control treatment, the bioconcentration factors (BCFs) for Cd and Zn in different S. androgynus plant organs were in the following order: (Cd) Leaves > Stems > Branches > Roots > Edible branches; (Zn) Roots > Stems > Leaves > Branches > Edible branches. The transfer factors (TFs) of Cd and Zn in S. androgynus were classified as follows: TF2 > TF1 > TF3 > TF4. Thus, S. androgynus stems, and roots had a strong ability to transport Cd and Zn to the leaves. Compared with CK, the 100AF treatment significantly increased the BCFs for Zn in all plant parts (except BCFedible branches). In contrast, it significantly decreased all BCFs and TFs for Cd and the TF4 for Zn, effectively reducing Cd and Zn accumulation in the edible branches of S. androgynus. Soil pH, CEC, OM, and HA-M fraction were highly and significantly negatively correlated with Cd and Zn content in edible branches (P < 0.001). Stepwise multiple linear regression analysis revealed that the soil HA-M fraction was the key contributing factor for Zn accumulation and translocation in S. androgynus. Moreover, based on our findings, the absorption, uptake, and translocation of Cd and Zn were mainly determined by metal speciation and the pH in the soil. Moreover, the competitive antagonistic mechanisms between Zn and Cd absorption also affected their accumulation in S. androgynus. Thus, AHAF can be used as a soil amendment to sustainably improve acidic soils and effectively reduce Cd and Zn accumulation in edible branches of S. androgynus.
Collapse
Affiliation(s)
- Qiong Fan
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Yuanda Jiu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Dongmei Zou
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jian Feng
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Min Zhao
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Qun Zhang
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Daizhu Lv
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Jia Song
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Zhi Xu
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
| | - Haihui Ye
- Testing and Analysis Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Haikou 571101, China; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Haikou 571101, China.
| |
Collapse
|
8
|
Shi S, Yang J, Lin M, Chen Q, Wang B, Zhao J, Rensing C, Liu H, Fan Z, Feng R. Using silkworm excrement to restore vegetation and soil ecology in heavily contaminated mining soils by multiple metal(loid)s: A recyclable sericulture measure. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132184. [PMID: 37572609 DOI: 10.1016/j.jhazmat.2023.132184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
Ecological restoration of heavily contaminated soils by multiple metal(loid)s in mining areas is very difficult. In this study, we provided an attractive measure of using silkworm excrement (SE) and its modified materials to restore the soil heavily contaminated by arsenic (As), antimony (Sb), cadmium (Cd), lead (Pb) and chromium (Cr). We investigated the adsorption capacities and the associated remediation mechanisms for antimonite [Sb(III)] and antimonate [Sb(V)] by raw SE, biochar-modified SE (BC700), iron-modified BC700 (MBC) and sulfhydryl-modified BC700 (SH). Then, we selected SE and SH to compare their outcomes to restore the vegetations and the soil bacterial communities in the investigated soil mentioned above. The results showed that SE displayed the best characteristics for metal(loid) physical adsorption. But SH conferred the strongest capacity to adsorb Sb (max 23.92 mg g-1), suggesting the process of chemical adsorption played a key role in adsorbing Sb via functional groups (-SH). SE and SH both significantly (1) promoted the growth of pakchoi (Brassica campestris L., New Zealand No.2), community abundance of soil bacteria (283-936 OTUs), and the quantity of bacterial genera correlated with resistance, plant growth promotion and specified carbon metabolism; (2) but reduced bacterial genera correlated with pathogenicity. In this study, we suggested an attractive recyclable measure to restore the disturbed ecological environment in mining areas, i.e, using mulberry to restore the vegetation→ using leaves of mulberry to rear silkworms→ using SE to immobilize metal(loid)s in soils growing mulberry or other plants.
Collapse
Affiliation(s)
- ShengJie Shi
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China; Agricultural College, Guangxi University, Nanning, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - MengTing Lin
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - QiaoYuan Chen
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Bo Wang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiaYi Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - ZhiLian Fan
- Agricultural College, Guangxi University, Nanning, China
| | - RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Yang Y, Yang L, Liu B, Wang Z, Yu Y, Bo L, Li B. Accumulation, migration and health risk of trace metals in a soil-strawberry-human system of the Yangtze River Delta region, China. ENVIRONMENTAL RESEARCH 2023; 231:116310. [PMID: 37270079 DOI: 10.1016/j.envres.2023.116310] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Growing concern has been paid to metals in soil-strawberry system. In contrast, few attempts have been made to investigate bioaccessible metals in strawberries and further assess health risk based on bioaccessible metals. Moreover, the connections between soil parameters (e.g. soil pH, organic matter (OM), total and bioavailable metals) and metal transfer in soil-strawberry-human system still need to be systematically investigated as well. Considering that strawberries are extensively grown under plastic-shed conditions in China, a total of 18 paired plastic-shed soil (PSS) and strawberry samples were taken from the strawberry bases located in the Yangtze River Delta of China as a case study to assess accumulation status, migration and health risk of Cd, Cr, Cu, Ni, Pb, and Zn in the PSS-strawberry-human system. Overall, heavy application of organic fertilizers induced accumulation and contamination of Cd and Zn in PSS. In particular, 55.6% and 44.4% of PSS samples had considerable and moderate ecological risk caused by Cd, respectively. Despite no metal pollution in strawberry, PSS acidification mainly caused by high nitrogen input promoted Cd and Zn uptake by strawberry and enhanced bioaccessible concentrations of Cd, Cu, and Ni. In contrast, the increased soil OM caused by organic fertilizer application decreased Zn migration in PSS-strawberry-human system. Additionally, bioaccessible metals in strawberries induced limited non-cancer and cancer risk. To mitigate accumulation of Cd and Zn in PSS and metal transfer in the food chain, feasible fertilization strategies should be developed and carried out.
Collapse
Affiliation(s)
- Yunxi Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Lanqin Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Benle Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zehao Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuechen Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Luji Bo
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, People's Republic of China
| | - Bing Li
- No.801 Hydrogeology and Engineering Geology Brigade, Shandong Exploration Bureau of Geology and Mineral Resources, Ji'nan, 250014, People's Republic of China
| |
Collapse
|
10
|
Gao J, Han H, Gao C, Wang Y, Dong B, Xu Z. Organic amendments for in situ immobilization of heavy metals in soil: A review. CHEMOSPHERE 2023:139088. [PMID: 37268229 DOI: 10.1016/j.chemosphere.2023.139088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
There is a growing need for soil remediation due to the increase in heavy metals (HMs) migrating into the soil environment, especially those from man-made sources dominated by industry and agriculture. In situ immobilization technology, because of its lower life cycle environmental footprint, can achieve "green and sustainable remediation" of soil heavy-metal pollution. Among the various in situ immobilization remediation agents, organic amendments (OAs) stand out as they can act as soil conditioners while acting as HMs immobilization agents, and therefore have excellent application prospects. In this paper, the types and remediation effects of OAs for HMs in situ immobilization in soil are summarized. OAs have an important effect on the soil environment and other active substances in soil while interacting with HMs in soil. Based on these factors, the principle and mechanism of HMs in situ immobilization in soil using OAs are summarized. Given the complex differential characteristics of soil itself, it is impossible to determine whether it can remain stable after heavy-metal remediation; therefore, there is still a gap in knowledge regarding the compatibility and long-term effectiveness of OAs with soil. In the future, it is necessary to develop a reasonable HMs contamination remediation program for in situ immobilization and long-term monitoring through interdisciplinary integration techniques. These findings are expected to provide a reference for the development of advanced OAs and their applications in engineering.
Collapse
Affiliation(s)
- Jun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Haoxuan Han
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Chang Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yuhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China.
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
11
|
Han L, Zhao Z, Li J, Ma X, Zheng X, Yue H, Sun G, Lin Z, Guan S. Application of humic acid and hydroxyapatite in Cd-contaminated alkaline maize cropland: A field trial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160315. [PMID: 36403838 DOI: 10.1016/j.scitotenv.2022.160315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Soil quality is critical to the quality and safety of agricultural products, and remediation of heavy metal contaminated soils is an urgent task to be implemented. This study applied hydroxyapatite (HAP) and humic acid (HA) as remediation materials to Cd-contaminated alkaline cropland. Data on soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic matter (SOM), diethylenetriamine pentaacetic acid (DTPA) extraction, and improved BCR sequential extraction were obtained for different periods. The joint application of HAP and HA enhanced the soil's buffering capacity. During the experiment, treatment groups CK, H1, H2, H3, and H4 showed changes in pH of 0.29, 0.28, 0.21, 0.24, and 0.32, respectively, and changes in the conductivity of 341.4, 183.0, 133.1, 104.6 and 320.2 μS/cm. Soil organic matter had a positive effect on soil's effective phosphorus content. HAP and HA both reduced the BCFgrain/soil of Cd for the maize, but the impact of HA was more substantial (20.19 % reduction compared to CK). HA increased the yield of maize by 44.20 %. The combination of HA and HAP was recommended.
Collapse
Affiliation(s)
- Liangwei Han
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Zhuanjun Zhao
- Key Laboratory of Mountain Environment Evolvement and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Jie Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Xiangbang Ma
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Xu Zheng
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Haoyu Yue
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Guohuai Sun
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Zhiyuan Lin
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| | - Shuqi Guan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, PR China; Key Laboratory of Western China's Environmental Systems, Lanzhou 730000, PR China; Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, PR China
| |
Collapse
|
12
|
Hou H, Xu G, He F, Pan H. Effects of Aging on Adsorption of Tetracycline Hydrochloride by Humin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2901. [PMID: 36833597 PMCID: PMC9956414 DOI: 10.3390/ijerph20042901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
To explore the effects of "aging", an environmental factor, on adsorption of tetracycline hydrochloride (TC) by humin (HM), this paper coats HM surface with ferric hydroxide precipitate to simulate the aging process. The research findings indicate that compared with fresh HM, aged HM (HM-Fe) displays an accelerated adsorption rate and higher adsorption capacity on TC. With an initial concentration of 20 mg·L-1, TC's equilibrium adsorption capacity on HM and HM-Fe is 4.6 and 5.3 mg·g-1, respectively, whereas the corresponding initial adsorption rate is 0.036 and 0.132 mg·g-1·min-1. The pseudo-second-order kinetic model and Freundlich adsorption isotherm model could adequately simulate the adsorption process of TC by HM and HM-Fe, suggesting the occurrence of chemical adsorption and multimolecular layer adsorption between TC and HM and HM-Fe. Based on ΔAbs deduced from Job's calculation, it can be assumed a complex reaction occurs between the iron element on the HM-Fe surface and TC, which acts as a sort of bridge in strengthening the adsorption of TC by HM-Fe. The aforesaid findings may provide subsequent further study on environmental behaviors of TC in the soil with both fundamental theories and a scientific basis.
Collapse
Affiliation(s)
- Hongbo Hou
- Department of Resource and Environment, Baoshan College, Baoshan 678000, China
| | - Guoliang Xu
- Department of Resource and Environment, Baoshan College, Baoshan 678000, China
| | - Fei He
- School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hua Pan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
13
|
Huang H, Lin K, Lei L, Li Y, Li Y, Liang K, Shangguan Y, Xu H. Microbial response to antimony-arsenic distribution and geochemical factors at arable soil around an antimony mining site. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47972-47984. [PMID: 36746862 DOI: 10.1007/s11356-023-25507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
Antimony (Sb) mining often causes severe Sb pollution and associate arsenic (As) compound contamination. To further understand the interaction mechanism among soil microorganisms, heavy metal distribution, and geochemical factors, the effects of environmental factors on soil microbial communities under different levels of Sb-As co-contamination were studied in situ of Chashan antimony mine, Guangxi Province. The results showed that the range of Sb and As contents in soil were 1339.63-7762.28 mg/kg and 2170.3-10,371.36 mg/kg, respectively, and the residual fraction accounted for more than 98.0% with less than 2.0% of bioavailable fraction. Besides, the concentration of the two metals is both related to the distance to surface runoff. Different microbial communities in arable soils of each sample site were analyzed, which was significantly affected by soil environmental factors such as pH, ALN, AP, OM, Tot-Sb, Tot-As, Bio-As, and Bio-Sb. The phylum of Actinobacteria in sites 1, 4, and 5 was the most dominant and the phylum of Proteobacteria were the most dominant in sites 2 and 3. Moreover, the results of redundancy analysis (RDA), variation partition analysis (VPA), and Spearman correlation analyses demonstrated that microorganisms, heavy metal distribution, and geochemical factors interacted with each other and together shaped the microbial community. Our findings are beneficial for understanding the response of soil microorganisms to As-Sb distribution and geochemical factors in arable soils under Sb mining areas.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Kangkai Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ling Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yipeng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Ke Liang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| | - Yuxian Shangguan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China.
- Sichuan Academy of Agricultural Sciences, No. 4, Shizishan Road, Jinjiang District, Chengdu, 610066, China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
- Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Department of Ecology and Environment of Sichuan, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Zhang H, Xie S, Wan N, Feng B, Wang Q, Huang K, Fang Y, Bao Z, Xu F. Iron plaque effects on selenium and cadmium stabilization in Cd-contaminated seleniferous rice seedlings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22772-22786. [PMID: 36303005 DOI: 10.1007/s11356-022-23705-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Dietary intake of selenium (Se)-enriched rice has benefit for avoiding Se-deficient disease, but there is a risk of excessive cadmium (Cd) intake. Through hydroponic culture and adsorption-desorption experiments, this paper focused on Se and Cd uptake in rice seedlings associated with the interactive effects of Se (Se4+ or Se6+), Cd, and iron (Fe) plaque. The formation of Fe plaque was promoted by Fe2+ and inhibited by Cd but not related with Se species. Shoot Se (Se4+ or Se6+) uptake was not affected by Fe plaque in most treatments, except that shoot Se concentrations were decreased by Fe plaque when Se4+ and Cd co-exposure. Shoot Cd concentrations were always inhibited by Fe plaque, regardless of Se species. Inhibiting Cd adsorption onto root surface (Se4+ + Cd) or increased Cd retention in Fe plaque (Se6+ + Cd) is an important mechanism for Fe plaque to reduce Cd uptake by rice. However, we found that DCB Cd concentrations (Cd adsorbed by Fe plaque) were not always positively correlated with Fe plaque amounts and always negatively correlated with the distribution ratios of Cd mass in root to that in Fe plaque (abbreviated as DRCMRF; r = - 0.942**); meanwhile, with the increase of DCB Fe concentration, the directions of variations of DCB Cd concentration and DRCMRF were affected by Se species. It indicated that the root system is also an important factor to affect DCB Cd concentration and inhibit Cd uptake, which is mediated by Se species. This paper provides a new understanding of Fe plaque-mediated interactive effect of Se and Cd uptakes in rice, which is beneficial for the remediation of Cd-contaminated and Cd-contaminated seleniferous areas.
Collapse
Affiliation(s)
- Hongyu Zhang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China.
| | - Neng Wan
- WuHan Natural Resources and Planning Bureau, Wuhan, 430034, China
| | - Boxin Feng
- Xi'an Center of Mineral Resources Survey, China Geological Survey, Xi'an, 710069, China
| | - Qi Wang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Kangjun Huang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Yang Fang
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd, Ankang, 725000, China
| |
Collapse
|
15
|
Yan J, Yu J, Huang W, Pan X, Li Y, Li S, Tao Y, Zhang K, Zhang X. Initial Studies on the Effect of the Rice-Duck-Crayfish Ecological Co-Culture System on Physical, Chemical, and Microbiological Properties of Soils: A Field Case Study in Chaohu Lake Basin, Southeast China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2006. [PMID: 36767373 PMCID: PMC9916220 DOI: 10.3390/ijerph20032006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Rice-duck and rice-crayfish co-culture patterns can increase soil productivity and sustainability and reduce the use of chemical pesticides and fertilizers, thereby reducing the resulting negative environmental impacts. However, most studies have focused on the rice-duck and rice-crayfish binary patterns and have ignored integrated systems (three or more), which may have unexpected synergistic effects. To test these effects, a paddy field experiment was carried out in the Chaohu Lake Basin, Hefei city, Southeast China. Four groups, including a rice-duck-crayfish ecological co-culture system (RDC), idle field (CK), single-season rice planting system (SSR), and double-season rice planting system (DSR), were established in this study. The results showed that the RDC improved the soil physical properties, fertility, humus content, and enzyme activity. In the RDC system, the soil total nitrogen content ranged from 8.54% to 28.37% higher than other systems in the 0-10 cm soil layer. Similar increases were found for soil total phosphorus (8.22-30.53%), available nitrogen (6.93-22.72%), organic matter (18.24-41.54%), urease activity (16.67-71.51%), and acid phosphatase activity (23.41-66.20%). Relative to the SSR treatment, the RDC treatment reduced the total losses of nitrogen and phosphorus runoff by 24.30% and 10.29%, respectively. The RDC also did not cause any harm to the soil in terms of heavy metal pollution. Furthermore, the RDC improved the yield and quality of rice, farmer incomes, and eco-environmental profits. In general, the RDC can serve as a valuable method for the management of agricultural nonpoint-source pollution in the Chaohu Lake area and the revitalization of the countryside.
Collapse
Affiliation(s)
- Jun Yan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Jingwei Yu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Wei Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Xiaoxue Pan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Yucheng Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Yalu Tao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Kang Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
16
|
Effect of Aging on the Adsorption of Tetracycline by Humic Acid: Insight into the Morphology and Chemical Composition. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5362178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tetracycline (TC) is a commonly used antibiotic and enters the soil environment continuously. As humic acid (HA) is one of the most important components in soils, it is necessary to investigate the adsorption behavior of TC by HA under different conditions. In this paper, the factor of “aging” was considered. The methodology of coating CaCO3 precipitation on the surface of HA was adopted to simulate the aging process. The adsorption kinetics and isotherm demonstrated that the uptake of TC over HA was quicker with more amount than aged HA, meaning that aging affected the mass transfer of TC from the bulk solution to the outer surface of HA as well as from HA outer surface to its interior pores. To explain the effect of aging, BET was utilized to characterize the morphology of HA and aged HA. It was found that aging resulted in a decrease in specific surface area and pore size. XPS, FTIR, and 2D-COS revealed how aging influenced the chemical composition of HA. Five kinds of functional groups carried by HA contributed to the adsorption of TC, in which the binding affinity towards TC followed the order of
. These results indicated that -COO was the most sensitive adsorption site. Compared to HA, the content of -COO for aged HA decreased obviously. In summary, aging affected the morphology and chemical position of HA and consequently lead to the change in adsorption kinetics and isotherm of TC.
Collapse
|
17
|
Li B, Zhang T, Zhang Q, Zhu QH, Huang DY, Zhu HH, Xu C, Su SM, Zeng XB. Influence of straw-derived humic acid-like substance on the availability of Cd/As in paddy soil and their accumulation in rice grain. CHEMOSPHERE 2022; 300:134368. [PMID: 35390414 DOI: 10.1016/j.chemosphere.2022.134368] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Humic acid amendments have been widely advocated for the remediation of heavy metal-contaminated soil. However, the impacts of straw-derived humic acid-like substances on the remediation of cadmium (Cd) and arsenic (As) co-contaminated paddy soil remain unclear and the potential mechanism required clarification. In this study, we employed a pot experiment and chose a straw-derived humic acid-like substance (BFA) as the amendment with four doses to investigate how BFA affects the availability of Cd and As in soil and their accumulation in rice. The results showed that grain Cd decreased by 25.65-36.03%, while there was no significant change in total As (TAs) with the addition of BFA. The contents of DCB-Fe, DCB-As and DCB-Cd on the root surface decreased by 6.07-40.54% during the whole growth stage. The addition of BFA significantly decreased the pe + pH and enhanced the transformation of crystalline iron oxides (Fed) into amorphous forms (Feo) in the soil. The CaCl2-extractable Cd decreased and the KH2PO4-extractable As increased with the decrease in pe + pH and Fed and the relative increase in Feo. The correlation analysis showed that the decrease in availability of Cd and translocation factor of Cd effectively decreased the grain Cd and the decrease in DCB-Cd may also contribute to decreasing the uptake of Cd by rice. However, the increase in As of roots and shoots might play key roles in restricting the transport of As to rice grains. Consequently, the addition of BFA could effectively reduce the Cd accumulation in rice under flooding conditions, while no risk of As accumulation in rice grain was observed. The present work provides a new perspective for the application of straw-derived humic acid-like substances as amendments on Cd-As co-contaminated soils, which should be advocated as an eco-friendly, economical and effective soil amendment in the future.
Collapse
Affiliation(s)
- Bo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Tuo Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China
| | - Quan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dao-You Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Chao Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Shi-Ming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China
| | - Xi-Bai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
18
|
He L, Huang DY, Liu B, Zhang Q, Zhu HH, Xu C, Zhu QH. Combined exogenous selenium and biochemical fulvic acid reduce Cd accumulation in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:50059-50069. [PMID: 35226268 DOI: 10.1007/s11356-022-19442-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Paddy soil Cd contamination and the related accumulation risk in rice grains have attracted global attention. The application of selenium and humic substances is considered to be a cost-effective Cd mitigation measure. However, the effect of a combined application of the two materials remains unclear. Therefore, a 2-season pot experiment was conducted, wherein sodium selenite (Se) and biochemical fulvic acid (BFA) were applied alone and together. Paddy soils with two levels of Cd contamination were used. The results indicate that Se application alone considerably decreased the rice grain Cd content by 36.1-48.7% compared to the control rice grain Cd concentration, which was above the food safety limit (0.2 mg kg-1). Although the application of BFA alone decreased the soil pH, it also increased the soil CaCl2 extractable Cd content by 0.2 to 19.3% and had a limited effect on Cd in the rice grains. The combined application of Se and BFA did not affect the soil pH or the CaCl2 extractable Cd, and more effectively reduced the Cd contents of the rice grains by 50.2 to 57.1%, except for the control rice grain Cd content, which was below the limit. The combined application of Se and BFA also inhibited Se accumulation in rice grains, maintaining the Se content at a safe level (0.33-0.58 mg kg-1) compared to Se application alone. The effects of reducing the Cd content of rice grains while safely increasing their Se contents could persist for at least two seasons. Therefore, the combined application of Se and BFA should be recommended to mitigate Cd contamination risks in Cd-contaminated paddy soil.
Collapse
Affiliation(s)
- Lei He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dao-You Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Bo Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Quan Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Chao Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, CAS, Changsha, 410125, Hunan, China.
| |
Collapse
|
19
|
Lee H, Coulon F, Beriro DJ, Wagland ST. Recovering metal(loids) and rare earth elements from closed landfill sites without excavation: Leachate recirculation opportunities and challenges. CHEMOSPHERE 2022; 292:133418. [PMID: 34968509 DOI: 10.1016/j.chemosphere.2021.133418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Metal (loids) and Rare Earth Elements (REE) ('metals') are used in a wide range of products, and therefore, the improvement of expectations for everyday comforts with demand continues to grow. Metal-bearing wastes are a secondary source of raw material that can meet this demand by providing a previously unconsidered low impact supply source. Total annual leachate production is 1,056,716 m3. Therefore, landfill leachate emerges as a significant potential resource as it contains high concentrations of metals. However, realising a profitable return on investment for leachate processing is a challenge due to relatively low recovery rates of approximately 0.02% of total heavy metals in a landfill being leached out in 30 years. Variation within the multi-element value and the effect of other chemicals in these complex mixtures. There is a need to better understand the mechanisms and potential applicability of extraction methods for optimising metals recovery from leachate. This paper addresses this need by providing a systematic review of the critical factors and environmental conditions that influence the behaviour of metals within the landfilled waste. The paper provides a synthesis of how the factors and conditions may affect leachate recirculation efficiency for recovery in the context of a range of opportunities and challenges facing circular economy practitioners. To approach feasibility metal recovery economically from landfill leachate without energy-intensive and environmentally destructive, future research actions need to be initiated in lab-based and later on semi-pilot to pilot studies, which the review can help achieve the challenges.
Collapse
Affiliation(s)
- H Lee
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - F Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - D J Beriro
- Digital Laboratories, British Geological Survey, Nottingham, NG12 5GG, UK
| | - S T Wagland
- School of Water, Energy and Environment, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK.
| |
Collapse
|
20
|
Han D, Pei L, Huang G, Hou Q, Zhang M, Song J, Gan L, Wu H. The Aging Process of Cadmium in Paddy Soils under Intermittent Irrigation with Acid Water: A Short-Term Simulation Experiment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063339. [PMID: 35329022 PMCID: PMC8952257 DOI: 10.3390/ijerph19063339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd)-contaminated paddy soils are a big concern. However, the effect of irrigation with acid water on the migration and transformation of Cd and the effect of alternating redox conditions caused by intermittent irrigation on Cd aging processes in different depths of paddy soils are unclear. This study revealed Cd fractionation and aging in a Cd-contaminated paddy soil under four irrigation periods with acid water and four drainage periods, by applying a soil columns experiment and a sequential extraction procedure. The results showed that the dynamic changes of soil pH, oxidation reduction potential (ORP), iron (Fe) oxides and dissolved organic carbon (DOC) throughout the intermittent irrigation affected the transformation of Cd fractions. After 32 days, the proportion of exchangeable Cd (F1) to the total Cd decreased with a reduction of 24.4% and 20.1% at the topsoil and the subsoil, respectively. The labile fractions of Cd decreased, and the more immobilizable fractions of Cd increased in the different depths of soils due to the aging process. Additionally, the redistribution of the Fe and Mn oxide-bound Cd (F3) and organic matter and secondary-sulfide-bound Cd (F4) occurred at different depths of soils during the incubation time. Overall, the bioaccessibility of Cd in the subsoil was higher than that in the topsoil, which was likely due to the leaching and accumulation of soluble Cd in the deep soil. In addition, the aging processes in different depths of soils were divided into three stages, which can be mainly described as the transformation of F1 into F3 and F4.
Collapse
Affiliation(s)
- Dongya Han
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; (D.H.); (Q.H.); (M.Z.); (J.S.); (L.G.)
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China
| | - Lixin Pei
- Haikou Marine Geological Survey Center, China Geological Survey, Haikou 571100, China
- Correspondence: (L.P.); (G.H.)
| | - Guanxing Huang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; (D.H.); (Q.H.); (M.Z.); (J.S.); (L.G.)
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
- Correspondence: (L.P.); (G.H.)
| | - Qinxuan Hou
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; (D.H.); (Q.H.); (M.Z.); (J.S.); (L.G.)
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
- Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei GEO University, Shijiazhuang 050031, China
| | - Meng Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; (D.H.); (Q.H.); (M.Z.); (J.S.); (L.G.)
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
| | - Jiangmin Song
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; (D.H.); (Q.H.); (M.Z.); (J.S.); (L.G.)
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
| | - Lin Gan
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; (D.H.); (Q.H.); (M.Z.); (J.S.); (L.G.)
- Hebei and China Geological Survey Key Laboratory of Groundwater Remediation, Shijiazhuang 050061, China
| | - Heqiu Wu
- Zhejiang Engineering Geophysical Survey and Design Institute Co., Ltd., Hangzhou 310005, China;
| |
Collapse
|
21
|
Wu P, Cui P, Zhang Y, Alves ME, Liu C, Zhou D, Wang Y. Unraveling the molecular mechanisms of Cd sorption onto MnO x-loaded biochar produced from the Mn-hyperaccumulator Phytolacca americana. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127157. [PMID: 34530270 DOI: 10.1016/j.jhazmat.2021.127157] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Engineered biochar represents a promising material for green remediation practices. In this paper, we present an innovative approach to produce MnOx-loaded biochars by pyrolyzing the biomass of a Mn-hyperaccumulator species (Phytolacca americana). Batch sorption and stirred-flow kinetic experiments were combined with spectroscopic techniques to elucidate the mechanisms behind the Cd sorption onto those biochars, named here as PABCs. The incorporation of MnOx into the PABCs increased their surface densities of oxygen-containing functional groups. The average Mn leaching (< 9%) from PABCs was lower than that measured for the non-pyrolyzed biomass of P. americana (30-43%). PABCs pyrolyzed at 500 °C had Cd sorption capacities as high as 212-337 mg/g, which achieved by far the best performance reported for biochar materials. The stirred-flow experiments showed that MnOx loading was instrumental in increasing both the Cd sorption onto PABCs as well as its irreversibility. Extended X-ray absorption fine structure spectroscopy revealed that the Cd immobilization occurred mainly through its association with organic matter (Cd-OM) and, to a lesser extent, with carbonate (CdCO3) and MnOx (Cd-MnOx). In short, MnOx-loaded biochar prepared from the biomass of a Mn-hyperaccumulator species proved to be an effective, sustainable, and eco-friendly material for remediating Cd-contaminated waters.
Collapse
Affiliation(s)
- Ping Wu
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China
| | - Marcelo Eduardo Alves
- Departamento de Ciências Exatas, Escola Superior de Agricultura "Luiz de Queiroz", 13418-900 Piracicaba, SP, Brazil
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Liu H, Zhang T, Tong Y, Zhu Q, Huang D, Zeng X. Effect of humic and calcareous substance amendments on the availability of cadmium in paddy soil and its accumulation in rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113186. [PMID: 35030525 DOI: 10.1016/j.ecoenv.2022.113186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Humic substances (HS) are widely known as important components in soil and significantly affect the mobility of metals due to their large surface area and abundant organic functional groups. Calcareous substances (CSs) are also commonly used as robust and cost-effective amendments for increasing the pH of acidic soils and decreasing the mobility of metals in soils. In this study, we developed a new remediation scheme for cadmium (Cd)-contaminated soil remediation by coupling HS and CS. The results showed that regardless of the addition of fulvic acid (FA), all the CS-containing treatments significantly increased the soil pH by 0.32-0.60, and the concentration of bioavailable Cd decreased in the moderately (field experiment soil, maximum 62%) and highly (pot experiment soil, maximum 57%) Cd-contaminated soils. The Cd content in rice (Oryza sativa L.) tissues significantly decreased after all the treatments. The bioaccumulation factors (BAFs) decreased by over 50% in the roots, stems, leaves and husks in all treatments, while the translocation factors (TFs) only significantly decreased in the highly contaminated soil. Among all treatments, the two HS+CS treatments (FA+CaCO3 and FA+CaO) had the greatest effect on decreasing the concentration of bioavailable Cd in soil and Cd in brown rice grains. The suggested mechanism for the effectiveness of coupled HS and CS was that CS first mitigated the pH and precipitated Cd, followed by a complexation effect between HS and Cd. Although the Cd in rice grains in both cases was higher than the standard limit, HS+CS remediation can be advocated as a robust, simple and cost-effective scheme for Cd remediation if the additive dose is slightly increased, as this approach can simultaneously improve the pH of acidic soil and adsorb Cd in soil.
Collapse
Affiliation(s)
- Hao Liu
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Tuo Zhang
- Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; College of Environmental Science & Engineering, China West Normal University, Nanchong, Sichuan 637009, China
| | - Yan'an Tong
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Qihong Zhu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Daoyou Huang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xibai Zeng
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Institute Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
23
|
Li B, Zhu QH, Zhang Q, Zhu HH, Huang DY, Su SM, Wang YN, Zeng XB. Cadmium and arsenic availability in soil under submerged incubation: The influence of humic substances on iron speciation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112773. [PMID: 34530261 DOI: 10.1016/j.ecoenv.2021.112773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Humic substances (HSs), as electron shuttles, are associated with iron oxide transformation, yet the manner by which HSs affect Cd/As availabilities during this process under anaerobic conditions remains unclear. Two HSs (humic sodium, HA-Na, and biochemical fulvic acid, BFA) were applied at 0, 1, 2, and 4 gCkg-1 in a submerged incubation experiment. The dissolved, extractable and fractions of Cd/As and different iron oxides in soils were monitored. The addition of both HA-Na and BFA decreased the CaCl2-extractable Cd by 12.66-93.13%, and increased the KH2PO4-extractable As by 18.81-71.38% on the 60th day of incubation. The soil Eh and crystalline iron oxides (Fed) decreased, while amorphous iron oxides (Feo) and dissolved As increased after addition of both HSs. However, the two HSs had opposite effects on soil pH and dissolved Cd at the end of the incubation. HA-Na immobilized 19.47-85.99% more available Cd than did BFA over the incubation, although the extent of immobilization was similar with the maximum application rate on the 60th day. BFA mobilized 5.22-26.12% more available As than did HA-Na. XPS data showed that FeOOH decreased while the FeO component increased over the incubation. Correlation analysis and SEM showed that the reduction in the soil Eh and Fed and relative increase in Feo increased the available Cd, while decreased the available As. Consequently, the addition of HA-Na and BFA, particularly combined with flooding irrigation management, could effectively reduce the available Cd in Cd-contaminated soil. However, this method should be used with caution in As-contaminated soil.
Collapse
Affiliation(s)
- Bo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qi-Hong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Quan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Dao-You Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Shi-Ming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing 100081, China
| | - Ya-Nan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing 100081, China
| | - Xi-Bai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing 100081, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
24
|
Wang Y, Jin X, Zhuo N, Zhu G, Cai Z. Interaction-sedimentation strategy for highly efficient removal of refractory humic substances in biologically treated wastewater effluent: from mechanistic investigation to full-scale application. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126145. [PMID: 34098266 DOI: 10.1016/j.jhazmat.2021.126145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/27/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Based on the accurate characterization of the binding sites of humic substances (HS) and their binding coefficients with ferric ions (Fe(III)), a coupled interaction-sedimentation (CIS) technology was proposed for dealing with HS in the biologically treated wastewater effluent (BTWE) from a full-scale antibiotic production wastewater treatment plant. The infrared spectral and carbon-13 nuclear magnetic resonance characteristics showed that (i) protonated carboxyl groups in HS were the main binding sites for Fe(III) and HS, (ii) one carboxyl group of HS interacted with one ferric ion, (iii) the Fe(III)-binding ability of fulvic acids (FA) was 2.8 times as much as that of humic acids (HA) when FA and HA coexisted, and (iv) the presence of non-humic substances in the effluent organic matter (EfOM) amplified the Fe(III)-binding ability difference between FA and HA to 4.9 times. Afterwards CIS technology was successfully optimized and applied in engineering-scale and superior HS and EfOM removal efficiencies of 94.2% and 84.0% were reached, respectively. The CIS technology and its engineering application in this study not only fulfill the direct discharging standard for antibiotic production wastewater, but also have the potential for replication in broader advanced treatments for BTWE.
Collapse
Affiliation(s)
- Yuan Wang
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Xibiao Jin
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ningze Zhuo
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Guoqiang Zhu
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Zhengqing Cai
- National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies, Research Institute of Environmental Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| |
Collapse
|
25
|
Li B, Duan MM, Zeng XB, Zhang Q, Xu C, Zhu HH, Zhu QH, Huang DY. Effects of composited organic mobilizing agents and their application periods on cadmium absorption of Sorghum bicolor L. in a Cd-contaminated soil. CHEMOSPHERE 2021; 263:128136. [PMID: 33297124 DOI: 10.1016/j.chemosphere.2020.128136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Organic mobilizing agents have been advocated for phytoremediation of heavy metals contaminated soils, while the effects of application period of such agents remain unclear. A pot experiment was conducted, with two composited organic agents (oxalic acid or citric acid + dissolved organic fertilizer (OA + DOF and CA + DOF)) and four application periods (seeding, jointing, flag leaf and heading stages) of sorghum (Sorghum bicolor L.), to investigate their impacts on Cd bioavailability in soil. Results indicated that application of the two composited agents increased soil dissolved organic carbon (DOC) and DTPA extractable Cd by 7.31-49.13%, Cd contents in roots and shoots by 21.49-72.10%, bioaccumulation factor (BCF) and translocation factor (TF) of shoots by 4.44-71.99%, while reduced soil pH by 0.25-0.53 units, respectively. Most of these indices increased with the application periods, and largely peaked with their application during the flag leaf to heading stages. Meanwhile, the maximum sorghum biomass (132.84 g pot-1) and Cd bioaccumulation quantity (BCQ, 0.71 mg pot-1) in shoots were obtained for the CA + DOF applied at the heading. The DTPA extractable Cd was closely related to soil pH and DOC. Similar close relationships were observed between the Cd contents in shoots and soil DTPA extractable Cd, pH and DOC. The BCQ of Cd was positively related to the shoots biomass rather than their Cd contents. Therefore, the sorghum combined with the CA + DOF may be advocated as an alternative phytoremediation mode in Cd-contaminated soils, and the mobilizing agent should be primarily applied at the heading stage.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China; Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China
| | - Ming-Meng Duan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Xi-Bai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-environment, Ministry of Agriculture, Beijing, 100081, China
| | - Quan Zhang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Chao Xu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Han-Hua Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Qi-Hong Zhu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Dao-You Huang
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| |
Collapse
|
26
|
Duan D, Tong J, Xu Q, Dai L, Ye J, Wu H, Xu C, Shi J. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115546. [PMID: 32892024 DOI: 10.1016/j.envpol.2020.115546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Though the interaction between humic acid (HA) and heavy metals has been widely reported, the effects of HA on the toxicity of heavy metals to plants are still in debate. In this study, the regulation mechanisms of HA on Pb stress in tea plant (Camellia sinensis L.) was investigated through hydroponic experiments, and the experimental results were explained by using transmission electron microscope (TEM), scanning transmission X-ray microscopes (STXM) and isobaric tags for relative and absolute quantitation (iTRAQ) differential proteomics. Significant alleviation of Pb stress was found with HA coexistence. TEM results showed that HA greatly mitigated the damage of cells caused by Pb stress. Compared with sole Pb treatment, the addition of HA increased the contents of pectin and pectic acid in the cell wall by 10.5% and 30.5%, while arabinose (Ara) and galactose (Gal) decreased by 20.5% and 15.9%, respectively, which were beneficial for increasing Pb adsorption capacity of the cell wall and promoting cell elongation. Moreover, iTRAQ differential proteomics analysis proved that HA strengthened the antioxidant system, promoted the synthesis of cell wall, and stabilized protein and sulfur-containing substance metabolism in molecular level. Notably, the concentration of calcium (Ca) in the cell wall of HA coexistence treatment was 47.4% higher than Pb treatment. STXM results also indicated that the distribution of Ca in the cell wall was restored with the presence of HA. This might promote the formation of the egg-box model, thus alleviating Pb stress in cells. Our results reveal the regulation mechanisms of HA on Pb detoxification in plants and provide useful information for improving the safety of agricultural products.
Collapse
Affiliation(s)
- Dechao Duan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luying Dai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; CETHIK Research Institute, Hangzhou, 310012, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
27
|
Liu S, Ni L, Chen W, Wang J, Ma F. Analysis of lead forms and transition in agricultural soil by nano-fluorescence method. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121469. [PMID: 32057493 DOI: 10.1016/j.jhazmat.2019.121469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
The physicochemical properties of gold nanorods were used to develop many methods and techniques of detecting heavy metals recently. In this paper, the feasibility of gold nanorods was studied to detect metal lead in agricultural soil. The effects of soil properties on the form change of lead in soil were explored by gold nanorod detection technology. The results showed that the humic acid significantly increased Pb mobility and ion state exchanging. It also increased the lead content of organic bound state and Fe-Mn oxides state. And the detection process by gold nanorods proved to be a more simple and convenient method.
Collapse
Affiliation(s)
- Shuyu Liu
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 201800, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Lv Ni
- School of Environment and Chemical Engineering, Shanghai University, Shanghai, 201800, PR China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiangli Wang
- Agricultural College, Shihezi University/Key Laboratory of Oasis Eco-Agriculture of Xinjiang Production and Construction Group, Shihezi, 832003, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
28
|
Liu Y, Zhi L, Zhou S, Xie F. Effects of mercury binding by humic acid and humic acid resistance on mercury stress in rice plants under high Hg/humic acid concentration ratios. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18650-18660. [PMID: 32200472 DOI: 10.1007/s11356-020-08328-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Due to the nonsystematic nature of previous studies on mercury (Hg) mobility with humic substances (HS) in terrestrial ecosystems and the uncertainty of Hg accumulation in plants, oxygen-rich humic acid (HA), which is the main component of HS, was used as the target in this study. Batch sorption tests and a series of pot experiments were designed to investigate the effect of HS on Hg binding and therefore Hg uptake in rice plants under extreme conditions, i.e., a high Hg/HS concentration ratio. The results showed that HA was eligible for Hg binding, though it has a tiny proportion of sulfur according to its characteristics analysis. The binding of HA and Hg was a chemisorption process in a single layer that followed the pseudo-second order and Langmuir models, and it was also verified that the pH was dependent on the ion strength associated with high Hg/HA concentration ratios. Based on the pot experiments, the performance of HA with Hg was investigated. The Hg in the toxicity characteristic leaching procedure (TCLP) leachate under high Hg/HA concentration ratios declined significantly, and accordingly, all treatments met the concentration criteria of 0.1 mg/l (GB 5085.3-2007) for wastes after 30 days of exposure. At concentration ratios of 50, 25, and 10 μg Hg/mg HA, we observed that HA application promoted rice plant growth, as reflected in the increase of fresh weight of different organs. Regarding accumulation in the soil-plant system, the degradation of HA to smaller molecules by rhizosphere microorganisms and organic acids in roots made HA available for plant uptake through the vascular bundle in roots, thus promoting Hg transformation in plants to a certain extent. However, considering the decline in available Hg in the soil, the Hg concentrations of roots, straw, and grains in the ripening stage were found to be lower than those in the standalone Hg treatments. HA clearly has a direct effect on Hg and an indirect influence on plants exposed to Hg under extreme conditions (very high Hg/HA concentration ratios); thus, the biogeochemical behavior of Hg at high Hg/HA concentration ratios should be considered and further investigated.
Collapse
Affiliation(s)
- Yue Liu
- College of Environmental Science and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Liangliang Zhi
- College of Environmental Science and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shaoqi Zhou
- College of Environmental Science and Energy, South China University of Technology, Guangzhou, 510006, China.
- Guizhou Academy of Sciences, Guiyang, 550001, China.
- Key Laboratory of Subtropical Building Sciences, South China University of Technology, Guangzhou, 510641, China.
- Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou, 510006, China.
| | - Feng Xie
- Guizhou Academy of Testing and Analysis, Guiyang, 550001, China
| |
Collapse
|
29
|
Phytostabilization of Cd and Pb in Highly Polluted Farmland Soils Using Ramie and Amendments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051661. [PMID: 32143354 PMCID: PMC7084681 DOI: 10.3390/ijerph17051661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
In-situ remediation of heavy-metal-contaminated soil in farmland using phytostabilization combined with soil amendments is a low-cost and effective technology for soil pollution remediation. In this study, coconut shell biochar (CB, 0.1% and 0.5%), organic fertilizer (OF, 3.0%), and Fe-Si-Ca material (IS, 3.0%) were used to enhance the phytostabilization effect of ramie (Boehmeria nivea L.) on Cd and Pb in highly polluted soils collected at Dabaoshan (DB) and Yangshuo (YS) mine sites. Results showed that simultaneous application of CB, OF, and IS amendments (0.1% CB + 3.0% OF + 3.0% IS and 0.5% CB + 3.0% OF + 3.0% IS, DB-T5 and DB-T6) could significantly increase soil pH, reduce the concentrations of CaCl2-extractable Cd and Pb, and increase the contents of Ca, P, S, and Si in DB soil. Under these two treatments, the growth of ramie was significantly improved, its photosynthesis was enhanced, and its levels of Cd and Pb were reduced, in comparison with the control (DB-CK). After applying DB-T5 and DB-T6, the concentrations of Cd and Pb in roots were decreased by 97.7–100% and 64.6–77.9%, while in shoots they were decreased by up to 100% and 92.9–100%, respectively. In YS-T4 (0.5% CB + 3.0% OF), the concentrations of Cd and Pb in roots were decreased by 39.5% and 46.0%, and in shoots they were decreased by 44.7% and 88.3%. We posit that phytostabilization using ramie and amendments could reduce the Cd and Pb bioavailability in the soil mainly through rhizosphere immobilization and plant absorption. In summary, this study suggests that the use of tolerant plant ramie and simultaneous application of coconut shell biochar, organic fertilizer, and Fe-Si-Ca materials is an effective stabilization strategy that can reduce Cd and Pb availabilities in soil. Ultimately, this strategy may reduce the exposure risk of crops to heavy metal pollution in farmland.
Collapse
|
30
|
Kang Z, Zhang W, Qin J, Li S, Yang X, Wei X, Li H. Yield advantage and cadmium decreasing of rice in intercropping with water spinach under moisture management. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110102. [PMID: 31881403 DOI: 10.1016/j.ecoenv.2019.110102] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
Rice (Oryza sativa L.) intercropping with water spinach (Ipomoea aquatica Forsk) is an effective agricultural practice for safe crop production and for phytoremediation in cadmium-contaminated soil. A field and pot experiment were conducted to investigate the growth and cadmium absorption of rice intercropped with water spinach under different moisture management schemes (continuous flooding, interval flooding, and 75% field capacity). In the field experiment, the concentration of Cd in the grain of rice was significantly lower in the intercropping system than that permitted by the National Food Safety Standard of China (GB 2762-2017). Furthermore, the land equivalent ratio (1.42) was higher in the rice-water spinach intercropping system, indicating a significant advantage of the intercropping system in yield. At the same time, the bio-concentration amount (BCA) of Cd of rice and water spinach in intercropping system significantly increased by 17.99% and 31.98%, respectively (P<0.05). However, the metal removal equivalent ratio (MRER) of Cd was 1.34, which showed the intercropping system of rice-water spinach had advantage in Cd removal. In the pot experiment, the total iron plaque concentration on the root surface of rice and the pH of the rhizosphere soil were higher under continuous flooding (TCF) than under the control conditions (75% field capacity, TCK), which could significantly decrease the available Cd in the rhizosphere soil and the accumulation of Cd in rice organs. So, this study demonstrated that iron plaque can obstruct and decrease the Cd absorbed by rice in a rice-water spinach intercropping system combined with water management. The intercropping rice with water spinach can achieve the goal of remediation while producing for farmland contaminated by Cd.
Collapse
Affiliation(s)
- Zhiming Kang
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Wenyuan Zhang
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Sihui Li
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Xu Yang
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Xin Wei
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University / Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture of China, Guangzhou, 510642, PR China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture / Guangdong Engineering Research Center for Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Wan Y, Huang Q, Wang Q, Yu Y, Su D, Qiao Y, Li H. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121293. [PMID: 31606704 DOI: 10.1016/j.jhazmat.2019.121293] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/03/2019] [Accepted: 09/22/2019] [Indexed: 05/10/2023]
Abstract
Heavy metal contamination of agricultural soils is a global concern, as it can cause the accumulation of heavy metals in food. In this study, a field experiment was carried out to investigate the effect of the continuous application of chicken or swine manure on the Pb, Cd, Cr and As bioavailability, fractionation, and accumulation in soil and uptake by rice plants. Results showed that chicken or swine manure significantly reduced the Cd and Pb contents in rice grain by 7.8-79.3% and 7.2-59.4%, respectively, with increasing application rates and number of years; the exchangeable Cd and Pb fractions, and the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd and Pb in the soil were also decreased. Furthermore, the application of chicken or swine manure substantially increased the DTPA-extractable As and exchangeable As fractions in the soil but had limited effect on As accumulation in rice grain. No significant differences in the bioavailability in soil nor accumulation in the rice grain were found for Cr between the treatments. Therefore, livestock manure can be used as soil amendments to decrease Cd and Pb accumulation in rice grains, nevertheless, the potential risk of metal accumulation in soils caused by livestock manure application should be considered.
Collapse
Affiliation(s)
- Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China; Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Qingqing Huang
- Innovation Team of Remediation of Heavy Metal-Contaminated Farmlands, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dechun Su
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuhui Qiao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
32
|
Wang G, Hu Z, Li S, Wang Y, Sun X, Zhang X, Li M. Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging. CHEMOSPHERE 2020; 240:124846. [PMID: 31550594 DOI: 10.1016/j.chemosphere.2019.124846] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) precipitation and dissolution in pore water is associated with dissolved organic carbon (DOC)-induced reduction-oxidation of sulfur (S) under waterlogging and is vital for controlling the bioavailability in paddy soil. A 120-day soil incubation experiment, including application of sulfur (S, 30 mg kg-1) and wheat straw (W, 1.0%) alone or in combination (W + S) into Cd-contaminated paddy soil under waterlogging, was conducted to investigate the dynamic of dissolved Cd and its relationship with DOC, S2-, Fe2+, pH, Eh and pe + pH in soil pore water. The results showed that the lowest dissolved Cd concentration was observed in the W + S-treated soil pore water among all treatments when the soil Eh remained at lower values during the period of 15-60 days of incubation, which could be attributed to CdS precipitation and/or co-precipitation of Cd absorbed by FeS2 because of the reduction in sulfur. The application of S resulted in a Cd rebound in the pore water irrespective of W addition when the Eh began to increase from its lowest values during the period of 45-75 days of incubation, and SOB genera were observed in the S added soil. This could be attributed to re-dissolution of the precipitated Cd in soils under the SOB-driven oxidation of sulfide such as CdS and FeS2. In conclusion, DOC-driven reduction-oxidation of sulfur controls Cd dissolution in the pore water of Cd-contaminated paddy soil under waterlogging conditions. Further studies are required to investigate the interaction of sulfur and SOM-induced DOC on Cd bioavailability in rice-planted paddy soils.
Collapse
Affiliation(s)
- Guoxi Wang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengyi Hu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Songyan Li
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- Soil Physics and Land Management, Wageningen University & Research, Wageningen, 6700AA, Netherlands
| | - Xiaolei Sun
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangru Zhang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
33
|
Li J, Zhang P, Ye J, Zhang G, Cai Y. Simultaneous in-situ remediation and fertilization of Cd-contaminated weak-alkaline farmland for wheat production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109528. [PMID: 31521923 DOI: 10.1016/j.jenvman.2019.109528] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/10/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
In-situ remediation of heavy metal-contaminated farmland mainly focuses on acidic soil, however, weak-alkaline farmland widely exists in north China. Meanwhile, fertilization is usually ignored, but it may influence remediation efficiency as well as grain production. In this paper, field experiments were carried out to investigate in-situ simultaneous remediation and fertilization of Cd-contaminated weak-alkaline soil by microbial agent mixed with fulvic acid (MFA), wheat straw biochar, sepiolite and their mixture. Results showed that addition of these conditioners decreased the soil available Cd by 39.86%-71.33% and the wheat Cd by 41.94%-87.10%. The decrease order of soil available Cd followed sepiolite > mixture > biochar > MFA, while the decrease order of wheat Cd was mixture > sepiolite > biochar > MFA. With addition of mixture, the wheat Cd reduced to 0.08 mg/kg, lower than the Cd limit of 0.1 mg/kg in Contaminant Limit in Food of National Food Safety Standards (GB2762-2017), and the highest wheat yield reached 7590 kg/hm2. The MFA had significant effects on improvement of soil organic matters, nutrients and rhizosphere microbes; the biochar was prominent in improving soil organic matters, inhibiting wheat Cd and soil available Cd; the sepiolite had obvious advantages in reducing wheat Cd and soil available Cd; and the mixture had a more balanced effect on soil remediation and fertilization. Correlation study showed that soil available Cd significantly affected the uptake of Cd by wheat, and wheat yield was significantly positively correlated with soil organic matters, available N. Therefore, reducing soil available Cd, increasing soil organic matters and nutrients are the keys to simultaneous remediation and fertilization of Cd-contaminated weak-alkaline soil for wheat production.
Collapse
Affiliation(s)
- Juan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Environment and Resource, Renmin University of China, Beijing, 100872, China.
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
34
|
Xiang Y, Kang F, Xiang Y, Jiao Y. Effects of humic acid-modified magnetic Fe 3O 4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109424. [PMID: 31299478 DOI: 10.1016/j.ecoenv.2019.109424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 06/10/2023]
Abstract
The synthesis of a humic acid-layered double hydroxide (HA-LDH) hybrid was purposed for the remediation of contaminated soils in mining area. The hybrid was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Scanning electron microscope and energy dispersive spectrometer. In order to investigate the effect of HA-LDH on the mine soil, greenhouse experiments of Artemisia ordosica were carried out under different concentrations of amendments (0, 1%, 3%, 5%, 7%). The plant growth, metal availability, and soil enzyme activities were studied to determine the effects of HA-LDH. The mine soil with 5% HA-LDH was the optimum proportion, and the growth of Artemisia ordosica was in good status. The HA-LDH and Artemisia ordosica could effectively decrease the bioavailability of heavy metals (such as Pb, Cr, Ni, Cd, Zn, and As) in the mine soil, and improve the enzyme activities of β-glucosidase, urease, and phosphatase. The HA-LDH with magnetism could be easily separated. The characteristics and reusability of HA-LDH could be well maintained after five cycles of remediation. Consequently, the HA-LDH is promising for the remediation of contaminated soils in mining area.
Collapse
Affiliation(s)
- Yulin Xiang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000, Shaanxi, China.
| | - Furen Kang
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000, Shaanxi, China
| | - Yuxiu Xiang
- Department of Management Engineering, Qiqihar Institute of Engineering, Qiqihar 161005, Heilongjiang, China
| | - Yurong Jiao
- Shaanxi Key Laboratory of Ecological Restoration in Shanbei Mining Area, Yulin University, Yulin, 719000, Shaanxi, China
| |
Collapse
|
35
|
Qu C, Chen W, Hu X, Cai P, Chen C, Yu XY, Huang Q. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. ENVIRONMENT INTERNATIONAL 2019; 131:104995. [PMID: 31326822 DOI: 10.1016/j.envint.2019.104995] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/16/2019] [Accepted: 07/04/2019] [Indexed: 05/24/2023]
Abstract
The mineral-organo composites control the speciation, mobility and bioavailability of heavy metals in soils and sediments by surface adsorption and precipitation. The dynamic changes of soil mineral, organic matter and their associations under redox, aging and microbial activities further complicate the fate of heavy metals. Over the past decades, the wide application of advanced instrumental techniques and modelling has largely extended our understanding on heavy metal behavior within mineral-organo assemblages. In this review, we provide a comprehensive summary of recent progress on heavy metal immobilization by mineral-humic and mineral-microbial composites, with a special focus on the interfacial reaction mechanisms of heavy metal adsorption. The impacts of redox and aging conditions on heavy metal speciations and associations with mineral-organo complexes are discussed. The modelling of heavy metals adsorption and desorption onto synthetic mineral-organo composites and natural soils and sediments are also critically reviewed. Future challenges and prospects in the mineral-organo interface are outlined. More in-depth investigations are warranted, especially on the function and contribution of microorganisms in the immobilization of heavy metals at the complex mineral-organo interface. It has become imperative to use the state-of-the-art methodologies to characterize the interface and develop in situ analytical techniques in future studies.
Collapse
Affiliation(s)
- Chenchen Qu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiping Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengrong Chen
- School of Environment and Sciences, Griffith University, Brisbane, QLD 4111, Australia
| | - Xiao-Ying Yu
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
36
|
Gao Q, Li QS, He BY, Yang JQ, Wang LL, Wang JF, Jiang JJ, Wang DS, Wang YF. Phosphate-solubilizing bacteria will not significantly remobilize soil cadmium remediated by weathered coal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:29003-29011. [PMID: 31388952 DOI: 10.1007/s11356-019-06142-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) re-mobilize by phosphate-solubilizing bacteria (PSB) from immobilization contaminated soil has drawn great attention due to its serious threat to human health through food chain. However, Cd binding with weathered coal (WC), an effective Cd immobilization material, will be re-mobilized by PSB or not is still unclear. In this study, the soil and sand pots with Cd were respectively mixed with the weight fractions of 0‰, 2‰, and 3‰ WC, inoculated with or without PSB, and planted with Amaranthus mangostanus L. The experimental results indicated that: (i) Cd in soil was transformed into organic fraction with WC, which has been led to the Cd accumulation concentrations in roots and shoots reduced by 38.8% and 20.5%, respectively; (ii) PSB could promote the concentration of exchangeable-Cd fraction and soil Cd uptake by amaranth in all treatments; and (iii) WC application in sand pot respectively reduced the Cd accumulation by 47.5% in roots and 24.1% in shoots, but PSB inoculation showed no significant effect on Cd accumulation in plants under WC application. SEM, zeta potential, and FT-IR results showed that PSB inoculation after Cd immobilized by WC had no influence on the microstructure, amount of negative charge, type, and content of functional groups in WC, indicating that organic fraction Cd in WC was not re-mobilized by PSB. Therefore, the application of WC in contaminated soil was conducive to transforming Cd in organic-bound forms and intensifying Cd immobilization effects.
Collapse
Affiliation(s)
- Qiong Gao
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China.
| | - Bao-Yan He
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Jun-Qing Yang
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Li-Li Wang
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Jian-Jun Jiang
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Dong-Sheng Wang
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| | - Yi-Fan Wang
- School of Environment, Key Laboratory of Environmental Pollution and Health of Guangdong Province, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
37
|
Hsieh SH, Chiu TP, Huang WS, Chen TC, Yeh YL. Cadmium (Cd) and Nickel (Ni) Distribution on Size-Fractioned Soil Humic Substance (SHS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183398. [PMID: 31540224 PMCID: PMC6765809 DOI: 10.3390/ijerph16183398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
Soil humic substances (SHS) are heterogeneous, complex mixtures, whose concentration, chemical composition, and structure affect the transport and distribution of heavy metals. This study investigated the distribution behavior of two heavy metals [cadmium (Cd) and nickel (Ni)] in high molecular weight SHS (HMHS, 1 kDa-0.45 μm) and low molecular weight SHS (LMHS, <1 kDa) extracted from agricultural soils. The HMHS mass fractions were 45.1 ± 19.3%, 17.1 ± 6.7%, and 57.7 ± 18.5% for dissolved organic carbon (DOC), Cd, and Ni, respectively. The metal binding affinity, unit organic carbon binding with heavy metal ratios ([Me]/[DOC]), were between 0.41 ± 0.09 μmol/g-C and 7.29 ± 2.27 μmol/g-C. Cd preferred binding with LMHS (p < 0.001), while Ni preferred binding with HMHS (p < 0.001). The optical indicators SUVA254, SR, and FI were 3.16 ± 1.62 L/mg-C/m, 0.54 ± 0.18 and 1.57 ± 0.15, respectively for HMHS and 2.65 ± 1.25 L/mg-C/m, 0.40 ± 0.17, and 1.68 ± 0.12, respectively for LMHS. The HMHS contained more aromatic and lower FI values than LMHS. Multilinear regression showed a significant positive correlation between the measured predicted [Me]/[DOC] ratios (r = 0.52-0.72, p < 0.001). The results show that the optical indices can distinguish the chemical composition and structure of different size SHS and predict the binding ability of Me-SHS.
Collapse
Affiliation(s)
- Sheng-Hsien Hsieh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Teng-Pao Chiu
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Wei-Shiang Huang
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Ting-Chien Chen
- Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| | - Yi-Lung Yeh
- Department of Civil Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan.
| |
Collapse
|
38
|
Wang D, Xue MY, Wang YK, Zhou DZ, Tang L, Cao SY, Wei YH, Yang C, Liang DL. Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:871-881. [PMID: 30677952 DOI: 10.1016/j.scitotenv.2018.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Soil dissolved organic matter (DOM) alters heavy metal availability, but whether straw amendment can manipulate soil selenium (Se) speciation and availability through DOM mineralization remains unclear. In this study, allochthonous maize straw and selenate were incubated together in four different soils for 1 y. The transformation and availability of DOM associated Se (DOM-Se) was investigated during aging. Results indicated that soil solution and soil particle surfaces were dominated by hexavalent hydrophilic acid-bound Se (Hy-Se). The amount of fulvic acid bound Se in soil solution (SOL-FA-Se) was higher than humic acid bound Se in soil solution (SOL-HA-Se), except in krasnozems, and mainly existed as hexavalent Se (Se(VI)). Tetravalent Se (Se(IV)) was the main valence state of FA-Se adsorbed on soil particle surfaces (EX-FA-Se) after 5 w of aging. The proportion of soil-available Se (SOL + EX-Se) decreased with increasing straw rate. However, under an application rate of 7500 kg·hm-2, soluble Se fraction (SOL-Se) reduction was minimal in acidic soils (18.7%-34.7%), and the organic bound Se fraction (OM-Se) was maximally promoted in alkaline soils (18.2%-39.1%). FA and HON could enhance the availability of Se in the soil solution and on particle surfaces of acidic soil with high organic matter content. While Se incorporation with HA could accelerate the fixation of Se into the solid phase of soil. Three mechanisms were involved in DOM-Se aging: (1) Reduction, ligand adsorption, and inner/outer-sphere complexation associated with the functional groups of straw-derived DOM, including hydroxyls, carboxyl, methyl, and aromatic phenolic compounds; (2) interconnection of EX-FA-Se between non-residual and residual Se pools; and (3) promotion by soil electrical conductivity (EC), clay, OM, and straw application. The dual effect of DOM on Se aging was highly reliant on the characteristics of the materials and soil properties. In conclusion, straw amendment could return selenium in soil and reduce soluble Se loss.
Collapse
Affiliation(s)
- Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Yue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying-Kun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - De-Zhi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sheng-Yan Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Hong Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Li Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
39
|
Wang X, Yu HY, Li F, Liu T, Wu W, Liu C, Liu C, Zhang X. Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO 3) 3: Possible mechanisms and environmental implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:535-543. [PMID: 30176464 DOI: 10.1016/j.scitotenv.2018.08.387] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
Organic matter (OM) plays an important role in the mobility of heavy metal(loid)s. Peat containing abundant OM can be used as an organic fertilizer improving physical and chemical properties of soil. Previous studies indicated that the immobilization of heavy metal(loid)s by peat is affected by the presence of metal oxides and/or hydroxides and that Fe-enriched peat is very effective in immobilizing metal(loid)s. Accordingly, we hypothesize that simultaneous application of peat and Fe-containing compounds may pronouncedly immobilize heavy metal(loid)s. In this study, the effects of the combined applications of woody peat and Fe(NO3)3 on As and Cd mobilities and accumulations in rice during the whole growth period were investigated by a pot experiment. The combined applications of woody peat and Fe(NO3)3 significantly decreased As(III) and Cd in porewater due to pH increases induced by applications of Fe(NO3)3, and these decreases were enhanced with increasing Fe(NO3)3. In addition, simultaneous application of peat and Fe(NO3)3 significantly decreased mobile portions of As and Cd but significantly increased their immobile portions. Increasing Fe(NO3)3 increased the amount of As immobilized by poorly crystalline Fe oxides. The formation of Fe plaques and production of poorly crystalline Fe oxides were enhanced by Fe(NO3)3 addition, which also contributed to the immobilization of As and Cd in soil. Overall, the combined applications of woody peat and Fe(NO3)3 provided a strategy for simultaneously immobilizing As and Cd in soils and further alleviating their accumulations from soil to rice plants. In paddy soil, the frequent occurrence of iron redox activity due to the alternating wetting and drying cycles provided favorable conditions for interactions between Fe and OM, and this process and its associated metal(loid) immobilization may be more important than we thought and need further study.
Collapse
Affiliation(s)
- Xiangqin Wang
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Huan-Yun Yu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China.
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Weijian Wu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Chuanping Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Chengshuai Liu
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science and Technology, Guangzhou 510650, China
| | - Xiaoqing Zhang
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan, Hubei Province 430081, China
| |
Collapse
|
40
|
Xu Q, Duan D, Cai Q, Shi J. Influence of Humic Acid on Pb Uptake and Accumulation in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12327-12334. [PMID: 30388006 DOI: 10.1021/acs.jafc.8b03556] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A hydroponic experiment combined with synchronous radiation X-ray fluorescence (SRXRF) analysis was designed to understand the influence of humic acid (HA) in tea plants under lead stress. The results showed that the quantitative relationship (QR) between humic acid and Pb is an important factor affecting the regulation of humic acid with respect to the accumulation of Pb in tea plants. Besides, excess humic acid might stimulate the accumulation of Pb in the root cell wall and transfer to the shoot organs through undifferentiated casparian band structure. This study could provide a theoretical basis for the scientific evaluation of the effect of humic acid on tea uptake and the accumulation of Pb and the practical application of humic acid in reducing Pb pollution in the field.
Collapse
Affiliation(s)
| | - Dechao Duan
- Zhejiang Bestwa EnviTech Company, Ltd , Hangzhou 310015 , China
| | | | | |
Collapse
|