1
|
Li R, Wang Y, Zeng F, Si C, Zhang D, Xu W, Shi J. Advances in Polyoxometalates as Electron Mediators for Photocatalytic Dye Degradation. Int J Mol Sci 2023; 24:15244. [PMID: 37894924 PMCID: PMC10607072 DOI: 10.3390/ijms242015244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing concerns over the environment and the growing demand for sustainable water treatment technologies have sparked substantial interest in the field of photocatalytic dye removal. Polyoxometalates (POMs), known for their intricate metal-oxygen anion clusters, have received considerable attention due to their versatile structures, compositions, and efficient facilitation of photo-induced electron transfers. This paper provides an overview of the ongoing research progress in the realm of photocatalytic dye degradation utilizing POMs and their derivatives. The details encompass the compositions of catalysts, catalytic efficacy, and light absorption propensities, and the photocatalytic mechanisms inherent to POM-based materials for dye degradation are exhaustively expounded upon. This review not only contributes to a better understanding of the potential of POM-based materials in photocatalytic dye degradation, but also presents the advancements and future prospects in this domain of environmental remediation.
Collapse
Affiliation(s)
| | | | | | | | - Dan Zhang
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| | | | - Junyou Shi
- Key Laboratory of Biomass Materials Science and Technology of Jilin Province, Beihua University, Binjiang East Road, Jilin 132013, China; (R.L.); (Y.W.); (F.Z.); (C.S.); (W.X.)
| |
Collapse
|
2
|
Metal-Free Nitrogen-doped Porous Carbon Nanofiber Catalyst for Solar-Fenton-like System: Efficient, Reusable and Active Catalyst over a Wide Range of pH. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Accelerated Fe(III)/Fe(II) cycle couples with in-situ generated H2O2 boosting visible light-induced Fenton-like oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Li S, Zhang J, Cao Y, Yang Y, Xie T, Lin Y. Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Naslhajian H, Amini M, Hosseinifard M, Farnia SMF, Janczak J. Synthesis and characterization of a new polyoxometalate nanocluster containing Mo and V as an environmentally green catalyst for oxidative degradation of organic pollutants from aquatic environments. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hadi Naslhajian
- Department of Chemistry, Faculty of Science University of Maragheh Maragheh Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | | | | | - Jan Janczak
- Institute of Low Temperature and Structure Research Polish Academy of Sciences Wrocław Poland
| |
Collapse
|
6
|
Liu X, Lu L, Zhu M, Englert U. Design and synthesis of three new copper coordination polymers: efficient degradation of an organic dye at alkaline pH. Dalton Trans 2021; 50:13866-13876. [PMID: 34523645 DOI: 10.1039/d1dt02463a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new coordination polymers (CPs) based on Cu(II), namely {[Cu6(H2L)4(4,4'-bpy)6(H2O)2]·16H2O}n(1), {[Cu(H3L)(1,4-bib)]·3H2O}n(2), and {[Cu2(H2L)2(1,4-bib)2][Cu(1,4-bib)(H2O)2]}n·4nH2O(3) (H5L = 6-(3',4'-dicarboxyphenoxy)-2,3,5-benzene tricarboxylic acid, 4,4'-bpy = 4,4'-bipyridine and 1,4-bib = 1,4-bis(1H-imidazol-1-yl)benzene) were synthesized under hydrothermal conditions and characterized. 1 adopts a three-dimensional structure and can be described with the point symbol {4·52}2{42·54·64·83·92}{5·104·12} whereas 2 shows a layered structure. 3 can be perceived as a complex salt of two coordination polymers: the cationic component [Cu(1,4-bib)(H2O)2]n2+ (3a) represents a chain polymer and the second anionic moiety [Cu2(H2L)2(1,4-bib)2]n2- (3b) corresponds to a 2D sub-structure. In the presence of H2O2, all complexes 1-3 act as efficient photocatalysts for the degradation of the dye methylene blue (MB). The effects of properties such as initial MB concentration, catalyst dosage, pH value, and H2O2 concentration on MB degradation were also investigated and analyzed in detail. Compounds 1-3 exhibit excellent structural stability during the catalytic process and can be reused at least three times. The hydroxyl radical (OH˙) and holes (h+) were confirmed as the main active species in the degradation process.
Collapse
Affiliation(s)
- Xiaxia Liu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. .,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China.
| | - Miaoli Zhu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. .,Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ulli Englert
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. .,Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg. 1, Aachen 52074, Germany.
| |
Collapse
|
7
|
WITHDRAWN: Visible light assisted heterogeneous photo-Fenton-like degradation of Rhodamine B based on the Co-POM/N-TiO2 composites: Catalyst properties, photogenerated carrier transfer and degradation mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Ashraf GA, Rasool RT, Hassan M, Zhang L, Guo H. Heterogeneous catalytic activation of BaCu-based M-hexaferrite nanoparticles for methylene blue degradation under photo-Fenton-like system. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Wei Y, Wang C, Liu D, Jiang L, Chen X, Li H, Zhang F. Photo-catalytic oxidation for pyridine in circumneutral aqueous solution by magnetic Fe-Cu materials activated H2O2. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Xiao SJ, Wang LZ, Yuan MY, Huang XH, Ding JH, Zhang L. Peroxidase‐Mimetic and Fenton‐Like Activities of Molybdenum Oxide Quantum Dots. ChemistrySelect 2020. [DOI: 10.1002/slct.202001566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sai Jin Xiao
- Jiangxi Key Laboratory of Mass Spectrometry and Instrumentation East China University of Technology (ECUT) Nanchang 330013 P. R. China
- School of Chemistry Biology and Material Science ECUT Nanchang 330013 P. R. China
| | - Li Zhi Wang
- School of Chemistry Biology and Material Science ECUT Nanchang 330013 P. R. China
| | - Ming Yue Yuan
- School of Chemistry Biology and Material Science ECUT Nanchang 330013 P. R. China
| | - Xiao Huan Huang
- School of Chemistry Biology and Material Science ECUT Nanchang 330013 P. R. China
| | - Jian Hua Ding
- Jiangxi Key Laboratory of Mass Spectrometry and Instrumentation East China University of Technology (ECUT) Nanchang 330013 P. R. China
- School of Chemistry Biology and Material Science ECUT Nanchang 330013 P. R. China
| | - Li Zhang
- College of Chemistry Nanchang University Nanchang 330031 P. R. China
| |
Collapse
|
11
|
Malakootian M, Nasiri A, Heidari MR. Removal of Phenol from Steel Plant Wastewater in Three Dimensional Electrochemical (TDE) Process using CoFe2O4@AC/H2O2. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2019-1499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Abstract
This study investigated the removal of phenol from steel industry wastewater by three dimensional electrochemical (TDE) process using CoFe2O4 nanobiocomposite based activated carbon in the presence of H2O2 (EC-CoFe2O4@AC-H2O2). In this study, CoFe2O4 nanobiocomposite-foundation activated carbon (CoFe2O4@AC) was used as microelectrode, adsorbent, and activator for peroxide hydrogen. The removal efficiency of phenol and COD was investigated through the parameters of pH, contact time, CoFe2O4@AC dosage, current density, and H2O2 concentration. The highest removal rates of phenol and COD were >99% and 98%, respectively. Also, steel plant wastewater under the optimal conditions of pH = 6.5, current density = 15 mA cm−2, contact time = 25 min, H2O2 concentration of 1.0 mM, and CoFe2O4@AC dose = 0.3 g L−1. Kinetic analysis revealed that the adsorption experimental data was best fitted by the pseudo-first-order model.
Collapse
Affiliation(s)
- Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences , Kerman , Iran
- Department of Environmental Health , School of Public Health, Kerman University of Medical Sciences , Kerman , Iran
| | - Alireza Nasiri
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences , Kerman , Iran
| | - Mohammad Reza Heidari
- Department of Environmental Health , Environmental Health Engineering Research Center, Kerman University of Medical Sciences , Kerman , Iran
- Department of Environmental Health , School of Public Health, Bam University of Medical Sciences , Bam , Iran , Tel.: +98 343 132 5128, Fax: +98 343 132 5105
| |
Collapse
|
12
|
Kumar V, Ghime D, Ghosh P. Decolorization of textile dye Rifafix Red 3BN by natural hematite and a comparative study on different types of Fenton process. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1652603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Vijyendra Kumar
- Chemical Engineering Department, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Damodhar Ghime
- Chemical Engineering Department, National Institute of Technology, Raipur, Chhattisgarh, India
| | - Prabir Ghosh
- Chemical Engineering Department, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
13
|
Guo R, Wang R, Yin J, Jiao T, Huang H, Zhao X, Zhang L, Li Q, Zhou J, Peng Q. Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E127. [PMID: 30669533 PMCID: PMC6359147 DOI: 10.3390/nano9010127] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
Dye wastewater is one of the most important problems to be faced and solved in wastewater treatment. However, the treatment cannot be single and simple adsorption due to the complexity of dye species. In this work, we prepared novel composite fiber adsorbent materials consisting of ε-polycaprolactone (PCL) and beta-cyclodextrin-based polymer (PCD) by electrospinning. The morphological and spectral characterization demonstrated the successful preparation of a series of composite fibers with different mass ratios. The obtained fiber materials have demonstrated remarkable selective adsorption for MB and 4-aminoazobenzene solutions. The addition of a PCD component in composite fibers enhanced the mechanical strength of membranes and changed the adsorption uptake due to the cavity molecular structure via host⁻guest interaction. The dye removal efficiency could reach 24.1 mg/g towards 4-aminoazobenzene. Due to the admirable stability and selectivity adsorption process, the present prepared beta-cyclodextrin-based composite fibers have demonstrated potential large-scale applications in dye uptake and wastewater treatment.
Collapse
Affiliation(s)
- Rong Guo
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Ran Wang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Juanjuan Yin
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Haiming Huang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Xinmei Zhao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Lexin Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qing Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Jingxin Zhou
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
14
|
Su Z, Li J, Zhang D, Ye P, Li H, Yan Y. Novel flexible Fenton-like catalyst: Unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:587-596. [PMID: 30092514 DOI: 10.1016/j.scitotenv.2018.08.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Free-standing and flexible Cu@CuO nanowires (NWs) mesh as an easily recycled Fenton-like catalyst is developed for the first time. Dense CuO nanowire arrays were uniformly grown on a copper mesh surface simply by wet etching accompanied with thermal dehydration. These dense CuO NWs provide a large specific area and therefore guarantee excellent catalytic performance toward the degradation of rhodamine B (RhB). With a k-value of 0.23 min-1, such a Cu@CuO NWs mesh is able to degrade 100% RhB in only 16 min. This Fenton-like catalyst is also appropriate for degrading other organic dyes, including crystal violet, methylene blue, and rhodamine 6G. Unlike the conventional Fenton catalyst implemented at a pH value around 3, the Cu@CuO NWs mesh could adapt to a wide pH range from 2.1 to 12.0. More intriguingly, the Cu@CuO NWs mesh with excellent flexibility could be easily recycled after catalysis, which is a significant advance compared to the previously reported Fenton catalysts in the form of powders or nanoparticles. In addition, the recycling performance of this Cu@CuO NWs mesh was also assessed. On the basis of electron spin resonance (ESR) results, O2- rather than OH is the main active species for the dye degradation by the Cu@CuO NWs mesh. With a marvelous combination of excellent flexibility, wide pH adaptation, and high efficiency, this easily recycled three dimensional Cu@CuO NWs architecture can afford new ideas for the Fenton chemistry.
Collapse
Affiliation(s)
- Zhen Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jing Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dandan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Pin Ye
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Heping Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Youwei Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
15
|
Li L, Iqbal J, Zhu Y, Zhang P, Chen W, Bhatnagar A, Du Y. Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants. Int J Biol Macromol 2018; 120:1752-1759. [DOI: 10.1016/j.ijbiomac.2018.09.190] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
16
|
Hu Y, Li Y, He J, Liu T, Zhang K, Huang X, Kong L, Liu J. EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:256-263. [PMID: 30121461 DOI: 10.1016/j.jenvman.2018.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Industrial waste, urban sewage and aquaculture have led to severely increased grades of environment pollutants such as dyes, pesticides and fertilizer. The use of technologies for purifying contaminated waters can be difficult and toxic due to the anti-photolysis, anti-oxidation and anti-bio-oxidation characteristics of organic pollutants, and there is therefore a significant need for new approaches. Here, we report methods of Fenton oxidation and EDTA-Fe(III) Fenton-like oxidation which can be used to degrade malachite green (MG: a dye and antibiotic-like substance) from contaminated water. Compared with the degradation rate (59.34%) of the Fe(III)/H2O2 Fenton process, the EDTA-Fe(III) Fenton-like oxidation got a better degradation rate (92.7%) at neutral pH conditions. By conducting a series of parallel controlled experiments (changing parameters such as the reactant concentration, temperature, and pH), we report the relationships between the degradation effect and different parameters, and we fitted their pseudo first order kinetic curves. Furthermore, we repeated to adjustment of the concentrations of MG in solutions to test the cycle performance and catalytic activities of EDTA-Fe(III)/H2O2 system and it showed good repeatability in the first five rounds and all of them keep the degradation efficiencies greater than 80%. By conducting comparative spin-trapping electron paramagnetic resonance (EPR) experiments, we showed indirectly that the OH contributes to the degradation of MG. Additionally, the results of the EPR experiments showed that EDTA contributes to the generation of OH in the EDTA-Fe(III)/H2O2 Fenton-like system. By conducting total organic carbon (TOC) analysis experiments, we found that EDTA was also oxidized to some extent during the degradation of MG. In all, the findings of this work widen the range of the optimal pH values up to neutral condition for degradation of MG by use of EDTA-Fe(III) Fenton-like system. And this system could be used as one approach for the degradation of organic pollutants at neutral conditions and provide some initial information regarding EDTA-Fe(III) Fenton-like oxidations. It's significant for the expansion of the homogenous Fenton-like family and its application in the field of water treatment.
Collapse
Affiliation(s)
- Yi Hu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yulian Li
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Junyong He
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tao Liu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Kaisheng Zhang
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xingjiu Huang
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lingtao Kong
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Jinhuai Liu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|
17
|
Li J, Wang R, Su Z, Zhang D, Li H, Yan Y. Flexible 3D Fe@VO 2 core-shell mesh: A highly efficient and easy-recycling catalyst for the removal of organic dyes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:825-834. [PMID: 29758437 DOI: 10.1016/j.scitotenv.2018.05.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/06/2018] [Accepted: 05/06/2018] [Indexed: 06/08/2023]
Abstract
Nowadays, it is extremely urgent to search for efficient and effective catalysts for water purification due to the severe worldwide water-contamination crises. Here, 3D Fe@VO2 core-shell mesh, a highly efficient catalyst toward removal of organic dyes with excellent recycling ability in the dark is designed and developed for the first time. This novel core-shell structure is actually 304 stainless steel mesh coated by VO2, fabricated by an electrophoretic deposition method. In such a core-shell structure, Fe as the core allows much easier separation from the water, endowing the catalyst with a flexible property for easy recycling, while VO2 as the shell is highly efficient in degradation of organic dyes with the addition of H2O2. More intriguingly, the 3D Fe@VO2 core-shell mesh exhibits favorable performance across a wide pH range. The 3D Fe@VO2 core-shell mesh can decompose organic dyes both in a light-free condition and under visible irradiation. The possible catalytic oxidation mechanism of Fe@VO2/H2O2 system is also proposed in this work. Considering its facile fabrication, remarkable catalytic efficiency across a wide pH range, and easy recycling characteristic, the 3D Fe@VO2 core-shell mesh is a newly developed high-performance catalyst for addressing the universal water crises.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ruoqi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhen Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dandan Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Heping Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Youwei Yan
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|