1
|
Zhang H, Xie S, Du X, Bao Z, Xu F, Awadelseid SF, Yaisamut O. Effects and mechanisms of different exogenous organic matters on selenium and cadmium uptake by rice in natural selenium-cadmium-rich soil. Heliyon 2024; 10:e37740. [PMID: 39381237 PMCID: PMC11458970 DOI: 10.1016/j.heliyon.2024.e37740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/01/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Many natural selenium (Se)-rich rice plants are being polluted by cadmium (Cd). In this study, for reducing Cd concentrations in rice grains while maintaining Se concentrations, the effects of different exogenous organic matters (OMs), such as humic acid (HA), cow manure (CM), and vermicompost (VC), on Se and Cd uptake in rice growing in natural Se-Cd-rich paddy soils were investigated by pot experiments. The Se and Cd concentrations in the soil solution, their species in the soil, and their concentrations and translocations in rice tissues were determined. Results showed that different exogenous OMs exhibited distinct percentage changes in Se and Cd levels in rice grains with amplitudes of -19.42 % and -56.90 % (significant, p < 0.05) in the HA treatments, +10.79 % and -1.72 % in the CM treatments, and +15.83 % and -15.52 % in the VC treatments, respectively. Correlation analysis showed that the concentrations of Se and Cd in rice grains might be primarily influenced by their concentrations in the soil solution, rather than the Se/Cd molar ratios in the soil solution or their translocations in rice tissues. HA decreased Se and Cd bioavailability in soil by increasing HA-bound Se and residual Cd, respectively. Meanwhile, HA increased soil solution pH, which was negative for Cd bioavailability but positive for Se bioavailability. This additive effect made HA lowered Cd concentration more than Se concentration in both soil solution and grain. CM and VC did not have this additive effect and thus have limited effects on grain Se and Cd concentrations. In addition, according to grain Se and Cd concentrations, to prioritize reducing Cd in rice, use HA; to prioritize increasing Se in rice, use VC. This study enhances the understanding of Se and Cd uptake mechanisms in rice with the applications of various OMs and offers potential remediation methods for Se-Cd-rich paddy soils.
Collapse
Affiliation(s)
- Hongyu Zhang
- Hebei Key Laboratory of Strategic Critical Mineral Resources, College of Earth Sciences, Hebei GEO University, Shijiazhuang, 050031, China
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang, 725000, China
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, 710069, China
| | - Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoping Du
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang, 725000, China
| | - Zhengyu Bao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Feng Xu
- Ankang Se-Resources Hi-Tech Co., Ltd., Ankang, 725000, China
| | | | - Oraphan Yaisamut
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
- Department of Mineral Resources, Ministry of Natural Resources and Environment, 75/10 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
Zhao X, Lu Y, Dai L, Wang L, Zhou G, Liang T. Selenium spatial distribution and bioavailability of soil-plant systems in China: a comprehensive review. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:341. [PMID: 39073467 DOI: 10.1007/s10653-024-02126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Selenium (Se) has a dual nature, with beneficial and harmful effects on plants, essential for both humans and animals, playing a crucial role in ecosystem regulation. Insufficient Se in specific terrestrial environments raises concerns due to its potential to cause diseases, while excess Se can lead to severe toxicity. Thus, maintaining an optimal Se level is essential for living organisms. This review focuses first on Se transformation, speciation, and geochemical properties in soil, and then provides a concise overview of Se distribution in Chinese soil and crops, with a focus on the relationship between soil Se levels and parent materials. Additionally, this paper explores Se bioavailability, considering parent materials and soil physicochemical properties, using partial least squares path modeling for analysis. This paper aimed to be a valuable resource for effectively managing Se-enriched soil resources, contributing to a better understanding of Se role in ecosystems.
Collapse
Affiliation(s)
- Xiaoyuan Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiqing Lu
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing, 100035, China
| | - Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangjin Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
An L, Zhou C, Zhao L, Wei A, Wang Y, Cui H, Zheng S. Selenium-oxidizing Agrobacterium sp. T3F4 decreases arsenic uptake by Brassica rapa L. under a native polluted soil. J Environ Sci (China) 2024; 138:506-515. [PMID: 38135416 DOI: 10.1016/j.jes.2023.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 12/24/2023]
Abstract
Toxic arsenic (As) and trace element selenium (Se) are transformed by microorganisms but their complex interactions in soil-plant systems have not been fully understood. An As- and Se- oxidizing bacterium, Agrobacterium sp. T3F4, was applied to a native seleniferous As-polluted soil to investigate As/Se uptake by the vegetable Brassica rapa L. and As-Se interaction as mediated by strain T3F4. The Se content in the aboveground plants was significantly enhanced by 34.1%, but the As content was significantly decreased by 20.5% in the T3F4-inoculated pot culture compared to the control (P < 0.05). Similar result was shown in treatment with additional 5 mg/kg of Se(IV) in soil. In addition, the As contents in roots were significantly decreased by more than 35% under T3F4 or Se(IV) treatments (P<0.05). Analysis of As-Se-bacterium interaction in a soil simulation experiment showed that the bioavailability of Se significantly increased and As was immobilized with the addition of the T3F4 strain (P < 0.05). Furthermore, an As/Se co-exposure hydroponic experiment demonstrated that As uptake and accumulation in plants was reduced by increasing Se(IV) concentrations. The 50% growth inhibition concentration (IC50) values for As in plants were increased about one-fold and two-fold under co-exposure with 5 and 10 µmol/L Se(IV), respectively. In conclusion, strain T3F4 improves Se uptake but decreases As uptake by plants via oxidation of As and Se, resulting in decrease of soil As bioavailability and As/Se competitive absorption by plants. This provides a potential bioremediation strategy for Se biofortification and As immobilization in As-polluted soil.
Collapse
Affiliation(s)
- Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunzhi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lipeng Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huimin Cui
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Guo J, Luo X, Zhang Q, Duan X, Yuan Y, Zheng S. Contributions of selenium-oxidizing bacteria to selenium biofortification and cadmium bioremediation in a native seleniferous Cd-polluted sandy loam soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116081. [PMID: 38335579 DOI: 10.1016/j.ecoenv.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/29/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Selenium (Se) is a trace element that is essential for human health. Daily dietary Se intake is governed by the food chain through soil-plant systems. However, the cadmium (Cd) content tends to be excessive in seleniferous soil, in which Se and Cd have complex interactions. Therefore, it is a great challenge to grow crops containing appreciable amounts of Se but low amounts of Cd. We compared the effects of five Se-transforming bacteria on Se and Cd uptake by Brassica rapa L. in a native seleniferous Cd-polluted soil. The results showed that three Se-oxidizing bacteria (LX-1, LX-100, and T3F4) increased the Se content of the aboveground part of the plant by 330.8%, 309.5%, and 724.3%, respectively, compared to the control (p < 0.05). The three bacteria also reduced the aboveground Cd content by 15.1%, 40.4%, and 16.4%, respectively (p < 0.05). In contrast, the Se(IV)-reducing bacterium ES2-45 and weakly Se-transforming bacterium LX-4 had no effect on plant Se uptake, although they did decrease the aboveground Cd content. In addition, the three Se-oxidizing bacteria increased the Se available in the soil by 38.4%, 20.4%, and 24.0%, respectively, compared to the control (p < 0.05). The study results confirm the feasibility of using Se-oxidizing bacteria to simultaneously enhance plant Se content and reduce plant Cd content in seleniferous Cd-polluted soil.
Collapse
Affiliation(s)
- Jiayi Guo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiong Luo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qingyun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuanshuang Duan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongqiang Yuan
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Shixue Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
5
|
Wang Y, Yang Z, Chen G, Zhan L, Zhang M, Zhou M, Sheng W. Influencing factors of selenium transformation in a soil-rice system and prediction of selenium content in rice seeds: a case study in Ninghua County, Fujian Province. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:995-1006. [PMID: 38030845 DOI: 10.1007/s11356-023-31193-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Selenium (Se) is an essential element for human and animal health and has antioxidant, anticancer, and antiviral effects. However, more than 100 million people in China do not have enough Se in their diets, resulting in a state of low Se in the human body. Since the absorption of Se by crop seeds depends not only on the Se content in soil, there are many omissions and misjudgments in the division of Se-rich producing areas. Soil pH, total iron oxide content (TFe2O3), soil organic matter (SOM), and P and S contents were the main factors affecting Se migration and transformation in the soil-rice system. In this study, we compared the performance of the back propagation neural network (BP network) and multiple linear regression (MLR) using 177 pairs of soil-rice samples. Our results showed that the BP network had higher accuracy than MLR. The accuracy and precision of the prediction data met the requirements, and the prediction data were reliable. Based on the Se data of surface paddy fields, 26,900 ha of Se-rich rice planting area was planned using this model, accounting for 77% of the paddy field area. In the planned Se-rich area for rice, the proportion of soil Se content greater than 0.4 mg·kg-1 was only 5.29%. Our research is of great significance for the development of Se-rich lands.
Collapse
Affiliation(s)
- Ying Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
- China Chemical Mingda Holding Group, Beijing, 100013, China
| | - Zhongfang Yang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China.
- Key Laboratory of Ecological Geochemistry, Ministry of Natural Resources, Beijing, 100037, China.
| | - Guoguang Chen
- Nanjing Center, China Geological Survey, Nanjing, 210016, Jiangsu, China
| | - Long Zhan
- Nanjing Center, China Geological Survey, Nanjing, 210016, Jiangsu, China
| | - Ming Zhang
- Nanjing Center, China Geological Survey, Nanjing, 210016, Jiangsu, China
| | - Mo Zhou
- Nanjing Center, China Geological Survey, Nanjing, 210016, Jiangsu, China
| | - Weikang Sheng
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
6
|
Ge X, Zhang J, He L, Yu N, Pan C, Chen Y. Integration of metabolomics and transcriptomics analyses reveals the mechanism of nano-selenium treated to activate phenylpropanoid metabolism and enhance the antioxidant activity of peach. J Food Sci 2023; 88:4529-4543. [PMID: 37872835 DOI: 10.1111/1750-3841.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/09/2023] [Accepted: 09/13/2023] [Indexed: 10/25/2023]
Abstract
Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.
Collapse
Affiliation(s)
- Xuliyang Ge
- Chinese Academy of Inspection and Quarantine, Beijing, China
- School of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Jiukai Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Lei He
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Ning Yu
- Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing, China
| |
Collapse
|
7
|
Xie S, Wan X, Dong J, Wan N, Jiang X, Carranza EJM, Wang X, Chang L, Tian Y. Quantitative prediction of potential areas likely to yield Se-rich and Cd-low rice using fuzzy weights-of-evidence method. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 889:164015. [PMID: 37172831 DOI: 10.1016/j.scitotenv.2023.164015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The research of high-quality agricultural products rich in selenium and low in cadmium (Se-rich and Cd-low, respectively) is related directly to the value of agricultural products and people's food safety. Now it is still challenging to carry out development planning for Se-rich rice. By fuzzy weights-of-evidence method, the geochemical soil survey data of Se and Cd from 27,833 surface soil samples and 804 rice samples was used to predict the probability of areas, in Hubei Province, China, that will likely yield (a) Se-rich and Cd-low rice, (b) Se-rich and Cd-normal rice and (c) Se-rich and Cd-high rice. The areas predicted to likely yield Se-rich and Cd-high rice, Se-rich and Cd-normal rice, and high quality (i.e., Se-rich and Cd-low) rice cover 6542.3 km2 (5.9 %), 35,845.9 km2 (32.6 %), 12,379.7 km2 (11.3 %), respectively, of the surveyed region. According to the predictive distribution probability mapping of Se and Cd, this paper gives preliminary suggestions on the use of endogenous and exogenous Se, and Cd-reduction measures in planting Se-rich rice in different regions of Hubei Province. This study provides a new perspective for rational rice planting of Se-rich agricultural products, and it lays a foundation for the effective implementation of a geochemical soil investigation engineering project, which is of great significance for improving the economic value of Se-rich agricultural products and sustainable utilization of Se land resources.
Collapse
Affiliation(s)
- Shuyun Xie
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xiang Wan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Geological Survey, Wuhan 430034, PR China
| | - Jianbiao Dong
- State Key Laboratory of Geological Processes and Mineral Resources (GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Neng Wan
- Hubei Geological Survey, Wuhan 430034, PR China
| | - Xingnian Jiang
- Faculty of Resources, China University of Geosciences, Wuhan 430074, China
| | | | - Xinqing Wang
- Faculty of Resources, China University of Geosciences, Wuhan 430074, China
| | - Liheng Chang
- Faculty of Resources, China University of Geosciences, Wuhan 430074, China
| | - Ye Tian
- Hubei Geological Survey, Wuhan 430034, PR China
| |
Collapse
|
8
|
Qu L, Xu J, Dai Z, Elyamine AM, Huang W, Han D, Dang B, Xu Z, Jia W. Selenium in soil-plant system: Transport, detoxification and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131272. [PMID: 37003006 DOI: 10.1016/j.jhazmat.2023.131272] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Selenium (Se) is an essential micronutrient for humans and a beneficial element for plants. However, high Se doses always exhibit hazardous effects. Recently, Se toxicity in plant-soil system has received increasing attention. This review will summarize (1) Se concentration in soils and its sources, (2) Se bioavailability in soils and influencing factors, (3) mechanisms on Se uptake and translocation in plants, (4) toxicity and detoxification of Se in plants and (5) strategies to remediate Se pollution. High Se concentration mainly results from wastewater discharge and industrial waste dumping. Selenate (Se [VI]) and selenite (Se [IV]) are the two primary forms absorbed by plants. Soil conditions such as pH, redox potential, organic matter and microorganisms will influence Se bioavailability. In plants, excessive Se will interfere with element uptake, depress photosynthetic pigment biosynthesis, generate oxidative damages and cause genotoxicity. Plants employ a series of strategies to detoxify Se, such as activating antioxidant defense systems and sequestrating excessive Se in the vacuole. In order to alleviate Se toxicity to plants, some strategies can be applied, including phytoremediation, OM remediation, microbial remediation, adsorption technique, chemical reduction technology and exogenous substances (such as Methyl jasmonate, Nitric oxide and Melatonin). This review is expected to expand the knowledge of Se toxicity/detoxicity in soil-plant system and offer valuable insights into soils Se pollution remediation strategies.
Collapse
Affiliation(s)
- Lili Qu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhihua Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Resources and Environmental Microbiology, Department of Biology, Shantou University, Shantou, Guangdong, China
| | - Wuxing Huang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Dan Han
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Bingjun Dang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Zicheng Xu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| | - Wei Jia
- College of Tobacco Science, Henan Agricultural University, Zhengzhou, Henan, China; National Tobacco Cultivation and Physiology and Biochemistry Research Center, Zhengzhou, Henan, China; Key Laboratory for Tobacco Cultivation of Tobacco Industry, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Jiang D, Yu F, Huang X, Qin H, Zhu Z. Effects of microorganisms on soil selenium and its uptake by pak choi in selenium-enriched lateritic red soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114927. [PMID: 37080129 DOI: 10.1016/j.ecoenv.2023.114927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/23/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Data on selenium (Se) transformation, specifically the mineralization or activation of Se bound by microorganisms in natural Se-enriched soil, is limited. Therefore, this study investigates the effects of microorganisms on Se availability of Se-enriched lateritic red soil and Se uptake by pak choi. Following the incubation of Stenotrophomonas maltophilia S1 and arbuscular mycorrhizal (AM) fungi agent, the available Se content of soils increased from 35 to 66.69-117.04 μg/kg, corresponding to an increase of 90.50-234.40%. The Se bioconcentration and translocation factors in pak choi increased after adding the AM fungi agent and strain S1. The soil acid phosphatase activity, and pak choi root length, surface area, and diameter also increased. Moreover, the soil acid phosphatase activity showed a significant positive correlation with soil available Se and phosphorus content (p < 0.01). Overall, the AM fungi agent and strain S1 increased Se bioavailability by enhancing soil acid phosphatase and promoting root activity, ultimately increasing pak choi's ability to absorb available Se.
Collapse
Affiliation(s)
- Daihua Jiang
- Key Laboratory of Guangxi Agricultural Environment and Agricultural Product Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Fengyuan Yu
- Key Laboratory of Guangxi Agricultural Environment and Agricultural Product Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuejiao Huang
- Key Laboratory of Guangxi Agricultural Environment and Agricultural Product Safety, Guangxi University, Nanning, Guangxi 530004, China.
| | - Huisong Qin
- Key Laboratory of Guangxi Agricultural Environment and Agricultural Product Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhengjie Zhu
- College of Agricultural and Food Engineering, Baise University, Baise, Guangxi 533000, China
| |
Collapse
|
10
|
Guo Q, Ye J, Zeng J, Chen L, Korpelainen H, Li C. Selenium species transforming along soil-plant continuum and their beneficial roles for horticultural crops. HORTICULTURE RESEARCH 2023; 10:uhac270. [PMID: 36789256 PMCID: PMC9923214 DOI: 10.1093/hr/uhac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/01/2022] [Indexed: 05/15/2023]
Abstract
Selenium (Se) acquirement from daily diet can help reduce the risk of many diseases. The edible parts of crop plants are the main source of dietary Se, while the Se content in crops is determined by Se bioavailability in soil. We summarize recent research on the biogeochemical cycle of Se driven by specific microorganisms and emphasize the oxidizing process in the Se cycle. Moreover, we discuss how plant root exudates and rhizosphere microorganisms affect soil Se availability. Finally, we cover beneficial microorganisms, including endophytes, that promote crop quality and improve crop tolerance to environmental stresses. Se availability to plants depends on the balance between adsorption and desorption, reduction, methylation and oxidation, which are determined by interactions among soil properties, microbial communities and plants. Reduction and methylation processes governed by bacteria or fungi lead to declined Se availability, while Se oxidation regulated by Se-oxidizing microorganisms increases Se availability to plants. Despite a much lower rate of Se oxidization compared to reduction and methylation, the potential roles of microbial communities in increasing Se bioavailability are probably largely underestimated. Enhancing Se oxidation and Se desorption are crucial for the promotion of Se bioavailability and uptake, particularly in Se-deficient soils. Beneficial roles of Se are reported in terms of improved crop growth and quality, and enhanced protection against fungal diseases and abiotic stress through improved photosynthetic traits, increased sugar and amino acid contents, and promoted defense systems. Understanding Se transformation along the plant-soil continuum is crucial for agricultural production and even for human health.
Collapse
Affiliation(s)
- Qingxue Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianhui Ye
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jianming Zeng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27, FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Gui JY, Rao S, Huang X, Liu X, Cheng S, Xu F. Interaction between selenium and essential micronutrient elements in plants: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158673. [PMID: 36096215 DOI: 10.1016/j.scitotenv.2022.158673] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Nutrient imbalance (i.e., deficiency and toxicity) of microelements is an outstanding environmental issue that influences each aspect of ecosystems. Although the crucial roles of microelements in entire lifecycle of plants have been widely acknowledged, the effective control of microelements is still neglected due to the narrow safe margins. Selenium (Se) is an essential element for humans and animals. Although it is not believed to be indispensable for plants, many literatures have reported the significance of Se in terms of the uptake, accumulation, and detoxification of essential microelements in plants. However, most papers only concerned on the antagonistic effect of Se on metal elements in plants and ignored the underlying mechanisms. There is still a lack of systematic review articles to summarize the comprehensive knowledge on the connections between Se and microelements in plants. In this review, we conclude the bidirectional effects of Se on micronutrients in plants, including iron, zinc, copper, manganese, nickel, molybdenum, sodium, chlorine, and boron. The regulatory mechanisms of Se on these micronutrients are also analyzed. Moreover, we further emphasize the role of Se in alleviating element toxicity and adjusting the concentration of micronutrients in plants by altering the soil conditions (e.g., adsorption, pH, and organic matter), promoting microbial activity, participating in vital physiological and metabolic processes, generating element competition, stimulating metal chelation, organelle compartmentalization, and sequestration, improving the antioxidant defense system, and controlling related genes involved in transportation and tolerance. Based on the current understanding of the interaction between Se and these essential elements, future directions for research are suggested.
Collapse
Affiliation(s)
- Jia-Ying Gui
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinru Huang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
12
|
Li J, Otero-Gonzalez L, Lens PNL, Ferrer I, Du Laing G. Assessment of selenium and zinc enriched sludge and duckweed as slow-release micronutrient biofertilizers for Phaseolus vulgaris growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116397. [PMID: 36208519 DOI: 10.1016/j.jenvman.2022.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Selenium (Se) and zinc (Zn) are essential micronutrients that are often lacking in the diet of humans and animals. Application of mineral Se and Zn fertilizers into soils may lead to a waste of Se and Zn due to the fast leaching and low utilization by plants. Slow-release Se and Zn biofertilizer may therefore be beneficial. This study aims to assess the potential of SeZn-enriched duckweed and sludge produced from wastewater as slow-release Se and Zn biofertilizers. Pot experiments with green beans (Phaseolus vulgaris) and sampling of Rhizon soil pore water were conducted to evaluate the bioavailability of Se and Zn in sandy and loamy soils mixed with SeZn-enriched duckweed and sludge. Both the Se and Zn concentrations in the soil pore water increased upon amending the two biomaterials. The concentration of Se released from SeZn-enriched duckweed rapidly decreased in the first 21 days and slowly declined afterwards, while it remained stable during the entire experiment upon application of SeZn-enriched sludge. The Zn content in the soil pore water gradually increased over time. The application of SeZn-enriched duckweed and sludge significantly increased the Se concentrations in plant tissues, in particular in the form of organic Se-methionine in seeds, without a negative impact on plant growth when an appropriate dose was applied (1 mg Se/kg soil). While, it did not increase Zn concentrations in plant seeds. The results indicate that the SeZn-enriched duckweed and sludge could be only used as organic Se biofertilizers for Se-deficient soils. Particularly, the SeZn-enriched sludge dominated with elemental nano-Se was an effective Se source and slow-release Se biofertilizer. These results could offer a theoretical reference to choose an alternative to chemical Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from mineral Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain; Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601, DA, Delft, Netherlands
| | - Ivet Ferrer
- GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·BarcelonaTech, Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
13
|
Tolu J, Bouchet S, Helfenstein J, Hausheer O, Chékifi S, Frossard E, Tamburini F, Chadwick OA, Winkel LHE. Understanding soil selenium accumulation and bioavailability through size resolved and elemental characterization of soil extracts. Nat Commun 2022; 13:6974. [PMID: 36379945 PMCID: PMC9666626 DOI: 10.1038/s41467-022-34731-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary deficiency of selenium is a global health threat related to low selenium concentrations in crops. Despite the chemical similarity of selenium to the two more abundantly studied elements sulfur and arsenic, the understanding of its accumulation in soils and availability for plants is limited. The lack of understanding of soil selenium cycling is largely due to the unavailability of methods to characterize selenium species in soils, especially the organic ones. Here we develop a size-resolved multi-elemental method using liquid chromatography and elemental mass spectrometry, which enables an advanced characterization of selenium, sulfur, and arsenic species in soil extracts. We apply the analytical approach to soils sampled along the Kohala rainfall gradient on Big Island (Hawaii), which cover a large range of organic carbon and (oxy)hydroxides contents. Similarly to sulfur but contrarily to arsenic, a large fraction of selenium is found associated with organic matter in these soils. However, while sulfur and arsenic are predominantly found as oxyanions in water extracts, selenium mainly exists as small hydrophilic organic compounds. Combining Kohala soil speciation data with concentrations in parent rock and plants further suggests that selenium association with organic matter limits its mobility in soils and availability for plants.
Collapse
Affiliation(s)
- Julie Tolu
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Sylvain Bouchet
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Julian Helfenstein
- ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Agricultural Sciences (IAS), Group of Plant Nutrition, Eschikon 33, 8315 Lindau, Switzerland ,grid.4818.50000 0001 0791 5666Present Address: Soil Geography and Landscape Group, Wageningen University, 6700 AA Wageningen, The Netherlands
| | - Olivia Hausheer
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Sarah Chékifi
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Emmanuel Frossard
- ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Agricultural Sciences (IAS), Group of Plant Nutrition, Eschikon 33, 8315 Lindau, Switzerland
| | - Federica Tamburini
- ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Agricultural Sciences (IAS), Group of Plant Nutrition, Eschikon 33, 8315 Lindau, Switzerland
| | - Oliver A. Chadwick
- grid.133342.40000 0004 1936 9676Department of Geography, University of California, Santa Barbara, CA 93106 USA
| | - Lenny H. E. Winkel
- grid.418656.80000 0001 1551 0562Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T), Überlandstrasse 133, 8600 Dübendorf, Switzerland ,grid.5801.c0000 0001 2156 2780ETH Zurich, Swiss Federal Institute of Technology, Department of Environment Systems Sciences (D-USYS), Institute of Biogeochemistry and Pollutant Dynamics (IBP), Group of Inorganic Environmental Geochemistry, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Ni X, Yang R, Xu Y, Peng Y, Zhang J, Long J, Yan H. Distribution and Interactive Effects of Heavy Metals in Soil-Maize (Zea Mays L.) System in the Mercury Mining Area, Southwestern China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:727-734. [PMID: 36222879 DOI: 10.1007/s00128-022-03615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The concentrations and interactive effects of beneficial elements (i.e., Se, Mo, and Zn) and heavy metals (As, Cd, Hg, and Pb) of maize (Zea mays L.) grown on lime soil and/or soil with mercury tailing were investigated in this study. The results show that the concentrations of heavy metals (i.e., As, Hg, and Pb) in soil with tailing were higher than those in lime soil. The concentrations of beneficial elements (i.e., Mo and Zn) in maize grown on soil with tailing were higher than those of maize grown on lime soil. The mean concentrations of Se, Mo, and Zn in maize grown on soil with tailing were 3.67 mg/kg, 0.530 mg/kg, and 27.4 mg/kg. The pH and an antagonistic effect played an important role in the concentrations of Mo and Zn in maize. The Se concentration in maize was controlled by the planting media.
Collapse
Affiliation(s)
- Xinran Ni
- College of Resource and Environmental Engineering, Guizhou University, 550025, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Ruidong Yang
- College of Resource and Environmental Engineering, Guizhou University, 550025, Guiyang, China.
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China.
| | - Yiyuan Xu
- College of Resource and Environmental Engineering, Guizhou University, 550025, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Yishu Peng
- College of Tea Science, Guizhou University, 550025, Guiyang, China
| | - Jian Zhang
- College of Environmental Science and Engineering, Yangzhou University, 225127, Yangzhou, China
| | - Jie Long
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, 100012, Beijing, China
| | - Huiqin Yan
- College of Resource and Environmental Engineering, Guizhou University, 550025, Guiyang, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, 550025, Guiyang, China
| |
Collapse
|
15
|
Wang Z, Zhao M, Xie J, Wang Z, Tsui TH, Ren X, Zhang Z, Wang Q. Insight into the fraction variations of selenium and their effects on humification during composting. BIORESOURCE TECHNOLOGY 2022; 364:128050. [PMID: 36184014 DOI: 10.1016/j.biortech.2022.128050] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the variation of selenium fractions and their effects on humification during composting. Selenite and selenate were added to a mixture of goat manure and wheat straw for composting. The results demonstrated that the bioavailable Se in the selenite added treatment (9.3-13.8%) was lower than in the selenate added treatment (18.1-47.3%). Meanwhile, the HA/FA of selenite and selenate added treatments were higher than in control, indicating that the selenium addition (especially selenite) promoted the humification of composting. Importantly, selenite enriched the abundance of Tepidimicrobium and Virgibacillus which were responsible to improve humification performance. Selenate increased the abundance of Thermobifida and Cellvibrio which facilitated the composting humification. The genes encoding CAZymes involved in the degradation of organic materials were also analyzed, and selenium could contribute to the synthesis of humus. KEGG pathway analysis revealed that the selenite addition promoted amino acids and carbohydrate metabolism compared to the control.
Collapse
Affiliation(s)
- Zhaoyu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Mengxiang Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jianwen Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zhen Wang
- College of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021, China
| | - To-Hung Tsui
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Breeding Base for State Key Lab of Land Degradation and Ecological Restoration in Northwestern China / Key Lab of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, China.
| |
Collapse
|
16
|
Ma X, Zhang S, Yang Y, Tong Z, Shen T, Yu Z, Xie J, Yao Y, Gao B, Li YC, Helal MI. Development of multifunctional copper alginate and bio-polyurethane bilayer coated fertilizer: Controlled-release, selenium supply and antifungal. Int J Biol Macromol 2022; 224:256-265. [DOI: 10.1016/j.ijbiomac.2022.10.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
17
|
Luo X, Wang Y, Lan Y, An L, Wang G, Li M, Zheng S. Microbial oxidation of organic and elemental selenium to selenite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155203. [PMID: 35421462 DOI: 10.1016/j.scitotenv.2022.155203] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential trace element for life. Se reduction has attracted much attention in the microbial Se cycle, but there is less evidence for Se oxidation. In particular, it is unknown whether microorganisms oxidise organic Se(-II). In this study, four strains of bacteria, namely Dyella spp. LX-1 and LX-66, and Rhodanobacter spp. LX-99 and LX-100, isolated from seleniferous soil, were involved in the oxidation of selenomethionine (SeMet), selenocystine (SeCys2), selenourea and Se(0) to selenite (Se(IV)) in pure cultures. The oxidation rates of organic Se were more rapidly than those of Se(0) in liquid media. Then Se(0) and SeMet were used as examples, microbial oxidation was the predominant process for both additional Se(0) and SeMet in sterilised alkaline or acidic soils. The Se(IV) concentrations were significantly higher at pH 8.56 than at pH 5.25. In addition, water-soluble Se (SOLSe) and exchangeable and carbonate-bound Se (EXC-Se) fractions increased dramatically with these four Se-oxidising bacteria in unsterilised seleniferous soil. To our knowledge, this is the first study to find that various bacteria are involved in the oxidation of organic Se to Se oxyanions, bridging the gap of Se redox in the Se biogeochemical cycle.
Collapse
Affiliation(s)
- Xiong Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yiting Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yan Lan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lijin An
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
18
|
Li J, Liu R, Zhang C, Yang J, Lyu L, Shi Z, Man YB, Wu F. Selenium uptake and accumulation in winter wheat as affected by level of phosphate application and arbuscular mycorrhizal fungi. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128762. [PMID: 35358814 DOI: 10.1016/j.jhazmat.2022.128762] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/20/2022] [Indexed: 05/12/2023]
Abstract
Selenium (Se) is an advantageous element to crops. However, the influence of arbuscular mycorrhizal fungi (AMF), phosphate (P) and selenite in soil on Se uptake by winter wheat remain elusive. Pot trials were carried out including seven levels of P (0, 12.5, 25, 50, 100, 200 or 400 mg kg-1) and non-mycorrhizal inoculation (NM), inoculation of Funneliformis mosseae (F.m) or Glomus versiforme (G.v). The present results found that grain phosphorus concentration increased with increase of P level from 0 to 100 mg kg-1 and then tended to plateau, while grain Se concentration decreased with the level of P from 0 to 400 mg kg-1. Based on mathematical modeling, inoculation of F.m or G.v dramatically improved grain Se concentration by 16.90% or 12.53% under the lower level of P (48.76 mg kg-1). Furthermore, partial least squares path modeling (PLS-PM) identified that both up-regulated of the expression of AMF-inducible phosphate transporter and improved Se bioavailability in rhizosphere soil contributed to enhancing plant Se concentration under P levels ≤ 100 mg kg-1. The present study demonstrated that AMF combined with 48.76 mg kg-1 P applied in soil can not only achieve high grain yield, but also fully exploit the biological potential of Se uptake in wheat.
Collapse
Affiliation(s)
- Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Ruifang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chuangye Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jing Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Lihui Lyu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhaoyong Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, PR China
| | - Yu Bon Man
- Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
19
|
Chen Y, Deng Y, Wu X, Zhang D, Wang F, Liu K, Lu S. The levels of selenium in tea from China and associated human exposure. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Wang Z, Ding Y, Ren X, Xie J, Kumar S, Zhang Z, Wang Q. Effect of micronutrient selenium on greenhouse gas emissions and related functional genes during goat manure composting. BIORESOURCE TECHNOLOGY 2022; 349:126805. [PMID: 35131460 DOI: 10.1016/j.biortech.2022.126805] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
To explore the effect of microelement selenium on greenhouse gas emission, nitrogen loss and related functional genes during the composting. Selenite and selenate were respectively mixed with goat manure and wheat straw and then composted the mixture without selenium regarded as control. The results indicated adding selenite prolonged the thermophilic phase and improved the organic matter degradation, while the selenate presented the opposite results. Selenite and selenate influenced ammonium transformation while prompting the formation of nitrate. Compared to the control, adding selenite and selenate both decreased NH3 emissions (by 26.7%-53.1%) and increased the total nitrogen content of compost. The addition of selenium increased mcrA in the early phase of composting, thereby promoting CH4 emission (by 3.5-18.4%). Meanwhile, adding selenate significantly reduced nirK abundance and consequently reduced N2O emission. Moreover, selenate added treatment presented the highest compost maturity (88.77%) and the lowest global warm potential (117.46 g/kg CO2-eq.) among all treatments.
Collapse
Affiliation(s)
- Zhaoyu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Jianwen Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440020, Maharashtra, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
21
|
Hu J, Wang Z, Zhang L, Peng J, Huang T, Yang X, Jeong BR, Yang Q. Seleno-Amino Acids in Vegetables: A Review of Their Forms and Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:804368. [PMID: 35185982 PMCID: PMC8847180 DOI: 10.3389/fpls.2022.804368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Seleno-amino acids are safe, health-promoting compounds for humans. Numerous studies have focused on the forms and metabolism of seleno-amino acids in vegetables. Based on research progress on seleno-amino acids, we provide insights into the production of selenium-enriched vegetables with high seleno-amino acids contents. To ensure safe and effective intake of selenium, several issues need to be addressed, including (1) how to improve the accumulation of seleno-amino acids and (2) how to control the total selenium and seleno-amino acids contents in vegetables. The combined use of plant factories with artificial lighting and multiple analytical technologies may help to resolve these issues. Moreover, we propose a Precise Control of Selenium Content production system, which has the potential to produce vegetables with specified amounts of selenium and high proportions of seleno-amino acids.
Collapse
Affiliation(s)
- Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zheng Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Li Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Jie Peng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Tao Huang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiao Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Byoung Ryong Jeong
- Division of Applied Life Science (BK21 Four), Department of Horticulture, Graduate School of Gyeongsang National University, Jinju, South Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
- Research Institute of Life Science, Gyeongsang National University, Jinju, South Korea
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
22
|
Li J, Yang W, Guo A, Yang S, Chen J, Qiao Y, Anwar S, Wang K, Yang Z, Gao Z, Wang J. Combined foliar and soil selenium fertilizer improves selenium transport and the diversity of rhizosphere bacterial community in oats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64407-64418. [PMID: 34308523 DOI: 10.1007/s11356-021-15439-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Agronomic selenium (Se) biofortification of grain crops is considered the best method for increasing human Se intake, which may help people alleviate Se-deficiency. To investigate the efficiency of agronomic Se biofortification of oat, four Se fertilizer application treatments were tested: topsoil (T), foliar (S), the combination of T and S (TS), and control without Se application (CK). Compared with CK, TS significantly increased the 1000-grain weight, grain yield, Se contents in all parts of oats, contents of soil available N, K, and organic matter by 18%, 8.70%, 19.7-60.2%, 6.00%, 8.02%, and 17.95%, respectively. Leaves, roots, and ears had the highest conversion rate of exogenous Se in S (644.63%), T (416.00%), and TS (273.20%), respectively. TS also increased the activities of soil urease, alkaline phosphatase, and sucrose and the diversity of soil bacterial communities. TS and T increased the relative abundance of bacteria involved in the decomposition of organic matter, such as Actinobacteria, Gemmatimonadetes, Chloroflexi, and Bacteroidetes positively correlated with soil nutrients and enzyme activities, and reduced Proteobacteria and Firmicutes negatively correlated with them, Granulicella, Bacillus, Raoultella, Lactococcus, Klebsiella, and Pseudomonas. Furthermore, TS significantly increased the relative abundance of Planctomycetes, Chlorobi, Nitrospinae, Nitrospirae, Aciditeromonas, Gemmatimonas, Geobacter, and Thiobacter. T significantly increased the abundance of Lysobacter, Holophaga, Candidatus-Koribacter, Povalibacter, and Pyrinomonas. S did not significantly change the bacterial communities. Thus, a combined foliar and soil Se fertilizer proved conducive for achieving higher yield, grain Se content, and improving Se transport, the diversity of rhizosphere bacterial community, and bacterial functions in oats.
Collapse
Affiliation(s)
- Junhui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Wenping Yang
- College of Life Sciences, North China University of Science and Technology, Caofeidian, 063210, China
| | - Anna Guo
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Sheng Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jie Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuejing Qiao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Sumera Anwar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54000, Pakistan
| | - Kai Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhenping Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Zhiqiang Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Jianwu Wang
- Shanxi Institute of Geological Survey, Taiyuan, 030000, China
| |
Collapse
|
23
|
Li J, Otero-Gonzalez L, Parao A, Tack P, Folens K, Ferrer I, Lens PNL, Du Laing G. Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. CHEMOSPHERE 2021; 281:130767. [PMID: 34022598 DOI: 10.1016/j.chemosphere.2021.130767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals with a narrow window between deficiency and toxicity levels. Application of conventional chemical Se fertilizers to increase the Se content of crops in Se deficient areas could result in environmental contamination due to the fast leaching of inorganic Se. Slow-release Se-enriched biofertilizers produced from wastewater treatment may therefore be beneficial. In this study, the potential of Se-enriched biomaterials (sludge and duckweed) as slow-release Se biofertilizers was evaluated through pot experiments with and without planted green beans (Phaseolus vulgaris). The Se concentration in the bean tissues was 1.1-3.1 times higher when soils were amended with Se-enriched sludge as compared to Se-enriched duckweed. The results proved that the Se released from Se-enriched biomaterials was efficiently transformed to health-beneficial selenoamino acids (e.g., Se-methionine, 76-89%) after being taken up by beans. The Se-enriched sludge, containing mainly elemental Se, is considered as the preferred slow-release Se biofertilizer and an effective Se source to produce Se-enriched crops for Se-deficient populations, as shown by the higher Se bioavailability and lower organic carbon content. This study could offer a theoretical reference to choose an environmental-friendly and sustainable alternative to conventional mineral Se fertilizers for biofortification, avoiding the problem of Se losses by leaching from chemical Se fertilizers while recovering resources from wastewater. This could contribute to the driver for a future circular economy.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain.
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Amelia Parao
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Tack
- XMI Research Group, Department of Chemistry, Campus Sterre (S12), Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Karel Folens
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ivet Ferrer
- GEMMA - Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya·BarcelonaTech, c/ Jordi Girona 1-3, Building D1, 08034, Barcelona, Spain
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601, DA, Delft, the Netherlands
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
24
|
Liu N, Wang M, Zhou F, Zhai H, Qi M, Liu Y, Li Y, Zhang N, Ma Y, Huang J, Ren R, Liang D. Selenium bioavailability in soil-wheat system and its dominant influential factors: A field study in Shaanxi province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144664. [PMID: 33513517 DOI: 10.1016/j.scitotenv.2020.144664] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 05/12/2023]
Abstract
Selenium (Se) content of crops depends on the local soil Se content and/or its bioavailability, and identifying the influence factors of soil Se bioavailability is a significant basis for adopting targeted agronomic measures to improve the Se nutritional status of humans. In this study, the main wheat-producing region in Shaanxi province with similar parent material and climate conditions was selected as the study area. The total Se contents of 602 soil samples and their corresponding wheat grains were determined, and the distribution characteristics of soil Se bioavailability and its dominant influential factors were investigated. Results showed that the total Se content ranged from 0.02 mg/kg to 1.67 mg/kg (average of 0.25 ± 0.25 mg/kg) in soil, which was lower than that content in China (0.29 mg/kg). The Se content of wheat grain was 0.001-1.50 mg/kg (average of 0.11 ± 0.19 mg/kg). The distribution trend of the Se content in wheat grains was different from that of the total soil Se, but it was consistent with the distribution of soil bioavailable Se content. The bioavailable Se accounted for 11.1% of the total soil Se. This could be attributed to relatively high soil Se bioavailability of the study area belonging to alkaline soil (with a pH of approximately 8). Both redundancy analysis and path analysis revealed that soil pH and organic matter were the dominant influential factors of soil Se bioavailability in Shaanxi wheat-producing area, and the soil Se bioavailability increased with these two parameters raising. On this basis, a prediction model was established to predict the Se content in wheat grain. The results show that the various agronomic measures could be used to produce Se-enriched wheat by regulating the soil pH and the organic matter content in Se biofortification practice.
Collapse
Affiliation(s)
- Nana Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nanchun Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Ren
- Shaanxi Hydrogeolog Engineering Geology and Environment Geology Survey Center, China.
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
25
|
Dinh QT, Zhou F, Wang M, Peng Q, Wang M, Qi M, Tran TAT, Chen H, Liang D. Assessing the potential availability of selenium in the soil-plant system with manure application using diffusive gradients in thin-films technique (DGT) and DOM-Se fractions extracted by selective extractions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143047. [PMID: 33129537 DOI: 10.1016/j.scitotenv.2020.143047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Knowledge of the Se fractionation and the role of dissolved organic matter (DOM) in soil is the key to understanding Se mobility and its bioavailability in the soil-plant system. In this study, single extractions using phosphate-buffer (PBS), sequential extraction procedures (SEP), and diffusive gradients in thin-films (DGT) were used to measure Se bioavailability in soil supplemented with selenite and organic amendment (cow and chicken manures). Selenium fraction was isolated into DOM-Se fractions, such as hydrophilic acid-bound Se (HY-Se), fulvic acid-bound Se (FA-Se), humic acid-bound Se (HA-Se), and hydrophobic organic neutral-bound Se (HON-Se), by a rapid batch technique using XAD-8 resin (AMBERLITE XAD™, USA). Simultaneous application of either cow or chicken manure with selenite could result in the decrease of Se availability in the soil. Isolating Se available fraction into DOM-Se fractions showed that low-molecular-weight DOM-Se as an available fraction and even HY-Se as a less available fraction (OM-Se) were likely the major sources for Brassica juncea (L.) Czern. et Coss uptake in soil. Moreover, knowledge of the DOM-Se composition, especially the low-molecular-weight DOM-Se fractions, is important for assessing the bioavailability of Se in soil, the results of which are more accurate than the chemical extraction method. The high value of Pearson correlation coefficients between CDGT-Se and Se concentrations in shoots, tubers and roots of Brassica juncea (L.) Czern. et Coss in cow and chicken manures treatment were 0.95 and 0.99, 0.96 and 0,96, and 0.89 and 0.97 (p < 0,05), respectively, indicating that DGT-Se can reflect the Se uptake ability by plants and can be used to predict the bioavailability of Se when manure and selenite are simultaneously applied.
Collapse
Affiliation(s)
- Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Natural Resources and Environment of Thanh Hoa, Thanh Hoa 400570, Viet Nam
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingxing Qi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Thi Anh Thu Tran
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Faculty of Management Sciences, Thu Dau Mot University, Thu Dau Mot city, Binh Duong, Viet Nam
| | - Haiyi Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Zhou F, Li Y, Ma Y, Peng Q, Cui Z, Liu Y, Wang M, Zhai H, Zhang N, Liang D. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143119. [PMID: 33158520 DOI: 10.1016/j.scitotenv.2020.143119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 05/14/2023]
Abstract
Selenium (Se) bioaccessibility in soil and crops from seleniferous areas is closely relevant to Se intake risks of local residents. The current in vitro digestion methods used for Se bioaccessibility evaluation are single and inconsistent, and most of them are only for food and neglect soil. In this study, 14 Se-contaminated soils and their corresponding crops in Naore Village (seleniferous area) were used as the research objects. Four in vitro digestion assays, including Solubility Bioaccessibility Research Consortium method (SBRC), physiologically-based extraction test (PBET), in vitro gastrointestinal method (IVG), and Unified Bioaccessibility Method (UBM) were used to determine the bioaccessible Se concentration in soil and edible parts of crops. Results showed that the Se in natural seleniferous soil mainly existed in relatively stable forms, i.e., residual and Fe-Mn oxide-bound Se (average of 80%). Only 10.6% of the total Se was distributed in water-soluble and exchangeable Se fractions. The Se content in crops was significantly positively correlated with the organic-bound and phosphate-extractable Se contents in the corresponding soil (p < 0.05). The organic-bound Se was clearly a potentially bioavailable Se source in soil. The Se bioaccessibility in soil and crops measured using the four in vitro methods in gastric/intestinal digestions were in the same order, which was PBET > UBM > SBRC > IVG. Similar to the absorption and utilization of soil Se fractions by crops, the water-soluble, organic-bound and exchangeable Se in soil were the main contributors of bioaccessible Se in the digestive juices in various in vitro methods. Furthermore, the bioaccessible Se in crops and soil measured via PBET method demonstrated the most significant correlation between the total Se in crops and the phosphate-extractable Se in soil. Therefore, the PBET method was the optimum in vitro method for the evaluation of Se bioaccessibility in crops and soil.
Collapse
Affiliation(s)
- Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanzhe Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Peng
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Zewei Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Zhai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nanchun Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
27
|
|
28
|
Zhong X, Gan Y, Deng Y. Distribution, origin and speciation of soil selenium in the black soil region of Northeast China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1257-1271. [PMID: 32803736 DOI: 10.1007/s10653-020-00691-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 05/28/2023]
Abstract
Selenium (Se) is an essential trace element within human beings that hold with crucial biological functions. Investigating the complex origin of soil Se is of great importance to scientifically approach the land use of Se-rich land use, and the respective promotion of regional economic development. In this study, 160 soil samples from 10 profiles in farmland and woodland were collected in Hailun city, which is a typical black soil region in Northeast China, in order to characterize the distribution and speciation of Se in the black soil, and to identify the origin of soil Se. The total selenium content in the soil ranges from 0.045 to 0.444 μg g-1, with an average selenium content in black soil (0.318 μg g-1) of three times greater than that found in the yellow-brown soil (0.114 μg g-1). The land-use type has a significant influence on the distribution of selenium in the black soil. Moreover, Se and heavy metals have a significant (positive or negative) correlation, in which TOC plays an important role. The black soil presents a consistent REE distribution pattern with underlying yellow-brown soil indicating black soil originates from yellow-brown soil. REE geostatistical analysis suggests that the soil Se partly originates from shale weathering and enriches in black soil. Moreover, elemental geochemical analysis and XRD results show that the paleoclimate change from humid and warm to dry and cold is favorable for organic matter accumulation, resulting in less leaching and enhanced adsorption of selenium into the black soil.
Collapse
Affiliation(s)
- Xinlin Zhong
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| | - Yiqun Gan
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China.
| | - Yamin Deng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, People's Republic of China
| |
Collapse
|
29
|
Moreno-Martín G, Sanz-Landaluze J, León-González ME, Madrid Y. Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: Effect on essential elements uptake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138453. [PMID: 32298902 DOI: 10.1016/j.scitotenv.2020.138453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 05/27/2023]
Abstract
Selenium (Se) at very low doses has important functions for humans. Unfortunately, the low levels of Se in soils in various regions of the world have implemented the agronomic biofortification of crops by applying Se-enriched fertilizers (mainly based on selenate). Lately, the use of nanofertilizers is growing in interest as their low size reduces the amount of chemicals and minimizes nutrient losses in comparison with conventional bulk fertilizers. However, the knowledge on their fate and environmental impact is still scarce. This study aims to evaluate the biotransformation of chitosan-modified Se nanoparticles (Ch-SeNPs) as well as their effect on the metabolism of essential metals (Fe, Cu, Zn and Mo) when applied to hydroponic cultivation of R. sativus and B. juncea. In house-synthesized Ch-SeNPs were characterized in both synthesis and hydroponic culture media by transmission electron microscopy (TEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The composition of one-tenth strength Hoagland's solution did not affect the size, shape and concentration in number of particles per mL of Ch-SeNPs. The plants were grown inside a box at 25 °C during the months of May-July in 2018. After a week of treatment with Ch-SeNPs, plants were harvested and divided into roots and aerial part. The biotransformation of Ch-SeNPs was evaluated through a process of enzymatic hydrolysis and subsequent analysis by HPLC-ICP-MS and HPLC-ESI-MS/MS. The results confirmed the transformation of Ch-SeNPs to seleno-amino acids: Selenomethionine (SeMet), Semethylselenocysteine (SeMetSeCys) and ɣ-glutamyl-Se-MetSeCys. Moreover, Multiple-way analysis of variance (ANOVA) and principal component analysis (PCA) showed that, regardless the plant species, Ch-SeNPs supplementation affected the absorption of Zn.
Collapse
Affiliation(s)
- Gustavo Moreno-Martín
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jon Sanz-Landaluze
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Eugenia León-González
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Yolanda Madrid
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
30
|
Peng Q, Wu M, Zhang Z, Su R, He H, Zhang X. The Interaction of Arbuscular Mycorrhizal Fungi and Phosphorus Inputs on Selenium Uptake by Alfalfa ( Medicago sativa L.) and Selenium Fraction Transformation in Soil. FRONTIERS IN PLANT SCIENCE 2020; 11:966. [PMID: 32676094 PMCID: PMC7333729 DOI: 10.3389/fpls.2020.00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/12/2020] [Indexed: 05/26/2023]
Abstract
Selenium (Se) is a beneficial element to plants and an essential element to humans. Colonization by arbuscular mycorrhizal fungi (AMF) and supply of phosphorus (P) fertilizer may affect the bioavailability of Se in soils and the absorption of Se by plants. To investigate the interaction between AMF and P fertilizer on the transformation of soil Se fractions and the availability of Se in the rhizosphere of alfalfa, we conducted a pot experiment to grow alfalfa in a loessial soil with three P levels (0, 5, and 20 mg kg-1) and two mycorrhizal inoculation treatments (without mycorrhizal inoculation [-AMF] and with mycorrhizal inoculation [+AMF]), and the interaction between the two factors was estimated with two-way ANOVA. The soil in all pots was supplied with Se (Na2SeO3) at 1 mg kg-1. In our results, shoot Se concentration decreased, but plant Se content increased significantly as P level increased and had a significant positive correlation with AMF colonization rate. The amount of total carboxylates in the rhizosphere was strongly affected by AMF. The amounts of rhizosphere carboxylates and alkaline phosphatase activity in the +AMF and 0P treatments were significantly higher than those in other treatments. The concentration of exchangeable-Se in rhizosphere soil had a positive correlation with carboxylates. We speculated that rhizosphere carboxylates promoted the transformation of stable Se (iron oxide-bound Se) into available Se forms, i.e. exchangeable Se and soluble Se. Colonization by AMF and low P availability stimulated alfalfa roots to release more carboxylates and alkaline phosphatase. AMF and P fertilizer affected the transformation of soil Se fractions in the rhizosphere of alfalfa.
Collapse
Affiliation(s)
- Qi Peng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Wu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Zekun Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Rui Su
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Honghua He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xingchang Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Li J, Lens PNL, Otero-Gonzalez L, Du Laing G. Production of selenium- and zinc-enriched Lemna and Azolla as potential micronutrient-enriched bioproducts. WATER RESEARCH 2020; 172:115522. [PMID: 32006774 DOI: 10.1016/j.watres.2020.115522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 05/15/2023]
Abstract
Selenium (Se) and zinc (Zn) are essential micronutrients that are often lacking in the diet of humans and animals, leading to deficiency diseases. Lemna and Azolla are two aquatic plants with a substantial protein content, which offer the possibility of utilizing them to remove Se and Zn from (waste)water while producing micronutrient-enriched dietary proteins and fertilizers. In this study, we explored interaction effects occurring between Se and Zn when these micronutrients are taken up by Azolla and Lemna. The two aquatic plants were grown on hydroponic cultures containing 0-5.0 mg/L of Se (Se(IV) or Se(VI)) and Zn. The Se and Zn content of the plants, growth indicators, bioconcentration factor (BCF) and Se/Zn removal efficiency from the water phase were evaluated. The results demonstrated that Se(IV) is more toxic than Se(VI) for both plant species, as evidenced by the remarkable decrease of biomass content and root length when exposed to Se(IV). Both aquatic plants took up around 10 times more Se(IV) than Se(VI) from the medium. Moreover, the Se accumulation and removal efficiency increased by 66-99% for Se(IV) and by 34-59% for Se(VI) in Lemna when increasing Zn dosage from 0 to 5.0 mg/L in the medium, whereas it declined by 13-26% for Se(IV) and 21-35% for Se(VI) in Azolla, suggesting a synergetic effect in Lemna, but an antagonistic effect in Azolla. The maximum BCF of Se in Lemna and Azolla were 507 and 667, respectively. The protein content in freeze-dried Lemna and Azolla was approximately 17%. The high tolerance and accumulation of Se and Zn in Lemna and Azolla, combined with their rapid growth, high protein content and transformation of inorganic to organic Se species upon Se(IV) exposure make Lemna and Azolla potential candidates for the production of Se(IV)- and Zn-enriched biomass that can be used as crop fertilizers or protein-rich food/feed supplements or ingredients. Accordingly, by growing the Azolla and Lemna on wastewater, a high-value product can be produced from wastewater while recovering resources.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium; UNESCO-IHE Institute for Water Education, 2601, DA, Delft, The Netherlands.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, 2601, DA, Delft, The Netherlands
| | - Lila Otero-Gonzalez
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gijs Du Laing
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
32
|
Wang M, Ali F, Wang M, Dinh QT, Zhou F, Bañuelos GS, Liang D. Understanding boosting selenium accumulation in Wheat (Triticum aestivum L.) following foliar selenium application at different stages, forms, and doses. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:717-728. [PMID: 31808088 DOI: 10.1007/s11356-019-06914-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/29/2019] [Indexed: 05/14/2023]
Abstract
There are a lack of systematic studies comparing the effects of foliar-applied selenium (Se) with different Se sources at different growth stages in wheat. Herein, we biofortified wheat via the foliar application of selenite and selenate at different rates and different stages under field conditions. Results showed that foliar-applied selenate and selenite had no significant effect either on wheat biomass or grain yield (p < 0.05). Selenium distribution in different parts of wheat plant ranked decrease as leaf > root > grain > glume > stem with selenite treatment, and it appeared in the decline order as leaf > grain > glume > stem > root with selenate treatment. These results suggested that biofortification with selenate caused, relatively to selenite, a higher accumulation of Se in grains. Foliar application of Se of either selenate or selenite at pre-filling stage was superior in improving the Se concentration of wheat grains than application at pre-flowering stage. Meanwhile, organic Se comprised about 72-93% of total Se in wheat grains, which was reduced by 5.8% at high Se rate (100 g ha-1), irrespective of the forms of Se or stages applied. The organic Se proportion in wheat grains was 9% higher with the selenate treatment than with the selenite treatment. Selenomethionine (SeMet) was the main organic species (67-86%) in wheat grains, followed by selenocysteine (SeCys2). In summary, our results indicate that Se biofortification of wheat is most effective with 20 g ha-1 selenate foliar-applied at pre-filling stage.
Collapse
Affiliation(s)
- Min Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fayaz Ali
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengke Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Quang Toan Dinh
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fei Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Gary S Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, 93648-9757, USA
| | - Dongli Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
33
|
Chang C, Yin R, Wang X, Shao S, Chen C, Zhang H. Selenium translocation in the soil-rice system in the Enshi seleniferous area, Central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:83-90. [PMID: 30878943 DOI: 10.1016/j.scitotenv.2019.02.451] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Rice is an important source of selenium (Se) exposure; however, the transformation and translocation of Se in the soil-rice system remain poorly understood. Here, we investigated the speciation of Se in Se-rich soils from Enshi, Central China and assessed which Se species is bioavailable for rice grown in Enshi. Extremely high Se concentrations (0.85 to 11.46 mg/kg) were observed in the soils. The soil Se fractions, which include water-soluble Se (0.2 to 3.4%), ligand-exchangeable Se (4.5 to 15.0%), organically bound Se (57.8 to 80.0%) and residual Se (6.1 to 32.9%), are largely controlled by soil organic matter (SOM) levels. Decomposition of SOM promotes the transformation of organically bound Se to water-soluble Se and ligand-exchangeable Se, thereby increasing the bioavailability of Se. The bioaccumulation factors (BAFs) of Se decrease in the following order: roots (0.84 ± 0.30) > bran (0.33 ± 0.17) > leaves (0.18 ± 0.09) > polished rice (0.14 ± 0.07) > stems (0.12 ± 0.07) > husks (0.11 ± 0.07). Selenium levels in rice plants are affected by multiple soil Se fractions in the soil. Water-soluble, ligand-exchangeable and organically bound Se fractions are the major sources of Se in rice tissues.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Shuxun Shao
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chongying Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
34
|
Jia M, Zhang Y, Huang B, Zhang H. Source apportionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil: A case study in the east bank of the Dianchi Lake, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:238-245. [PMID: 30529918 DOI: 10.1016/j.ecoenv.2018.11.133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential trace element for humans and animals. In China, intensive agricultural inputs in greenhouse vegetable production (GVP) have resulted in great changes in Se concentration and bioavailability in soil, which have great influences on Se flux to living organisms through food chains. It is crucial to understand the factors on Se concentration and bioavailability in greenhouse soil. Thus, we chose the east bank of the Dianchi Lake, a typical GVP area covering 177 km2 in Southwest China, as the study area to quantify source contributions to soil Se and estimate relative importance of influence factors on its bioavailability in GVP with a receptor model (absolute principal component scores-multiple linear regression, APCS-MLR) after principal component analysis (PCA). According to the enrichment factor (EF), total Se in greenhouse soil was accumulated at a minor level (1 < EF < 3) by long-term and intensive fertilization. Source contributions to total Se decreased in the sequence of parent materials > fertilization > atmospheric deposition. It suggested that fertilization, especially manure, might be an important way to increase total Se in greenhouse soils in Se-deficient areas. The bioavailability of Se was affected by several factors, among of which total Se was the foremost one. In comparison with organic matter and clay, Fe/Al oxides exerted more controls on Se bioavailability, which was dependent on pH. Increasing Olsen P was helpful in improving soil Se bioavailability in greenhouse. More attention should be paid to soil physicochemical characteristics when Se-containing fertilizers are applied to increase Se levels in greenhouse vegetables.
Collapse
Affiliation(s)
- Mengmeng Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Haidong Zhang
- Suzhou Academy of Agricultural Sciences, Suzhou 215000, China
| |
Collapse
|
35
|
Zhang G, Gomez MA, Yao S, Ma X, Li S, Cao X, Zang S, Jia Y. Systematic study on the reduction efficiency of ascorbic acid and thiourea on selenate and selenite at high and trace concentrations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10159-10173. [PMID: 30746628 DOI: 10.1007/s11356-019-04383-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Selenate (Se(VI)) and selenite (Se(IV)) are common soluble wastewater pollutants in natural and anthropogenic systems. We evaluated the reduction efficiency and removal of low (0.02 and 2 mg/L) and high (20 and 200 mg/L) Se(IV)(aq) and Se(VI)(aq) concentrations to elemental (Se0) via the use of ascorbic acid (AA), thiourea (TH), and a 50-50% mixture. The reduction efficiency of AA with Se(IV)(aq) to nano- and micro-crystalline Se0 was ≥ 95%, but ≤ 5% of Se(VI)(aq) was reduced to Se(IV)(aq) with no Se0. Thiourea was able to reduce ≤ 75% of Se(IV)(aq) to bulk Se0 at lower concentrations but was more effective (≥ 90%) at higher concentrations. Reduction of Se(VI)(aq)→Se (IV)(aq) with TH was ≤ 75% at trace concentrations which steadily declined as the concentrations increased, and the products formed were elemental sulfur (S0) and SnSe8-n phases. The reduction efficiency of Se(IV)(aq) to bulk Se0 upon the addition of AA+TH was ≤ 81% at low concentrations and ≥ 90% at higher concentrations. An inverse relation to what was observed with Se(IV)(aq) was found upon the addition of AA+TH with Se(VI)(aq). At low Se(VI)(aq) concentrations, AA+TH was able to reduce more effectively (≤ 61%) Se(VI)(aq)→Se(IV)(aq)→Se0, while at higher concentrations, it was ineffective (≤ 11%) and Se0, S0, and SnSe8-n formed. This work helps to guide the removal, reduction effectiveness, and products formed from AA, TH, and a 50-50% mixture on Se(IV)(aq) and Se(VI)(aq) to Se0 under acidic conditions and environmentally relevant concentrations possibly found in acidic natural waters, hydrometallurgical chloride processing operations, and acid mine drainage/acid rock drainage tailings. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Gongli Zhang
- Institute of Environment Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Mario Alberto Gomez
- Institute of Environment Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Shuhua Yao
- Institute of Environment Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xu Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Shifen Li
- Institute of Environment Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Xuan Cao
- Institute of Environment Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Shuyan Zang
- Institute of Environment Protection, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
36
|
Wang D, Xue MY, Wang YK, Zhou DZ, Tang L, Cao SY, Wei YH, Yang C, Liang DL. Effects of straw amendment on selenium aging in soils: Mechanism and influential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:871-881. [PMID: 30677952 DOI: 10.1016/j.scitotenv.2018.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Soil dissolved organic matter (DOM) alters heavy metal availability, but whether straw amendment can manipulate soil selenium (Se) speciation and availability through DOM mineralization remains unclear. In this study, allochthonous maize straw and selenate were incubated together in four different soils for 1 y. The transformation and availability of DOM associated Se (DOM-Se) was investigated during aging. Results indicated that soil solution and soil particle surfaces were dominated by hexavalent hydrophilic acid-bound Se (Hy-Se). The amount of fulvic acid bound Se in soil solution (SOL-FA-Se) was higher than humic acid bound Se in soil solution (SOL-HA-Se), except in krasnozems, and mainly existed as hexavalent Se (Se(VI)). Tetravalent Se (Se(IV)) was the main valence state of FA-Se adsorbed on soil particle surfaces (EX-FA-Se) after 5 w of aging. The proportion of soil-available Se (SOL + EX-Se) decreased with increasing straw rate. However, under an application rate of 7500 kg·hm-2, soluble Se fraction (SOL-Se) reduction was minimal in acidic soils (18.7%-34.7%), and the organic bound Se fraction (OM-Se) was maximally promoted in alkaline soils (18.2%-39.1%). FA and HON could enhance the availability of Se in the soil solution and on particle surfaces of acidic soil with high organic matter content. While Se incorporation with HA could accelerate the fixation of Se into the solid phase of soil. Three mechanisms were involved in DOM-Se aging: (1) Reduction, ligand adsorption, and inner/outer-sphere complexation associated with the functional groups of straw-derived DOM, including hydroxyls, carboxyl, methyl, and aromatic phenolic compounds; (2) interconnection of EX-FA-Se between non-residual and residual Se pools; and (3) promotion by soil electrical conductivity (EC), clay, OM, and straw application. The dual effect of DOM on Se aging was highly reliant on the characteristics of the materials and soil properties. In conclusion, straw amendment could return selenium in soil and reduce soluble Se loss.
Collapse
Affiliation(s)
- Dan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ming-Yue Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying-Kun Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - De-Zhi Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Tang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sheng-Yan Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu-Hong Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chen Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Li Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
37
|
Dall'Acqua S, Ertani A, Pilon-Smits EAH, Fabrega-Prats M, Schiavon M. Selenium Biofortification Differentially Affects Sulfur Metabolism and Accumulation of Phytochemicals in Two Rocket Species ( Eruca Sativa Mill. and Diplotaxis Tenuifolia) Grown in Hydroponics. PLANTS 2019; 8:plants8030068. [PMID: 30884867 PMCID: PMC6473880 DOI: 10.3390/plants8030068] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Biofortification can be exploited to enrich plants in selenium (Se), an essential micronutrient for humans. Selenium as selenate was supplied to two rocket species, Eruca sativa Mill. (salad rocket) and Diplotaxis tenuifolia (wild rocket), at 0–40 μM in hydroponics and its effects on the content and profile of sulphur (S)-compounds and other phytochemicals was evaluated. D. tenuifolia accumulated more total Se and selenocysteine than E. sativa, concentrating up to ~300 mg Se kg−1 dry weight from 10–40 μM Se. To ensure a safe and adequate Se intake, 30 and 4 g fresh leaf material from E. sativa grown with 5 and 10–20 μM Se, respectively or 4 g from D. tenuifolia supplied with 5 μM Se was estimated to be optimal for consumption. Selenium supplementation at or above 10 μM differentially affected S metabolism in the two species in terms of the transcription of genes involved in S assimilation and S-compound accumulation. Also, amino acid content decreased with Se in E. sativa but increased in D. tenuifolia and the amount of phenolics was more reduced in D. tenuifolia. In conclusion, selenate application in hydroponics allowed Se enrichment of rocket. Furthermore, Se at low concentration (5 μM) did not significantly affect accumulation of phytochemicals and plant defence S-metabolites.
Collapse
Affiliation(s)
- Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Andrea Ertani
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | | | - Marta Fabrega-Prats
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Michela Schiavon
- DAFNAE, University of Padova, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| |
Collapse
|
38
|
Wei Y, Zhao Q, Wu Q, Zhang H, Kong W, Liang J, Yao J, Zhang J, Wang J. Efficient synthesis of polysaccharide with high selenium content mediated by imidazole-based acidic ionic liquids. Carbohydr Polym 2019; 203:157-166. [DOI: 10.1016/j.carbpol.2018.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
|
39
|
Constantinescu-Aruxandei D, Frîncu RM, Capră L, Oancea F. Selenium Analysis and Speciation in Dietary Supplements Based on Next-Generation Selenium Ingredients. Nutrients 2018; 10:E1466. [PMID: 30304813 PMCID: PMC6213372 DOI: 10.3390/nu10101466] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Selenium is essential for humans and the deficit of Se requires supplementation. In addition to traditional forms such as Se salts, amino acids, or selenium-enriched yeast supplements, next-generation selenium supplements, with lower risk for excess supplementation, are emerging. These are based on selenium forms with lower toxicity, higher bioavailability, and controlled release, such as zerovalent selenium nanoparticles (SeNPs) and selenized polysaccharides (SPs). This article aims to focus on the existing analytical systems for the next-generation Se dietary supplement, providing, at the same time, an overview of the analytical methods available for the traditional forms. The next-generation dietary supplements are evaluated in comparison with the conventional/traditional ones, as well as the analysis and speciation methods that are suitable to reveal which Se forms and species are present in a dietary supplement. Knowledge gaps and further research potential in this field are highlighted. The review indicates that the methods of analysis of next-generation selenium supplements should include a step related to chemical species separation. Such a step would allow a proper characterization of the selenium forms/species, including molecular mass/dimension, and substantiates the marketing claims related to the main advantages of these new selenium ingredients.
Collapse
Affiliation(s)
- Diana Constantinescu-Aruxandei
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Rodica Mihaela Frîncu
- INCDCP-ICECHIM Calarasi Subsidiary, 7A Nicolae Titulescu St., 915300 Lehliu Gara, Romania.
| | - Luiza Capră
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| | - Florin Oancea
- National Research & Development Institute for Chemistry and Petrochemistry ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania.
| |
Collapse
|