1
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
2
|
Zhang J, Qiu S, Deng F. Oxygen-doped carbon nanotubes with dual active cites to enhance •OH formation through three electron oxygen reduction. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133261. [PMID: 38150758 DOI: 10.1016/j.jhazmat.2023.133261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
The electro-Fenton (EF) process generates H2O2 through the 2e- oxygen reduction reaction (ORR), which is subsequently activated to •OH by iron-based catalysts. To alleviate the potential risk of external Fe-based catalysts, along with metal dissolution in acidic or neutral environments, in this study we employed oxygen-doped carbon nanotubes (OCNT) as a bifunctional, metal-free cathode to establish a metal-free EF process for organic pollutant degradation. The results demonstrate that the metal-free electrode has excellent H2O2 accumulation (12 mg L-1 cm-1) and degrades sulfathiazole (STZ) with 97.05 % efficiency in 180 min with an explanation kinetic of 0.0189 min-1. For the first time, this enhancement came from the dual active site centers in OCNT: Ⅰ) -COOH and defects active sites were responsible for H2O2 production, Ⅱ) then -CO triggered H2O2 into •OH, avoiding the introduction of metal-based catalysts. These findings suggest that the EF system with in situ oxygen-doped cathodes have great potential for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
3
|
Mostefaoui N, Oturan N, Bouafia SC, Hien SA, Gibert-Vilas M, Lesage G, Pechaud Y, Tassin B, Oturan M, Trellu C. Integration of electrochemical processes in a treatment system for landfill leachates based on a membrane bioreactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168841. [PMID: 38036133 DOI: 10.1016/j.scitotenv.2023.168841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
The use of electrocoagulation (EC) and anodic oxidation (AO) processes was studied for improving a treatment system for landfill leachates based on a membrane bioreactor (MBR) and a nanofiltration step. The main limitation of the current full-scale system is related to the partial removal of organic compounds that leads to operation of the nanofiltration unit with a highly concentrated feed solution. Application of the EC before the MBR participated in partial removal of the organic load (40 %) with limited energy consumption (2.8 kWh m-3) but with additional production of iron hydroxide sludge. Only AO allowed for non-selective removal of organic compounds. As a standalone process, AO would require a sharp increase of the energy consumption (116 kWh for 81 % removal of total organic carbon). But using lower electric charge and combining AO with EC and MBR processes would allow for achieving high overall removal yields with limited energy consumption. For example, the overall removal yield of total organic carbon was 65 % by application of AO after EC, with an energy consumption of 21 kWh m-3. Results also showed that such treatment strategy might allow for a significant increase of the biodegradability of the effluent before treatment by the MBR. The MBR might then be dedicated to the removal of the residual organic load as well as to the removal of the nitrogen load. The data obtained in this study also showed that the lower electric charge required for integrating AO in a coupled process would allow for strongly decreasing the formation of undesired by-products such as ClO3- and ClO4-.
Collapse
Affiliation(s)
- Nabil Mostefaoui
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Souad Chergui Bouafia
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering USTHB, BP 32, El-Allia, Bab-Ezzouar, Algiers 16111, Algeria
| | - Sié Alain Hien
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France; Laboratoire des Procédés Industriels, de Synthèse de l'Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Houphouët-Boigny, BP 1313, Yamoussoukro, Côte d'Ivoire
| | - Màxim Gibert-Vilas
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Centre National de la Recherche Scientifique (CNRS), University Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yoan Pechaud
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Bruno Tassin
- Laboratoire Eau Environnement et Systèmes Urbains, LEESU, Ecole des Ponts, Université Paris-Est Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
| | - Mehmet Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454 Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
4
|
Du X, Li B, Zhuang Z, Kuang K, Song W, Lin D, Fu C, Wang Z. Salt tide affecting algae-laden micropolluted surface water treatment and membrane performance based on BDD electro-oxidation coupled with ceramic membrane process. ENVIRONMENTAL RESEARCH 2023; 237:116942. [PMID: 37633631 DOI: 10.1016/j.envres.2023.116942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Harmful algal blooms pose an emerging threat to freshwater ecological security and human health, necessitating further study in offshore areas. In this work, boron-doped diamond electro-oxidation (BDD/EO) coupled with a ceramic membrane filtration was employed aiming to assess the salt tide affecting algae-laden water treatment involving with various natural organic matters (e.g., HA, SA, and BSA). The results have demonstrated that BDD/EO remove chlorophyll from the algae-laden water effectively due to the inactivation of algal cells. Moreover, considering the influence of salt tide, NH3-N would be mainly oxidized through the in-situ generated active chlorine at the electrode-liquid interface. In addition, in three kinds of salt tide affecting algae-laden water, TOC content in BSA group was decreasing remarkably after BDD/EO with TOC removal efficiency above 80%; while those in HA and SA groups had no obvious reducing due to the more algae cells breakage synchronous with HA and SA removal. Based on the fluorescent characteristics and particle size distribution, the generated small molecular organics after electro-oxidation might raise the pore blockage probability and the hydrophobic organic and fluorescent substances were preferentially oxidized in BDD/EO process being beneficial to reducing membrane fouling. Besides, the membrane special flux in three groups were decreasing significantly and the irreversible fouling resistance in SA group accounted for a larger proportion of the total resistance than those of HA and BSA. At last, in BDD/EO-CM process, macromolecular substances degradation rate was greater than that of small molecules based on the molecular weight distribution in three groups of salt tide affected algae-laden water treatment. In a word, this work provides effective and innovative strategies for the harmful algal bloom control and contributes interesting insights of membrane fouling performance of electrochemical coupled ultrafiltration membrane process.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Bingxuan Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Zhongjian Zhuang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ke Kuang
- Guangzhou Sewage Purification Co.,Ltd., Guangzhou, 510000, PR China.
| | - Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Dachao Lin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Caixia Fu
- Chinese Academy Science, Guangzhou Institute Energy Conversion, Guangzhou, 510640, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
5
|
Faggiano A, De Carluccio M, Cerrato F, Garcia Junior CA, Proto A, Fiorentino A, Rizzo L. Improving organic matter and nutrients removal and minimizing sludge production in landfill leachate pre-treatment by Fenton process through a comprehensive response surface methodology approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117950. [PMID: 37094386 DOI: 10.1016/j.jenvman.2023.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Landfill leachate (LL) represents a very complex effluent difficult to treat and to manage which usually requires a chemical pre-treatment. In this study, response surface methodology (RSM) was used to identify the optimum operating conditions of the Fenton process as a pre-treatment of LL in order to reduce the high organic content and simultaneously optimize the BOD5:TN:TP ratio. The dosages of Fenton process reagents, namely Fe2+ and H2O2, were used as variables for the implementation of RSM. Chemical oxygen demand (COD), five-days biochemical oxygen demand (BOD5), total nitrogen (TN), total phosphorus (TP) removals (and simultaneously BOD5:TN:TP ratio), sludge-to-iron ratio (SIR) and organic removal-to-sludge ratio (ORSR) were selected as target responses. This approach considered the SIR and ORSR parameters which are a useful tool for assessing sludge formation during the process along with organic matter removal. The variables (H2O2 and Fe2+ concentrations) significantly affected the responses, as the role of oxidation mechanism is dominant with respect to coagulation one. The pH for the process was fixed to 2.8 while the treatment time was set to 2 h. The optimum operational conditions obtained by perturbation and 3D surface plot, were found to be 4262 mg/L and 5104 mg/L for Fe2+ and H2O2, respectively (H2O2/Fe2+ molar ratio = 2) with COD, BOD5, TN and TP removals of 70%, 67%, 84% and 96% respectively, while SIR and ORSR final values were 1.15 L/mol and 33.79 g/L respectively, in accordance with models-predicted values. Moreover, the initial unbalanced BOD5:TN:TP ratio (9:1:1) was significantly improved (100:6:1), making the effluent suitable for a subsequent biological treatment. The investigated approach allowed to optimize the removal of organic load and nutrients as well as to minimize the sludge formation in Fenton process, providing a useful tool for the operation and management of LL pre-treatment.
Collapse
Affiliation(s)
- Antonio Faggiano
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Marco De Carluccio
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Francesco Cerrato
- ODS6 Clean Water and Sanitation, Av. dos Holandeses Ed. Century, Sala 2 - Térreo CEP, 65071-380, São Luís, MA, Brazil
| | | | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
| | - Luigi Rizzo
- Water Science and Technology Group (WaSTe), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
6
|
Crispim AC, de Araújo DM, Martínez-Huitle CA, Souza FL, Dos Santos EV. Application of electro-Fenton and photoelectro-Fenton processes for the degradation of contaminants in landfill leachate. ENVIRONMENTAL RESEARCH 2022; 213:113552. [PMID: 35710024 DOI: 10.1016/j.envres.2022.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Worldwide, most solid waste ends its life in landfill sites, which have a significant environmental impact in several respects. In particular, rainfall over landfill sites results in the production of an aqueous leachate containing compounds having low biodegradability, high toxicity, and a high organic load. For this reason, this study aims to investigate the applicability of electro-Fenton (EF) and photoelectro-Fenton (PEF) processes as alternative for treating a local landfill effluent with high organic content (chemical oxygen demand (COD) = 2684.7 mg-O2 L -1) in a continuous-flow reactor (using, for first time, this kind of system with higher electrodes area of 35 cm2) using boron-doped diamond anode (Nb/BDD) and a carbon felt cathode (FC) electrodes. The effects of current density j (30, 60 and 90 mA cm-2) and UV radiation wavelength (UVA and UVC) were studied to evaluate the treatment efficiency as well as the energy consumption. Results clearly showed that, the best efficiencies removing organic matter, in terms of COD, were about 66%, 68% and 89% with an energy consumption of only 19.41, 17.61 and 17.59 kWh kg COD-1 for EF, PEF-UVA and PEF-UVC respectively, at 90 mA cm-2 after 4 h of operation. The treatment of this kind of effluent produced organic and inorganic by-products, the acetic and formic acids as well as NO2-, NO3-, and NH4+, being assessed their concentrations.
Collapse
Affiliation(s)
- Alana C Crispim
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil
| | - Danyelle M de Araújo
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil
| | - Carlos A Martínez-Huitle
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil
| | - Fernanda L Souza
- National Nanotechnology Laboratory for Agriculture, Brazilian Agriculture Research Corporation (Embrapa), XV de Novembro Street, 1452, São Carlos, Brazil.
| | - Elisama V Dos Santos
- Laboratório de Eletroquímica Ambiental e Aplicada, Instituto de Química, Universidade Federal Do Rio Grande Do Norte, Lagoa Nova, CEP 59.072-900, RN, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, P.O. Box 355, 14800 900, Araraquara, SP, Brazil.
| |
Collapse
|
7
|
ADNAN FH, PONTVIANNE S, PONS MN, MOUSSET E. Roles of H2 evolution overpotential, materials porosity and cathode potential on mineral electro-precipitation in microfluidic reactor – New criterion to predict and assess interdependency. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. Electrosorption of phenolic compounds from olive mill wastewater: Mass transport consideration under a transient regime through an alginate-activated carbon fixed-bed electrode. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128480. [PMID: 35183056 DOI: 10.1016/j.jhazmat.2022.128480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Olive mill wastewater (OMWW) is an environmentally critical effluent, specifically due to its high content of phenolic compounds (PCs), which are hazardous due to their antimicrobial activities in water. However, their properties have good health effects at suitable doses. For the first time, the electrosorption of PCs from actual OMWW has been proposed for their possible recovery as value-added compounds, while decontaminating OMWW. A bio-sourced alginate-activated carbon (AC) fixed-bed electrode was prepared based on the reuse of olive pomace solid waste as powdered AC. At the optimal AC content (1% w/v), the internal ohmic drop voltage was lower (2.26 V) and the mass transport coefficient was higher (9.7 10-5 m s-1) along with the diffusivity (7.3 10-9 m2 s-1), which led to enhanced electrosorption rates. Afterward, an optimal electrode potential was obtained (-1.1 V vs. Ag/AgCl), while higher voltages led to faradaic reactions. Moreover, the adsorption capacity was lower (123 mg g-1) than that of electrosorption (170 mg g-1) and was even higher (307 mg g-1) with actual effluents. This was probably due to the influence of electromigration, which was confirmed by new models that could predict the electrosorption kinetics well considering mass transport and acid dissociation constants.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000 Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000 Marrakech, Morocco
| | | |
Collapse
|
9
|
Construction of Novel Electro-Fenton Systems by Magnetically Decorating Zero-Valent Iron onto RuO2-IrO2/Ti Electrode for Highly Efficient Pharmaceutical Wastewater Treatment. WATER 2022. [DOI: 10.3390/w14071044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Electro-Fenton (E-Fenton) technique has shown great potential in wastewater treatment, while the sustainable and continuing supply of Fe2+ remains challenging. Herein, we demonstrate the construction of a novel E-Fenton system by magnetically decorating zero-valent iron (ZVI) onto a RuO2-IrO2/Ti (ZVI-RuO2-IrO2/Ti) electrode for high-efficient treatment of pharmaceutical wastewater, which is considerably refractory and harmful to conventional biological processes. By using ZVI as a durable source of Fe(II) irons, 78.69% of COD and 76.40% of TOC may be rapidly removed by the developed ZVI-RuO2-IrO2/Ti electrode, while the ZVI-RuO2-IrO2/Ti electrode using ZVI only reduces 35.64% of COD under optimized conditions at initial COD and TOC values of 5500 mg/L and 4300 mg/L, respectively. Moreover, the increase in BOD5/COD from 0.21 to 0.52 highlights the enhanced biodegradability of the treated effluent. The analysis of a simultaneously formed precipitation on electrodes suggests that the coagulation process dominated by Fe3+/Fe2+ also plays a non-negligible role in pharmaceutical wastewater treatment. In addition, the monitoring of the evolution of nitrogen elements and the formation of by-products in the E-Fenton process verifies its great capacity toward those organic pollutants found in pharmaceutical wastewater. Our study offers a practical solution for enhancing the performance of E-Fenton systems, and effectively treating refractory pharmaceutical wastewater.
Collapse
|
10
|
Adnan FH, Pons M, Mousset E. Thin film microfluidic reactors in electrochemical advanced oxidation processes for wastewater treatment: A review on influencing parameters, scaling issues, and engineering considerations. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Marie‐Noëlle Pons
- CNRS LRGP Université de Lorraine Nancy France
- LTSER‐LRGP CNRS Université de Lorraine Nancy France
| | | |
Collapse
|
11
|
Lissaneddine A, Pons MN, Aziz F, Ouazzani N, Mandi L, Mousset E. A critical review on the electrosorption of organic compounds in aqueous effluent - Influencing factors and engineering considerations. ENVIRONMENTAL RESEARCH 2022; 204:112128. [PMID: 34600882 DOI: 10.1016/j.envres.2021.112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Despite being an old process from the end of the 19th century, electrosorption has attracted renewed attention in recent years because of its unique properties and advantages compared to other separation technologies and due to the concomitant development of new porous electrode materials. Electrosorption offer the advantage to separate the pollutants from wastewater with the possibility of selectively adsorbing and desorbing the targeted compounds. A comprehensive review of electrosorption is provided with particular attention given to the electrosorption of organic compounds, unlike existing capacitive deionization review papers that only focus on inorganic salts. The background and principle of electrosorption are first presented, while the influence of the main parameters (e.g., electrode materials, electrode potential, physico-chemistry of the electrolyte solutions, type of compounds, co-sorption effect, reactor design, etc.) is then detailed and the modeling and engineering aspects are discussed. Finally, the main output and future prospects about recovery studies and combination between electro-sorption/desorption and degradation processes are given. This review particularly highlights that carbon-based materials have been mostly employed (85% of studies) as porous electrode in organics electrosorption, while existing studies lack of electrode stability and durability tests in real conditions. These electrodes have been implemented in a fixed-bed reactor design most of the time (43% of studies) due to enhanced mass transport. Moreover, the electrode potential is a major criterion: it should be applied in the non-faradaic domain otherwise unwanted reactions can easily occur, especially the corrosion of carbon from 0.21 V/standard hydrogen electrode or the water oxidation/reduction. Furthermore, there is lack of studies performed with actual effluents and without addition of supporting electrolyte, which is crucial for testing the real efficiency of the process. The associated predictive model will be required by considering the matrix effect along with transport phenomena and physico-chemical characteristics of targeted organic compounds.
Collapse
Affiliation(s)
- Amina Lissaneddine
- Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France; National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | | | - Faissal Aziz
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | - Naaila Ouazzani
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | - Laila Mandi
- National Center for Research and Studies on Water and Energy (CNEREE), Cadi Ayyad University, B. 511, 40000, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Faculty of Sciences Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakech, Morocco
| | | |
Collapse
|
12
|
Hsieh ML, Juang RS, Gandomi YA, Fu CC, Hsieh CT, Liu WR. Synthesis and characterization of high-performance ZnO/graphene quantum dot composites for photocatalytic degradation of metronidazole. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Rapid removal of fungicide thiram in aqueous medium by electro-Fenton process with Pt and BDD anodes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119837] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Electro-Fenton process for the removal of Direct Red 23 using BDD anode in chloride and sulfate media. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115560] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Du X, Li Z, Xiao M, Mo Z, Wang Z, Li X, Yang Y. An electro-oxidation reactor for treatment of nanofiltration concentrate towards zero liquid discharge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146990. [PMID: 34088166 DOI: 10.1016/j.scitotenv.2021.146990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Nanofiltration (NF) concentrate generated from the secondary wastewater treatment contains high concentration of ammonium nitrogen and refractory organics, thus having great environmental risks. In this study, an electro-oxidation (EO) reactor built up with a boron-doped diamond (BDD) anode is utilized to treat the NF concentrate. To reach "zero liquid discharge", a mixture of the electrolytic effluent and the raw secondary wastewater was collected and transported back to the NF module. Results show that under the current density of 30 mA·cm-2, most of ammonia nitrogen was decomposed into N-gases within 30 min due to the active chlorine radicals generated in the electrochemical process. Moreover, the EO reactor completely eliminated antibiotics, humic acids and bacteria in the NF concentrate under long electrolysis time of 60 min. In particular, the organic pollutants removal rate was kept at a stable value in the EO reactor for a long-term operation of up to 120 h. In addition, the NF membrane remained a constant permeate flux without being affected by the membrane biofouling caused by organic components in wastewater. Our study highlights the potential of the NF-EO process as a "zero liquid discharge" approach for treatment of the secondary wastewater.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Mengyao Xiao
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhuoyu Mo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, PR China.
| | - Yang Yang
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
16
|
Adnan FH, Mousset E, Pontvianne S, Pons MN. Mineral cathodic electro-precipitation and its kinetic modelling in thin-film microfluidic reactor during advanced electro-oxidation process. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
17
|
Mousset E, Loh WH, Lim WS, Jarry L, Wang Z, Lefebvre O. Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria. WATER RESEARCH 2021; 200:117234. [PMID: 34058485 DOI: 10.1016/j.watres.2021.117234] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Advanced oxidation processes (AOPs) have received a lot of attention over the years as advanced physico-chemical polishing wastewater treatments to remove biorefractory pollutants. Additionally, many studies report their excellent degradation and mineralization performance as stand-alone technologies too, demonstrating the versatility of these processes; however, there is a lack of suitable methods to compare the performance (in terms of removal efficiency and operating costs) of different AOPs in the same conditions. In this context, the goal of this paper is to propose a systematic investigation by introducing a novel criterion, namely the accumulated oxygen-equivalent chemical-oxidation dose (AOCD), to systematically compare the diverse AOPs available: ozonation, H2O2 photolysis, Fenton, photo-Fenton, electro-Fenton and photoelectro-Fenton (paired with anodic oxidation, for the latter two). For each of these, the cost efficiency was determined by optimizing the operating conditions for the removal of phenol, selected as a model pollutant (1.4 mM, equivalent to 100 mg-C L-1). The operating costs considered sludge management, chemical use and electricity consumption. Among all AOPs, electro-Fenton was the most cost-effective (108 - 125 € m-3), notwithstanding the mineralization target (50%, 75% and 99%), owing to its electrocatalytic behavior. Chemical Fenton proved competitive too up to 50% of mineralization, meaning that it could also be considered as a cost-effective pre-treatment solution. AOCD was the lowest for electro-Fenton, which could be attributed to its excellent faradaic yield, while UV-based processes generally required the highest dose. The AOCD criterion could serve as a baseline for AOP comparison and prove useful for the legislator to determine the "best available techniques" as defined by the Industrial Emissions European Union Directive 2010/75/EU.
Collapse
Affiliation(s)
- Emmanuel Mousset
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore; Laboratoire Réactions et Génie des Procédés, UMR CNRS 7274, Université de Lorraine, 1 rue Grandville BP 20451, 54001 Nancy cedex, France
| | - Wei Hao Loh
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Wei Shien Lim
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Léa Jarry
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Zuxin Wang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore; School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, China
| | - Olivier Lefebvre
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore.
| |
Collapse
|
18
|
Menon P, Anantha Singh TS, Pani N, Nidheesh PV. Electro-Fenton assisted sonication for removal of ammoniacal nitrogen and organic matter from dye intermediate industrial wastewater. CHEMOSPHERE 2021; 269:128739. [PMID: 33131740 DOI: 10.1016/j.chemosphere.2020.128739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
The intricacy in the treatment of effluents from the textile sector attracts the researchers since 20th century. Dye intermediate manufacturing industries are responsible for producing the toxic pollutants such as nitro-aromatics, benzene, toluene, phenol, heavy metals etc. with intense colour. The present study focuses on the performance of combined Electro-Fenton (EF) and sonication for the removal of ammoniacal nitrogen and COD from dye intermediate manufacturing wastewater. Batch experiments of EF were performed using graphite electrodes and sonication was applied to the EF treated wastewater to enhance the treatment performance. A number of experiments were executed to discover the influence of pH, applied voltage, Fenton catalyst dosage and time of electrolysis on the removal efficiency of EF batch process was scrutinized. The pH was varied between 2 and 4, applied voltage from 1 to 4V, Fenton catalyst dosage between 50 and 200 mg L-1 and time between 15 and 180 min. At optimum condition i.e. pH 3, applied voltage 3V, Fenton catalyst dosage of 100 mg L-1and 120 min electrolysis time, the percentage removal obtained for ammoniacal nitrogen and COD were 59.4% and 79.2% respectively. The removal efficiency was increased to 65.5% for ammoniacal nitrogen and 85.4% for COD after applying sonication to the EF treated wastewater. The removal of ammoniacal nitrogen and COD can be achieved in a scientific and feasible way by combining EF process with sonication.
Collapse
Affiliation(s)
- Poornima Menon
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India
| | - T S Anantha Singh
- Department of Civil Engineering, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India; Department of Civil Engineering, National Institute of Technology Calicut, India.
| | - Nibedita Pani
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India
| | - P V Nidheesh
- CSIR, National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
19
|
Du X, Mo Z, Li Z, Zhang W, Luo Y, Nie J, Wang Z, Liang H. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: Antibiotics degradation and biofouling. ENVIRONMENT INTERNATIONAL 2021; 146:106291. [PMID: 33395938 DOI: 10.1016/j.envint.2020.106291] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In this study, a boron-doped diamond (BDD) electro-oxidation technology coupled with nanofiltration membrane (EO-NF) technology was investigated for its effectiveness in removing antibiotics (i.e., sulfamethazine:SMZ) and mitigating biofouling during secondary wastewater treatment. The result showed that EO obtained an effective SMZ removal, owing to the ·OH generation observed by Electron paramagnetic resonance (EPR) analysis; complete elimination of SMZ was found under the high current density (30 mA/cm2) and long Electrolysis Time (ET = 60 min). Meanwhile, EO-NF process enabled to reduce COD content from 60 mg/L to nearly 5 mg/L. Furthermore, regardless of the effect of EO process, NF could retain most NH3-N because of the excellent performance of NF for ions rejection, and its permeate concentration was below 0.5 mg/L. EO was able to reduce membrane fouling notably, increasing the final flux (15 L/(m2·h)) of NF by 25.1% during long-term operation (240 h). Scanning electron microscopy-Energy dispersive spectrometry (SEM-EDS) showed that a porous layer formed on the vicinity of NF membrane in the case of filtrating EO effluent, in contrast to a uniform and dense biofouling layer generated during the direct NF. Besides, the content of adenosine triphosphate (ATP) and the number of bacterial colonies in the retentate of the EO-NF process were greater than those of the direct NF process. This resulted in a smaller amount of extracellular polymeric substances (EPS) attaching to the membrane surface, decreasing the tightness and hardness of the fouling layer in the case of EO, as indicated by CLSM analysis. Overall, considering its ability to effectively eliminate persistent contaminants and reduce membrane fouling, BDD-based EO is considered a promising pre-treatment option for future NF applications.
Collapse
Affiliation(s)
- Xing Du
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhuoyu Mo
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ziyang Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wenxiang Zhang
- School of Environmental Science and Engineering, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Yunlong Luo
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jinxu Nie
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhihong Wang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
20
|
Tetracycline Removal by Activating Persulfate with Diatomite Loading of Fe and Ce. Molecules 2020; 25:molecules25235531. [PMID: 33255809 PMCID: PMC7728345 DOI: 10.3390/molecules25235531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Persulfate (PS)-based oxidation technology is efficient in removing refractory organics from water. A novel diatomite (DIA) support Fe and Ce composite (Fe-Ce/DIA) was prepared for activating persulfate to degrade tetracycline in water. The Fe and Ce were uniformly loaded on DIA, and the total pore size of Fe-Ce/DIA was 6.99 × 10−2 cm3/g, and the average pore size was 12.06 nm. Fe-Ce/DIA presented a good catalytic activity and 80% tetracycline was removed under the persulfate system. The Fe-Ce/DIA also had photocatalytic activity, and the corresponding tetracycline removal efficiency was 86% under UV irradiation. Fe-Ce/DIA exhibited less iron dissolution rate compared with Fe-DIA. The tetracycline degradation rate was enhanced when the temperature increased. The optimal tetracycline removal efficiency was obtained when the conditions were of persulfate 10 mM, Fe-Ce/DIA dosage 0.02 g/L, and tetracycline concentration 50 mg/L. In addition, Fe-Ce/DIA showed a wide pH application and good reusability and stability.
Collapse
|
21
|
Unprecedented reactive electro-mixing reactor: Towards synergy between micro- and macro-reactors? Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
22
|
Ganzenko O, Trellu C, Oturan N, Huguenot D, Péchaud Y, van Hullebusch ED, Oturan MA. Electro-Fenton treatment of a complex pharmaceutical mixture: Mineralization efficiency and biodegradability enhancement. CHEMOSPHERE 2020; 253:126659. [PMID: 32278912 DOI: 10.1016/j.chemosphere.2020.126659] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Combination of the electro-Fenton process with a post-biological treatment could represent a cost-effective solution for application of electrochemical advanced oxidation processes. The objective of this study was to assess this treatment strategy in the case of a complex pharmaceutical mixture. First, main operating parameters ([Fe2+] and current) of the electro-Fenton process were optimized. An optimal concentration of 0.2 mM of Fe2+ was obtained for mineralization of the pharmaceutical mixture. An optimal current of 400 mA was also obtained for degradation of caffeine and 5-fluorouracil in the mixture. However, mineralization of the effluent was continuously improved when increasing the current owing to the promotion of mineralization of organic compounds at the BDD anode. Besides, energy efficiency was decreased at prolonged treatment time because of mass transport limitation. Interestingly, it was observed a strong biodegradability enhancement of the solution after short treatment times (<3 h) at 500 and 1000 mA, which can be related to the degradation of parent compounds into more biodegradable by-products. The need for an acclimation time of the biomass to the pre-treated effluent was also emphasized, most probably because of the formation of some toxic by-products as observed during acute toxicity tests. Therefore, a biological post-treatment could represent a cost-effective solution for the removal of biodegradable residual organic compounds as well as for the removal of nitrogen released from mineralization of organic compounds under the form of NO3- and NH4+ during electro-Fenton pre-treatment.
Collapse
Affiliation(s)
- Oleksandra Ganzenko
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Clément Trellu
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Nihal Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - David Huguenot
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Yoan Péchaud
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | | | - Mehmet A Oturan
- Université Paris-Est, Laboratoire Géomatériaux et Environnement, EA 4508, UPEM, 77454, Marne-la-Vallée, France.
| |
Collapse
|
23
|
Zhu Y, Qiu S, Deng F, Ma F, Zheng Y. Degradation of sulfathiazole by electro-Fenton using a nitrogen-doped cathode and a BDD anode: Insight into the H 2O 2 generation and radical oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137853. [PMID: 32179298 DOI: 10.1016/j.scitotenv.2020.137853] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
In this work, nitrogen-doped cathodes for high H2O2 production and sulfathiazole (STZ) degradation in electro-Fenton (EF) systems were prepared by the carbonization of three carbon/nitrogen-enriched precursors. Among the cathodes elaborated from different precursors, the one using 1h-1,2,4-triazole-3,5-diamine as the precursor showed the best oxygen reduction reaction (ORR) ability with the normalized H2O2 accumulation of 9.49 ± 0.03 mg L-1 h-1 cm-2 compared to the other two N-containing cathodes. The enhanced H2O2 accumulation was attributed to the high electroactive surface area and pyrrolic N (60.45%) content. Regarding reactive oxygen species in the absence of Fe2+, aside from the H2O2, O2-and 1O2 were identified using spectroscopic techniques and chemical probes. As a result, a degradation and mineralization efficiency of 98.25 ± 0.14% and 70.57 ± 0.27% of STZ were attained in the 180-min treatment, mainly coming from the homogeneous OH from classical Fenton, anodic OH on BDD anode and direct/indirect oxidation of O2-and 1O2. In addition, the plausible degradation pathway of STZ was proposed based on the density functional theory (DFT) combined with experimental data derived by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The frontier orbital theory and Fukui function theoretically suggested the vulnerable sites of STZ for different active species including OH, O2- and 1O2. This study provides a new strategy for improving the ORR process and analyzing the generation and conversion of reactive oxygen species in the EF process.
Collapse
Affiliation(s)
- Yingshi Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yanshi Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
24
|
Qian M, Yang L, Chen X, Li K, Xue W, Li Y, Zhao H, Cao G, Guan X, Shen G. The treatment of veterinary antibiotics in swine wastewater by biodegradation and Fenton-like oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136299. [PMID: 31923671 DOI: 10.1016/j.scitotenv.2019.136299] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Elevated concentrations and potential toxicities of antibiotics in swine wastewater prompt the exploration of effective treatment methods to minimize the amount of antibiotics released to the environment. This study examined the technical and economic feasibility of using combined biodegradation and advanced oxidation processes for swine wastewater treatment. The up-flow anaerobic sludge blanket (UASB) reactor was mainly responsible for conventional organic pollutant removal (i.e., a COD removal rate of 75%). The subsequent sequencing batch reactor (SBR) under a short sludge retention time (SRT) of 3 days removed the biodegradable antibiotics by >95%, and hindered the nitrification process which retained NH4+-N and reduced operational cost (since the treated wastewater was intended to be used as a farm fertilizer). The subsequent Fenton-like oxidation (with the aid of citric acid) achieved an average antibiotic removal efficiency of 74% under optimal reaction conditions: H2O2 dosage of 2.9 mM, [Fe2+]: [H2O2] = 1:3, [CA]: [Fe2+] = 1:1, pH 6.0, reaction time of 120 min. The superior treatment efficiency of Fenton-like compared to the conventional Fenton (74% vs 5%) under nearly neutral conditions was attributed to the chelating role of citric acid with Fe2+/Fe3+, leading to the enhanced Fe2+/Fe3+ solubility and therefore the promotion of ∙OH formation. This hybrid process of anaerobic and aerobic biodegradation and Fenton-like oxidation should be suitable and cost-effective for the treatment of wastewater with abundant conventional pollutants and persistent emerging trace contaminants.
Collapse
Affiliation(s)
- Mengcheng Qian
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Linyan Yang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China.
| | - Xingkui Chen
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weibo Xue
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yejin Li
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huihui Zhao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guomin Cao
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
25
|
Xu X, Liu S, Liu Y, Smith K, Wang X, Li J, Ma Z, Wang Z, Cui Y. Water quality induced corrosion of stainless steel valves during long-term service in a reverse osmosis system. J Environ Sci (China) 2020; 89:218-226. [PMID: 31892393 DOI: 10.1016/j.jes.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
The current study analyzes the contribution of 10 water quality parameters (including pH, turbidity, conductivity, total dissolved solids (TDS), hardness, total organic carbon (TOC), alkalinity, calcium ions, chlorides and sulfates) to corrosion extent of stainless steel valves taken from different locations in a reverse osmosis system of a reclaimed water plant. The valves were in service for 5 years. Raman spectroscopy and X-ray photoelectron spectroscopy analyses are conducted to quantify corrosion products on different valves under various water quality conditions. On that basis, bivariate and multivariate regression analyses between the 10 water quality parameters and the corrosion extent of valve specimens (represented by metal loss percentage (MLP) values) are carried out to check the contribution of those water quality parameters to MLP. The results indicate that the proportions of metal oxides as corrosion products vary according to the corrosion extent of the valves. Although no linear correlation is found, all 10 water quality parameters except for pH show a significant positive correlation with the MLP values of the valve specimens. Moreover, results of multivariate regression suggest that the variation of MLP can be explained by turbidity, TDS, TOC and sulfates. A positive contribution of turbidity, TDS and TOC to MLP is observed, whereas the contribution of sulfates is negative. The results from the current work help to identify the reasons for water quality-induced failure of stainless steel equipment in RO systems.
Collapse
Affiliation(s)
- Xiyan Xu
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Shuming Liu
- School of Environment, Tsinghua University, 100084, Beijing, China.
| | - Ying Liu
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Kate Smith
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Xiaoting Wang
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Junyu Li
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Ziqing Ma
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Zhangqing Wang
- Beijing Yizhuang Water Co., Ltd., 100176, Beijing, China
| | - Yong Cui
- Beijing Yizhuang Water Co., Ltd., 100176, Beijing, China.
| |
Collapse
|
26
|
Effect of homogeneous Fenton combined with electron transfer on the fate of inorganic chlorinated species in synthetic and reclaimed municipal wastewater. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
El Kateb M, Trellu C, Darwich A, Rivallin M, Bechelany M, Nagarajan S, Lacour S, Bellakhal N, Lesage G, Héran M, Cretin M. Electrochemical advanced oxidation processes using novel electrode materials for mineralization and biodegradability enhancement of nanofiltration concentrate of landfill leachates. WATER RESEARCH 2019; 162:446-455. [PMID: 31301474 DOI: 10.1016/j.watres.2019.07.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to implement electrochemical advanced oxidation processes (EAOPs) for mineralization and biodegradability enhancement of nanofiltration (NF) concentrate from landfill leachate initially pre-treated in a membrane bioreactor (MBR). Raw carbon felt (CF) or FeIIFeIII layered double hydroxides-modified CF were used for comparing the efficiency of homogeneous and heterogeneous electro-Fenton (EF), respectively. The highest mineralization rate was obtained by heterogeneous EF: 96% removal of dissolved organic carbon (DOC) was achieved after 8 h of electrolysis at circumneutral initial pH (pH0 = 7.9) and at 8.3 mA cm-2. However, the most efficient treatment strategy appeared to be heterogeneous EF at 4.2 mA cm-2 combined with anodic oxidation using Ti4O7 anode (energy consumption = 0.11 kWh g-1 of DOC removed). Respirometric analyses under similar conditions than in the real MBR emphasized the possibility to recirculate the NF retentate towards the MBR after partial mineralization by EAOPs in order to remove the residual biodegradable by-products and improve the global cost effectiveness of the process. Further analyses were also performed in order to better understand the fate of organic and inorganic species during the treatment, including acute toxicity tests (Microtox®), characterization of dissolved organic matter by three-dimensional fluorescence spectroscopy, evolution of inorganic ions (ClO3-, NH4+ and NO3-) and identification/quantification of degradation by-products such as carboxylic acids. The obtained results emphasized the interdependence between the MBR process and EAOPs in a combined treatment strategy. Improving the retention in the MBR of colloidal proteins would improve the effectiveness of EAOPs because such compounds were identified as the most refractory. Enhanced nitrification would be also required in the MBR because of the release of NH4+ from mineralization of refractory organic nitrogen during EAOPs.
Collapse
Affiliation(s)
- Marwa El Kateb
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092, Tunis, Tunisia; Université de Carthage, Institut National des Sciences Appliquées et de Technologie, Laboratoire d'Echo-Chimie, 1080, Tunis, Tunisia
| | - Clément Trellu
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Laboratoire Géomatériaux et Environnement, LGE - Université Paris-Est, EA 4508, UPEM, 77454, Marne-la-Vallée, France.
| | - Alaa Darwich
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Stella Lacour
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nizar Bellakhal
- Université de Carthage, Institut National des Sciences Appliquées et de Technologie, Laboratoire d'Echo-Chimie, 1080, Tunis, Tunisia
| | | | - Marc Héran
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Marc Cretin
- IEM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
28
|
Deng F, Olvera-Vargas H, Garcia-Rodriguez O, Zhu Y, Jiang J, Qiu S, Yang J. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:249-258. [PMID: 31170573 DOI: 10.1016/j.jhazmat.2019.05.077] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/01/2019] [Accepted: 05/26/2019] [Indexed: 05/03/2023]
Abstract
For the first time, a biomass-derived porous carbon cathode (WDC) was fabricated via a facile one-step pyrolysis of recovered wood-waste without any post-treatment. The WDC along with pyrophosphate (PP) as electrolyte were used in electro-Fenton (EF) at pH 8 for sulfathiazole (STZ) treatment. The H2O2 accumulation capacity of WDC was optimized via the following parameters: pyrolysis temperature, applied current and electrolyte. Results showed that the WDC cathode prepared at 900 °C achieved the highest H2O2 accumulation (13.80 mg L-1 in 3 h) due to its larger electroactive surface area (28.81 cm2). Interestingly, it was found that PP decreased the decomposition rate of H2O2 in solution as compared to conventional electrolyte, which resulted in higher H2O2 accumulation. PP allowed operating EF at pH of 8 due to the formation of Fe2+-PP complexes in solution. Moreover, Fe2+-PP was able to activate oxygen to produce OH. In this way, the degradation of STZ took place through four main pathways: 1) via OH from the Fe2+-PP complex, 2) via OH from EF reactions, 3) via surface OH at the boron doped diamond electrode (BDD) and 4) via SO4- from BDD activation. Finally, microtox tests revealed that some toxic intermediates were generated during WDC/BDD/PP EF treatment, but they were removed at the end of the process.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; School of Chemical and Environmental Engineering, Jiang Han University, Wuhan, 430056, PR China
| | - Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Orlando Garcia-Rodriguez
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Dr. 2, Singapore 117576, Singapore
| | - Yingshi Zhu
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jizhou Jiang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China; School of Materials Science and Energy Engineering, Foshan University, Foshan 528000, PR China.
| | - Shan Qiu
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Jixian Yang
- State Key Laboratory of Urban Water Resources Center, Department of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
29
|
Xu X, Liu Y, Liu S, Li J, Guo G, Smith K. Real-time detection of potable-reclaimed water pipe cross-connection events by conventional water quality sensors using machine learning methods. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 238:201-209. [PMID: 30851559 DOI: 10.1016/j.jenvman.2019.02.110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/05/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Risk of cross-connection is becoming higher due to greater construction of potable-reclaimed water dual distribution systems. Cross-connection events can result in serious health concerns and reduce public confidence in reclaimed water. Thus, reliable, cost-effective and real-time online detection methods for early warning are required. The current study carried out pilot-scale experiments to simulate potable-reclaimed water pipe cross-connection events for different mixing ratios (from 30% to 1%) using machine learning methods based on multiple conventional water quality parameters. The parameters included residual chlorine, pH, turbidity, temperature, conductivity, oxidation-reduction potential and chemical oxygen demand. The results showed that correlated variation occurred among water quality parameters at the time of the cross-connection event. A single parameter-based method can be effective at high mixing ratios, but not at low mixing ratios. The direct supporting vector machine (SVM)-based method managed to overcome this drawback, but coped poorly with abnormal readings of water parameter sensors. In that respect, a Pearson correlation coefficient (PCC)-SVM-based method was developed. It provided not only high detection performance under normal conditions, but also remained reliable when abnormal readings occurred. The detection accuracy and true positive rate of this method was still over 88%, and the false positive rate was below 12%, given a sudden variation of an individual water quality parameter. The receiver operating characteristic curves further confirmed the promising practical applicability of this PCC-SVM-based method for early detection of cross-connection events.
Collapse
Affiliation(s)
- Xiyan Xu
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Ying Liu
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Shuming Liu
- School of Environment, Tsinghua University, 100084, Beijing, China.
| | - Junyu Li
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Guancheng Guo
- School of Environment, Tsinghua University, 100084, Beijing, China
| | - Kate Smith
- School of Environment, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
30
|
Mousset E, Puce M, Pons M. Advanced Electro‐Oxidation with Boron‐Doped Diamond for Acetaminophen Removal from Real Wastewater in a Microfluidic Reactor: Kinetics and Mass‐Transfer Studies. ChemElectroChem 2019. [DOI: 10.1002/celc.201900182] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Emmanuel Mousset
- Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGP F-54000 Nancy France
| | - Marta Puce
- Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGP F-54000 Nancy France
| | - Marie‐Noëlle Pons
- Laboratoire Réactions et Génie des ProcédésUniversité de Lorraine, CNRS, LRGP F-54000 Nancy France
| |
Collapse
|
31
|
Ganiyu SO, Oturan N, Trellu C, Raffy S, Cretin M, Causserand C, Oturan MA. Electrochemical Abatement of Analgesic Antipyretic 4‐Aminophenazone using Conductive Boron‐Doped Diamond and Sub‐Stoichiometric Titanium Oxide Anodes: Kinetics, Mineralization and Toxicity Assessment. ChemElectroChem 2019. [DOI: 10.1002/celc.201801741] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soliu O. Ganiyu
- Université Paris-Est Laboratoire Géomatériaux et Environnement (EA 4508), UPEM 77454 Marne-la-Vallée France
| | - Nihal Oturan
- Université Paris-Est Laboratoire Géomatériaux et Environnement (EA 4508), UPEM 77454 Marne-la-Vallée France
| | - Clément Trellu
- Université Paris-Est Laboratoire Géomatériaux et Environnement (EA 4508), UPEM 77454 Marne-la-Vallée France
| | - Stéphane Raffy
- Saint-Gobain C.R.E.E. 550 avenue Alphonse Jauffret 84300 Cavaillon France
| | - Marc Cretin
- IEM (Institut Européen des Membranes) UMR 5635 (CNRS-ENSCM-UM)Université de Montpellier Place E. Bataillon F-34095 Montpellier, Cedex 5 France
| | - Christel Causserand
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS, INPT, UPS Toulouse France
| | - Mehmet A. Oturan
- Université Paris-Est Laboratoire Géomatériaux et Environnement (EA 4508), UPEM 77454 Marne-la-Vallée France
| |
Collapse
|
32
|
Hu Y, Li Y, He J, Liu T, Zhang K, Huang X, Kong L, Liu J. EDTA-Fe(III) Fenton-like oxidation for the degradation of malachite green. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:256-263. [PMID: 30121461 DOI: 10.1016/j.jenvman.2018.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/27/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Industrial waste, urban sewage and aquaculture have led to severely increased grades of environment pollutants such as dyes, pesticides and fertilizer. The use of technologies for purifying contaminated waters can be difficult and toxic due to the anti-photolysis, anti-oxidation and anti-bio-oxidation characteristics of organic pollutants, and there is therefore a significant need for new approaches. Here, we report methods of Fenton oxidation and EDTA-Fe(III) Fenton-like oxidation which can be used to degrade malachite green (MG: a dye and antibiotic-like substance) from contaminated water. Compared with the degradation rate (59.34%) of the Fe(III)/H2O2 Fenton process, the EDTA-Fe(III) Fenton-like oxidation got a better degradation rate (92.7%) at neutral pH conditions. By conducting a series of parallel controlled experiments (changing parameters such as the reactant concentration, temperature, and pH), we report the relationships between the degradation effect and different parameters, and we fitted their pseudo first order kinetic curves. Furthermore, we repeated to adjustment of the concentrations of MG in solutions to test the cycle performance and catalytic activities of EDTA-Fe(III)/H2O2 system and it showed good repeatability in the first five rounds and all of them keep the degradation efficiencies greater than 80%. By conducting comparative spin-trapping electron paramagnetic resonance (EPR) experiments, we showed indirectly that the OH contributes to the degradation of MG. Additionally, the results of the EPR experiments showed that EDTA contributes to the generation of OH in the EDTA-Fe(III)/H2O2 Fenton-like system. By conducting total organic carbon (TOC) analysis experiments, we found that EDTA was also oxidized to some extent during the degradation of MG. In all, the findings of this work widen the range of the optimal pH values up to neutral condition for degradation of MG by use of EDTA-Fe(III) Fenton-like system. And this system could be used as one approach for the degradation of organic pollutants at neutral conditions and provide some initial information regarding EDTA-Fe(III) Fenton-like oxidations. It's significant for the expansion of the homogenous Fenton-like family and its application in the field of water treatment.
Collapse
Affiliation(s)
- Yi Hu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Yulian Li
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Junyong He
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Tao Liu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China; Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, PR China
| | - Kaisheng Zhang
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Xingjiu Huang
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lingtao Kong
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Jinhuai Liu
- Nano-Materials and Environmental Detection Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|