1
|
Yang Y, Li B, Li M, Deng Z, Chen Z, Wu J. Enhanced Cr(VI) removal and stabilization from bioleached wastewater by zero-valent iron coupled with hetero and autotrophic bacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121761. [PMID: 38991332 DOI: 10.1016/j.jenvman.2024.121761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Zero-valent iron (Fe0) usually suffers from organic acid complexation and ferrochrome layer passivation in Cr(VI) removal from bioleached wastewater of Cr slag. In this work, a synergetic system combined Fe0 and mixed hetero/autotrophic bacteria was established to reduce and stabilize Cr(VI) from bioleached wastewater. Due to bacterial consumption of organic acid and hydrogen, severe iron corrosion and structured-Fe(II) mineral generation (e.g., magnetite and green rust) occurred on biotic Fe0 surface in terms of solid-phase characterization, which was crucial for Cr(VI) adsorption and reduction. Therefore, compared with the abiotic Fe0 system, this integrated system exhibited a 6.1-fold increase in Cr(VI) removal, with heterotrophic reduction contributing 3.4-fold and abiotic part promoted by hydrogen-autotrophic bacteria enhancing 2.7-fold. After reaction, the Cr valence distribution and X-ray photoelectron spectroscopy indicated that most Cr(VI) was converted into immobilized products such as FexCr1-x(OH)3, Cr2O3, and FeCr2O4 by biotic Fe0. Reoxidation experiment revealed that these products exhibited superior stability to the immobilized products generated by Fe0 or bacteria. Additionally, organic acid concentration and Fe0 dosage showed significantly positive correlation with Cr(VI) removal within the range of biological adaptation, which emphasized that heterotrophic and autotrophic bacteria acted essential roles in Cr(VI) removal. This work highlighted the enhanced effect of heterotrophic and autotrophic activities on Cr(VI) reduction and stabilization by Fe0 and offered a promising approach for bioleached wastewater treatment.
Collapse
Affiliation(s)
- Yuhang Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Mingxi Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Zhiyi Deng
- School of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Zuoyi Chen
- School of Chemistry and Material Science, Guangdong University of Education, Guangzhou, 510303, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Tao R, Hu R, Gwenzi W, Ruppert H, Noubactep C, Alahmadi TA. Effects of common dissolved anions on the efficiency of Fe 0-based remediation systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120566. [PMID: 38520854 DOI: 10.1016/j.jenvman.2024.120566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Quiescent batch experiments were conducted to evaluate the influences of Cl-, F-, HCO3-, HPO42-, and SO42- on the reactivity of metallic iron (Fe0) for water remediation using the methylene blue (MB) method. Strong discoloration of MB indicates high availability of solid iron corrosion products (FeCPs). Tap water was used as an operational reference. Experiments were carried out in graduated test tubes (22 mL) for up to 45 d, using 0.1 g of Fe0 and 0.5 g of sand. Operational parameters investigated were (i) equilibration time (0-45 d), (ii) 4 different types of Fe0, (iii) anion concentration (10 values), and (iv) use of MB and Orange II (O-II). The degree of dye discoloration, the pH, and the iron concentration were monitored in each system. Relative to the reference system, HCO3- enhanced the extent of MB discoloration, while Cl-, F-, HPO42-, and SO42- inhibited it. A different behavior was observed for O-II discoloration: in particular, HCO3- inhibited O-II discoloration. The increased MB discoloration in the HCO3- system was justified by considering the availability of FeCPs as contaminant scavengers, pH increase, and contact time. The addition of any other anion initially delays the availability of FeCPs. Conflicting results in the literature can be attributed to the use of inappropriate experimental conditions. The results indicate that the application of Fe0-based systems for water remediation is a highly site-specific issue which has to include the anion chemistry of the water.
Collapse
Affiliation(s)
- Ran Tao
- Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany.
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Willis Gwenzi
- Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Science, University of Kassel, Steinstrasse 19, D-37213, Witzenhausen, Germany; Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Alle 100, D-14469, Potsdam, Germany; Currently, Biosystems and Environmental Engineering Research Group, 380 New Adylin, Westgate, Harare, Zimbabwe.
| | - Hans Ruppert
- Department of Sedimentology & Environmental Geology, University of Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany.
| | - Chicgoua Noubactep
- Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, Arusha, P.O. Box 447, Tanzania; Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, Bangangté, P.O. Box 208, Cameroon; Centre for Modern Indian Studies (CeMIS), University of Göttingen, Waldweg 26, D-37073, Göttingen, Germany.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh 11461, Saudi Arabia
| |
Collapse
|
3
|
Fe0-Supported Anaerobic Digestion for Organics and Nutrients Removal from Domestic Sewage. WATER 2022. [DOI: 10.3390/w14101623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Results from different research suggest that metallic iron (Fe0) materials enhance anaerobic digestion (AD) systems to remove organics (chemical oxygen demand (COD)), phosphorus and nitrogen from polluted water. However, the available results are difficult to compare because they are derived from different experimental conditions. This research characterises the effects of Fe0 type and dosage in AD systems to simultaneously remove COD and nutrients (orthophosphate (PO43−), ammonium (NH4+), and nitrate (NO3− Lab-scale reactors containing domestic sewage (DS) were fed with various Fe0 dosages (0 to 30 g/L). Batch AD experiments were operated at 37 ± 0.5 °C for 76 days; the initial pH value was 7.5. Scrap iron (SI) and steel wool (SW) were used as Fe0 sources. Results show that: (i) SW performed better than SI on COD and PO43− removal (ii) optimum dosage for the organics and nutrients removal was 10 g/L SI (iii) (NO3− + NH4+) was the least removed pollutant (iv) maximum observed COD, PO43− and NO3− + NH4+ removal efficiencies were 88.0%, 98.0% and 40.0% for 10 g/L SI, 88.2%, 99.9%, 25.1% for 10 g/L SW, and 68.9%, 7.3% and 0.7% for the reference system. Fe0-supported AD significantly removed the organics and nutrients from DS.
Collapse
|
4
|
Metallic Iron for Water Remediation: Plenty of Room for Collaboration and Convergence to Advance the Science. WATER 2022. [DOI: 10.3390/w14091492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Scientific collaboration among various geographically scattered research groups on the broad topic of “metallic iron (Fe0) for water remediation” has evolved greatly over the past three decades. This collaboration has involved different kinds of research partners, including researchers from the same organization and domestic researchers from non-academic organizations as well as international partners. The present analysis of recent publications by some leading scientists shows that after a decade of frank collaboration in search of ways to improve the efficiency of Fe0/H2O systems, the research community has divided itself into two schools of thought since about 2007. Since then, progress in knowledge has stagnated. The first school maintains that Fe0 is a reducing agent for some relevant contaminants. The second school argues that Fe0 in-situ generates flocculants (iron hydroxides) for contaminant scavenging and reducing species (e.g., FeII, H2, and Fe3O4), but reductive transformation is not a relevant contaminant removal mechanism. The problem encountered in assessing the validity of the views of both schools arises from the quantitative dominance of the supporters of the first school, who mostly ignore the second school in their presentations. The net result is that the various derivations of the original Fe0 remediation technology may be collectively flawed by the same mistake. While recognizing that the whole research community strives for the success of a very promising but unestablished technology, annual review articles are suggested as an ingredient for successful collaboration.
Collapse
|
5
|
Sun G, Fu F, Tang B. Fate of metal-EDTA complexes during ferrihydrite aging: Interaction of metal-EDTA and iron oxides. CHEMOSPHERE 2022; 291:132791. [PMID: 34742754 DOI: 10.1016/j.chemosphere.2021.132791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/02/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The widespread presence of ferrihydrite in the environment makes many contaminants including metal-EDTA complexes being adsorbed on it. However, the fate of metal-EDTA complexes during the transformation of ferrihydrite was poorly understood. Understanding the migration and speciation changes of metal-EDTA adsorbed on ferrihydrite during the transformation was helpful to predict its fate in some natural and engineering environments. In this work, the interaction of the two metal-EDTA complexes (Ni(II)-EDTA and Ca(II)-EDTA) and ferrihydrite during the 9-day transformation of ferrihydrite at different pH values was studied. The results showed that part of EDTA complexing metals changed to non-complexed metals during the ferrihydrite transformation, which was due to the fact that metal in the metal-EDTA exchanged with Fe(III) on ferrihydrite. Besides, different speciation of metal ions migrated during the transformation of ferrihydrite. Meanwhile, Fe(III)-EDTA formed in this process, and the exchange of metal in Ca(II)-EDTA with Fe(III) in ferrihydrite was faster than that of Ni(II)-EDTA. Besides, the presence of metal-EDTA affected the transformation rate of ferrihydrite under neutral and alkaline condition, and metal-EDTA accelerated the dissolution of ferrihydrite to form goethite. Therefore, ferrihydrite and metal-EDTA influenced each other during the transformation of ferrihydrite. The results of this work revealed that the process of metal-EDTA dissolving ferrihydrite not only included the dissociation of metal-EDTA, but also involved the migration of metal ions and affected the transformation of ferrihydrite.
Collapse
Affiliation(s)
- Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Konadu-Amoah B, Ndé-Tchoupé AI, Hu R, Gwenzi W, Noubactep C. Investigating the Fe 0/H 2O systems using the methylene blue method: Validity, applications, and future directions. CHEMOSPHERE 2022; 291:132913. [PMID: 34788675 DOI: 10.1016/j.chemosphere.2021.132913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
An innovative approach to characterize the reactivity of metallic iron (Fe0) for aqueous contaminant removal has been in use for a decade: The methylene blue method (MB method). The approach considers the differential adsorptive affinity of methylene blue (MB) for sand and iron oxides. The MB method characterizes MB discoloration by sand as it is progressively coated by in-situ generated iron corrosion products (FeCPs) to deduce the extent of iron corrosion. The MB method is a semi-quantitative tool that has successfully clarified some contradicting reports on the Fe0/H2O system. Moreover, it has the potential to serve as a powerful tool for routine tests in the Fe0 remediation industry, including quality assurance and quality control (QA/QC). However, MB is widely used as a 'molecular probe' to characterize the Fe0/H2O system, for instance for wastewater treatment. Thus, there is scope to avoid confusion created by the multiple uses of MB in Fe0/H2O systems. The present communication aims at filling this gap by presenting the science of the MB method, and its application and limitations. It is concluded that the MB method is very suitable for Fe0 material screening and optimization of operational designs. However, the MB method only provides semi-quantitative information, but gives no data on the solid-phase characterization of solid Fe0 and its reaction products. In other words, further comprehensive investigations with microscopic and spectroscopic surface and solid-state analyses are needed to complement results from the MB method.
Collapse
Affiliation(s)
- Bernard Konadu-Amoah
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing 211100, China.
| | - Arnaud Igor Ndé-Tchoupé
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing 211100, China.
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing 211100, China.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, Zimbabwe.
| | - Chicgoua Noubactep
- Centre for Modern Indian Studies (CeMIS), Universität Göttingen, Waldweg 26, 37073 Göttingen, Germany; Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077 Göttingen, Germany; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania; Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
| |
Collapse
|
7
|
Zhang L, Fu F, Yu G, Sun G, Tang B. Fate of Cr(VI) during aging of ferrihydrite-humic acid co-precipitates: Comparative studies of structurally incorporated Al(III) and Mn(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151073. [PMID: 34678368 DOI: 10.1016/j.scitotenv.2021.151073] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Ferrihydrite-humic acid co-precipitates have impacts on the adsorption and reduction of Cr(VI) in the natural environment. Besides, ferrihydrite-humic acid co-precipitates usually coexist with foreign metal cations like Al(III) and Mn(II), which may change the properties of ferrihydrite and affect the fate of Cr(VI). In this work, structurally incorporated Al(III) or Mn(II) in ferrihydrite-humic acid co-precipitates with Cr(VI) (Fh-HA-Cr-Al or Fh-HA-Cr-Mn) were prepared, and the behavior and phase transformation of co-precipitates were explored via the characterization analyses of samples during aging for 10 days. This study showed that partial adsorbed Cr(VI) was reduced to Cr(III) in the presence of humic acid, thereby reducing the toxicity of Cr(VI). Interestingly, two different results occurred because of the incorporation of Al(III) and Mn(II). Al(III) hindered the transformation of ferrihydrite and changed the aging products by inhibiting the dissolution of ferrihydrite, which decreased Cr to incorporate iron minerals. By contrast, doping of Mn(II) accelerated the phase transformation of co-precipitates, and was more conducive to the encapsulation and fixation of Cr. The results of this study can facilitate the understanding of the effects of Al(III) and Mn(II) on Cr(VI) fixation during the aging of Fh-HA-Cr.
Collapse
Affiliation(s)
- Lin Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Cao V, Ndé-Tchoupé AI, Hu R, Gwenzi W, Noubactep C. The mechanism of contaminant removal in Fe(0)/H 2O systems: The burden of a poor literature review. CHEMOSPHERE 2021; 280:130614. [PMID: 33940455 DOI: 10.1016/j.chemosphere.2021.130614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
The global effort to mitigate the impact of environmental pollution has led to the use of various types of metallic iron (Fe(0)) in the remediation of soil and groundwater as well as in the treatment of industrial and municipal effluents. During the past three decades, hundreds of scientific publications have controversially discussed the mechanism of contaminant removal in Fe(0)/H2O systems, with the large majority considering Fe(0) to be oxidized by contaminants of concern. This view assumes that contaminant reduction is the cathodic reaction occurring simultaneously with Fe0 oxidative dissolution (anodic reaction). This view contradicts the century-old theory of the electrochemical nature of aqueous iron corrosion and hinders progress in designing efficient and sustainable remediation Fe(0)/H2O systems. The aim of the present communication is to demonstrate the fallacy of the current prevailing view based on articles published before 1910. It is shown that properly reviewing the literature would have avoided the mistake. Going back to the roots is recommended as the way forward and should be considered first while designing laboratory experiments.
Collapse
Affiliation(s)
- Viet Cao
- Faculty of Natural Sciences, Hung Vuong University, Nguyen Tat Thanh Street, Viet Tri, 35120, Phu Tho, Viet Nam.
| | - Arnaud Igor Ndé-Tchoupé
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, Nanjing, 211100, China.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Soil Science and Agricultural Engineering, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe.
| | - Chicgoua Noubactep
- Department of Applied Geology, University of Göttingen, Goldschmidtstraße 3, D-37077, Göttingen, Germany; Centre for Modern Indian Studies (CeMIS), Universität Göttingen, Waldweg 26, 37073, Göttingen, Germany; Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania; Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
| |
Collapse
|
9
|
Cao V, Alyoussef G, Gatcha-Bandjun N, Gwenzi W, Noubactep C. Characterizing the impact of MnO 2 addition on the efficiency of Fe 0/H 2O systems. Sci Rep 2021; 11:9814. [PMID: 33963252 PMCID: PMC8105408 DOI: 10.1038/s41598-021-89318-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
The role of manganese dioxide (MnO2) in the process of water treatment using metallic iron (Fe0/H2O) was investigated in quiescent batch experiments for t ≤ 60 d. MnO2 was used as an agent to control the availability of solid iron corrosion products (FeCPs) while methylene blue (MB) was an indicator of reactivity. The investigated systems were: (1) Fe0, (2) MnO2, (3) sand, (4) Fe0/sand, (5) Fe0/MnO2, and (6) Fe0/sand/MnO2. The experiments were performed in test tubes each containing 22.0 mL of MB (10 mg L−1) and the solid aggregates. The initial pH value was 8.2. Each system was characterized for the final concentration of H+, Fe, and MB. Results show no detectable level of dissolved iron after 47 days. Final pH values varied from 7.4 to 9.8. The MB discoloration efficiency varies from 40 to 80% as the MnO2 loading increases from 2.3 to 45 g L−1. MB discoloration is only quantitative when the operational fixation capacity of MnO2 for Fe2+ was exhausted. This corresponds to the event where adsorption and co-precipitation with FeCPs is intensive. Adsorption and co-precipitation are thus the fundamental mechanisms of decontamination in Fe0/H2O systems. Hybrid Fe0/MnO2 systems are potential candidates for the design of more sustainable Fe0 filters.
Collapse
Affiliation(s)
- Viet Cao
- Faculty of Natural Sciences, Hung Vuong University, Nguyen Tat Thanh Street, Viet Tri, Phu Tho, 35120, Vietnam
| | - Ghinwa Alyoussef
- Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany
| | - Nadège Gatcha-Bandjun
- Faculty of Science, Department of Chemistry, University of Maroua, BP 46, Maroua, Cameroon
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, Department of Agricultural and Biosystems Engineering, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant, Harare, Zimbabwe
| | - Chicgoua Noubactep
- Angewandte Geologie, Universität Göttingen, Goldschmidtstraße 3, 37077, Göttingen, Germany. .,Centre for Modern Indian Studies (CeMIS), Universität Göttingen, Waldweg 26, 37073, Göttingen, Germany. .,Department of Water and Environmental Science and Engineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
| |
Collapse
|
10
|
Sun G, Fu F, Yu G, Yu P, Tang B. Migration behavior of Cr(VI) during the transformation of ferrihydrite-Cr(VI) co-precipitates: The interaction between surfactants and co-precipitates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:145429. [PMID: 33550060 DOI: 10.1016/j.scitotenv.2021.145429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Redistribution of Cr(VI) in ferrihydrite-Cr(VI) co-precipitates (Fh-Cr) was affected by co-precipitates transformation and coexisting substances. These effects were crucial for predicting the migration path of Cr(VI) in ferrihydrite-Cr(VI) co-precipitates. This work investigated the effects of the extensively used surfactants of anionic surfactant sodium dodecylbenzene sulfonate (SDBS) and cationic surfactant cetyltrimethylammonium bromide (CTAB) on the Fh-Cr transformation and redistribution of Cr(VI) for 10 days at different pH values (5.0, 7.5 and 9.0) and concentration of surfactants (0.5, 2.0 and 5.0 mM). The results showed that SDBS hindered the transformation of Fh-Cr to hematite and tended to transform into goethite. SDBS inhibited hematite formation by inhibiting the aggregation of Fh-Cr particles, and it enhanced the dissolution of Fh-Cr to facilitate the formation of goethite. Affected by the inhibition of Fh-Cr transformation, the process of Cr(VI) redistribution was delayed. CTAB did not affect the transformation of Fh-Cr, but allowed more Cr(VI) to enter the interior of iron minerals. When the surfactants were adsorbed on the Fh-Cr, SDBS decreased the adsorption of Cr(VI) by Fh-Cr, while CTAB increased the Cr(VI) adsorption. The findings of this study contribute to understand the effects of surfactants on the transformation of Fh-Cr and the behaviors of Cr(VI) during this process.
Collapse
Affiliation(s)
- Guangzhao Sun
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guangda Yu
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Peijing Yu
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
The Suitability of Methylene Blue Discoloration (MB Method) to Investigate the Fe0/MnO2 System. Processes (Basel) 2021. [DOI: 10.3390/pr9030548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The typical time-dependent decrease of the iron corrosion rate is often difficult to consider while designing Fe0-based remediation systems. One of the most promising approaches is the amendment with manganese dioxide (Fe0/MnO2 system). The resulting system is a very complex one where characterization is challenging. The present communication uses methylene blue discoloration (MB method) to characterize the Fe0/MnO2 system. Shaken batch experiments (75 rpm) for 7 days were used. The initial MB concentration was 10 mg L−1 with the following mass loading: [MnO2] = 2.3 g L−1, [sand] = 45 g L−1, and 0 < [Fe0] (g L−1) ≤ 45. The following systems where investigated: Fe0, MnO2, sand, Fe0/MnO2, Fe0/sand, and Fe0/MnO2/sand. Results demonstrated that MB discoloration is influenced by the diffusive transport of MB from the solution to the aggregates at the bottom of the test-tubes. Results confirm the complexity of the Fe0/MnO2/sand system, while establishing that both MnO2 and sand improve the efficiency of Fe0/H2O systems in the long-term. The mechanisms of water decontamination by amending Fe0-based systems with MnO2 is demonstrated by the MB method.
Collapse
|
12
|
Yang R, Fan Y, Ye R, Tang Y, Cao X, Yin Z, Zeng Z. MnO 2 -Based Materials for Environmental Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004862. [PMID: 33448089 DOI: 10.1002/adma.202004862] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Indexed: 06/12/2023]
Abstract
Manganese dioxide (MnO2 ) is a promising photo-thermo-electric-responsive semiconductor material for environmental applications, owing to its various favorable properties. However, the unsatisfactory environmental purification efficiency of this material has limited its further applications. Fortunately, in the last few years, significant efforts have been undertaken for improving the environmental purification efficiency of this material and understanding its underlying mechanism. Here, the aim is to summarize the recent experimental and computational research progress in the modification of MnO2 single species by morphology control, structure construction, facet engineering, and element doping. Moreover, the design and fabrication of MnO2 -based composites via the construction of homojunctions and MnO2 /semiconductor/conductor binary/ternary heterojunctions is discussed. Their applications in environmental purification systems, either as an adsorbent material for removing heavy metals, dyes, and microwave (MW) pollution, or as a thermal catalyst, photocatalyst, and electrocatalyst for the degradation of pollutants (water and gas, organic and inorganic) are also highlighted. Finally, the research gaps are summarized and a perspective on the challenges and the direction of future research in nanostructured MnO2 -based materials in the field of environmental applications is presented. Therefore, basic guidance for rational design and fabrication of high-efficiency MnO2 -based materials for comprehensive environmental applications is provided.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Yingying Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| | - Ruquan Ye
- Department of Chemistry, State Key Lab of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yuxin Tang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Characterizing the impact of pyrite addition on the efficiency of Fe 0/H 2O systems. Sci Rep 2021; 11:2326. [PMID: 33504819 PMCID: PMC7841150 DOI: 10.1038/s41598-021-81649-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
The role of pyrite (FeS2) in the process of water treatment using metallic iron (Fe0) was investigated. FeS2 was used as a pH-shifting agent while methylene blue (MB) and methyl orange (MO) were used as an indicator of reactivity and model contaminant, respectively. The effect of the final pH value on the extent of MB discoloration was characterized using 5 g L-1 of a Fe0 specimen. pH variation was achieved by adding 0 to 30 g L-1 of FeS2. Quiescent batch experiments with Fe0/FeS2/sand systems (sand loading: 25 g L-1) and 20 mL of MB were performed for 41 days. Final pH values varied from 3.3 to 7.0. Results demonstrated that MB discoloration is only quantitative when the final pH value was larger than 4.5 and that adsorption and co-precipitation are the fundamental mechanisms of decontamination in Fe0/H2O systems. Such mechanisms are consistent with the effects of the pH value on the decontamination process.
Collapse
|
14
|
Validating the Efficiency of the FeS2 Method for Elucidating the Mechanisms of Contaminant Removal Using Fe0/H2O Systems. Processes (Basel) 2020. [DOI: 10.3390/pr8091162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
There is growing interest in using pyrite minerals (FeS2) to enhance the efficiency of metallic iron (Fe0) for water treatment (Fe0/H2O systems). This approach contradicts the thermodynamic predicting suppression of FeS2 oxidation by Fe0 addition. Available results are rooted in time series correlations between aqueous and solid phases based on data collected under various operational conditions. Herein, the methylene blue method (MB method) is used to clarify the controversy. The MB method exploits the differential adsorptive affinity of MB onto sand and sand coated with iron corrosion products to assess the extent of Fe0 corrosion in Fe0/H2O systems. The effects of the addition of various amounts of FeS2 to a Fe0/sand mixture (FeS2 method) on MB discoloration were characterized in parallel quiescent batch experiments for up to 71 d (pH0 = 6.8). Pristine and aged FeS2 specimens were used. Parallel experiments with methyl orange (MO) and reactive red 120 (RR120) enabled a better discussion of the achieved results. The results clearly showed that FeS2 induces a pH shift and delays Fe precipitation and sand coating. Pristine FeS2 induced a pH shift to values lower than 4.5, but no quantitative MB discoloration occurred after 45 d. Aged FeS2 could not significantly shift the pH value (final pH ≥ 6.4) but improved the MB discoloration. The used systematic sequence of experiments demonstrated that adsorption and coprecipitation are the fundamental mechanisms of contaminant removal in Fe0/H2O systems. This research has clarified the reason why a FeS2 addition enhances the efficiency of Fe0 environmental remediation.
Collapse
|
15
|
Liang C, Tang B, Zhang X, Fu F. Mobility and transformation of Cr(VI) on the surface of goethite in the presence of oxalic acid and Mn(II). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26115-26124. [PMID: 32358750 DOI: 10.1007/s11356-020-09016-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Goethite is an effective adsorbent for hexavalent chromium (Cr(VI)). Oxalic acid and other organic acids will affect the release, immobilization, and bioavailability of Cr(VI) in nature on the mineral surface. Mn(II) can accelerate the reduction of Cr(VI) with oxalic acid. Herein, the effects of oxalic acid and Mn(II) on the mobilization and transformation of adsorbed Cr(VI) on the surface of goethite were investigated in this study. The results revealed that Mn(II) could increase the adsorption of Cr(VI) by increasing the positive charge on the surface of goethite. The complexation of oxalic acid with the surface of goethite caused the adsorbed Cr(VI) to be released into the solution. Moreover, oxalic acid could undergo redox with adsorbed Cr(VI) through electron conduction on the surface of goethite, thereby resulting in the transformation of adsorbed Cr(VI) to Cr(III). During the reaction in the presence of oxalic acid, the concentration of Cr(III) increased from 0 to 13.9 mg/L. In addition, Mn(II), oxalic acid, and Cr(VI) could form unstable ester-like species in the solution, which accelerated the reduction of Cr(VI) to Cr(III). These findings of this study may enrich our understanding of the behaviors of Cr(VI) in the coexistence of goethite, oxalic acid, and Mn(II).
Collapse
Affiliation(s)
- Chenwei Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bing Tang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiangdan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Fenglian Fu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
16
|
Zhang R, Zeng Q, Guo P, Cui Y, Sun Y. Efficient capture of Cr(VI) by carbon hollow fibers with window-like structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16763-16773. [PMID: 32141002 DOI: 10.1007/s11356-020-07939-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Removal of toxic Cr(VI) from contaminated water is significant for environmental protection. High efficient adsorbents with outstanding adsorption performance are highly demanded. Herein, we reported that window-like structured carbon hollow fibers (WL-CHF) derived from Enteromorpha prolifera could capture toxic Cr(VI) from aqueous solutions with high adsorption capacity, fast adsorption rate, and excellent recyclable performance. The excellent adsorption performance could be attributed to the unique structure that combines a variety of advantages: large specific surface area, fast diffusion processes, and easy access of adsorption sites for Cr(VI). In addition, the adsorption process was fitted well with pseudo-second-order model and Langmuir isotherm model. The potential mechanism on Cr(VI) removal includes reduction-cation exchange and electrostatic interaction with surface oxygen-containing functional groups. This study highlights new opportunities for designing adsorbents for Cr(VI) removal from Cr-polluted water.
Collapse
Affiliation(s)
- Rongrong Zhang
- School of Environmental Science and Engineering, Collaborative Innovation Center for Marine Biomass Fiber, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Zeng
- School of Environmental Science and Engineering, Collaborative Innovation Center for Marine Biomass Fiber, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Peng Guo
- School of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
| | - Yuqian Cui
- School of Environmental Science and Engineering, Collaborative Innovation Center for Marine Biomass Fiber, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, Collaborative Innovation Center for Marine Biomass Fiber, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
17
|
Understanding the Operating Mode of Fe0/Fe-Sulfide/H2O Systems for Water Treatment. Processes (Basel) 2020. [DOI: 10.3390/pr8040409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The general suitability of water treatment systems involving metallic iron (Fe0) is well-established. Various attempts have been made to improve the efficiency of conventional Fe0 systems. One promising approach combines granular Fe0 and an iron sulfide mineral to form Fe0/Fe-sulfide/H2O systems. An improved understanding of the fundamental principles by which such systems operate is still needed. Through a systematic analysis of possible reactions and the probability of their occurrence, this study establishes that sulfide minerals primarily sustain iron corrosion by lowering the pH of the system. Thus, chemical reduction mediated by FeII species (indirect reduction) is a plausible explanation for the documented reductive transformations. Such a mechanism is consistent with the nature and distribution of reported reaction products. While considering the mass balance of iron, it appears that lowering the pH value increases Fe0 dissolution, and thus subsequent precipitation of hydroxides. This precipitation reaction is coupled with the occlusion of contaminants (co-precipitation or irreversible adsorption). The extent to which individual sulfides impact the efficiency of the tested systems depends on their intrinsic reactivities and the operational conditions (e.g., sulfide dosage, particle size, experimental duration). Future research directions, including the extension of Fe0/Fe-sulfide/H2O systems to drinking water filters and (domestic) wastewater treatment using the multi-soil-layering method are highlighted.
Collapse
|
18
|
Metallic Iron for Environmental Remediation: Starting an Overdue Progress in Knowledge. WATER 2020. [DOI: 10.3390/w12030641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A critical survey of the abundant literature on environmental remediation and water treatment using metallic iron (Fe0) as reactive agent raises two major concerns: (i) the peculiar properties of the used materials are not properly considered and characterized, and, (ii) the literature review in individual publications is very selective, thereby excluding some fundamental principles. Fe0 specimens for water treatment are typically small in size. Before the advent of this technology and its application for environmental remediation, such small Fe0 particles have never been allowed to freely corrode for the long-term spanning several years. As concerning the selective literature review, the root cause is that Fe0 was considered as a (strong) reducing agent under environmental conditions. Subsequent interpretation of research results was mainly directed at supporting this mistaken view. The net result is that, within three decades, the Fe0 research community has developed itself to a sort of modern knowledge system. This communication is a further attempt to bring Fe0 research back to the highway of mainstream corrosion science, where the fundamentals of Fe0 technology are rooted. The inherent errors of selected approaches, currently considered as countermeasures to address the inherent limitations of the Fe0 technology are demonstrated. The misuse of the terms “reactivity”, and “efficiency”, and adsorption kinetics and isotherm models for Fe0 systems is also elucidated. The immense importance of Fe0/H2O systems in solving the long-lasting issue of universal safe drinking water provision and wastewater treatment calls for a science-based system design.
Collapse
|
19
|
A Novel and Facile Method to Characterize the Suitability of Metallic Iron for Water Treatment. WATER 2019. [DOI: 10.3390/w11122465] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metallic iron (Fe0) materials have been industrially used for water treatment since the 1850s. There are still many fundamental challenges in affordably and reliably characterizing the Fe0 intrinsic reactivity. From the available methods, the one using Fe0 dissolution in ethylenediaminetetraacetic acid (EDTA—2 mM) was demonstrated the most applicable as it uses only four affordable chemicals: Ascorbic acid, an ascorbate salt, EDTA and 1,10-Phenanthroline (Phen). A careful look at these chemicals reveals that EDTA and Phen are complexing agents for dissolved iron species. Fe3-EDTA is very stable and difficult to destabilize; ascorbic acid is one of the few appropriate reducing agents, therefore. On the other hand, the Fe2-Phen complex is so stable that oxidation by dissolved O2 is not possible. This article positively tests Fe0 (0.1 g) dissolution in 2 mM Phen (50 mL) as a characterization tool for the intrinsic reactivity, using 9 commercial steel wool (Fe0 SW) specimens as probe materials. The results are compared with those obtained by the EDTA method. The apparent iron dissolution rate in EDTA (kEDTA) and in Phen (kPhen) were such that 0.53 ≤ kEDTA (μg h−1) ≤ 4.81 and 0.07 ≤ kPhen (μg h−1) ≤ 1.30. Higher kEDTA values, relative to kPhen, are a reflection of disturbing Fe3 species originating from Fe2 oxidation by dissolved O2 and dissolution of iron corrosion products. It appears that the Phen method considers only the forward dissolution of Fe0. The Phen method is reliable and represents the most affordable approach for characterizing the suitability of Fe0 for water treatment.
Collapse
|
20
|
Redirecting Research on Fe 0 for Environmental Remediation: The Search for Synergy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224465. [PMID: 31766297 PMCID: PMC6888672 DOI: 10.3390/ijerph16224465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022]
Abstract
A survey of the literature on using metallic iron (Fe0) for environmental remediation suggests that the time is ripe to center research on the basic relationship between iron corrosion and contaminant removal. This communication identifies the main problem, which is based on the consideration that contaminant reductive transformation is the cathodic reaction of iron oxidative dissolution. Properly considering the inherent complexities of the Fe0/H2O system will favor an appropriate research design that will enable more efficient and sustainable remediation systems. Successful applications of Fe0/H2O systems require the collective consideration of progress achieved in understanding these systems. More efforts should be made to decipher the long-term kinetics of iron corrosion, so as to provide better approaches to accurately predict the performance of the next generation Fe0-based water treatment systems.
Collapse
|
21
|
Abstract
Researchers and engineers using metallic iron (Fe0) for water treatment need a tutorial review on the operating mode of the Fe0/H2O system. There are few review articles attempting to present systematic information to guide proper material selection and application conditions. However, they are full of conflicting reports. This review seeks to: (i) Summarize the state-of-the-art knowledge on the remediation Fe0/H2O system, (ii) discuss relevant contaminant removal mechanisms, and (iii) provide solutions for practical engineering application of Fe0-based systems for water treatment. Specifically, the following aspects are summarized and discussed in detail: (i) Fe0 intrinsic reactivity and material selection, (ii) main abiotic contaminant removal mechanisms, and (iii) relevance of biological and bio-chemical processes in the Fe0/H2O system. In addition, challenges for the design of the next generation Fe0/H2O systems are discussed. This paper serves as a handout to enable better practical engineering applications for environmental remediation using Fe0.
Collapse
|
22
|
Ndé-Tchoupé AI, Nanseu-Njiki CP, Hu R, Nassi A, Noubactep C, Licha T. Characterizing the reactivity of metallic iron for water defluoridation in batch studies. CHEMOSPHERE 2019; 219:855-863. [PMID: 30562691 DOI: 10.1016/j.chemosphere.2018.12.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/01/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
The suitability of metallic iron (Fe(0)) for water defluoridation is yet to be understood. Fluoride removal ([F-]0 = 20.0 mg L-1) and Orange II discoloration ([Orange II]0 = 10.0 mg L-1) by Fe(0)/H2O batch systems are compared herein. A steel wool (SW) and a granular iron (GI) are used as Fe(0) specimens. Each essay tube contains 0.5 g sand and 0.1 g of the used Fe(0). Investigated systems were: (i) SW/sand at pH 5.0, (ii) GI/sand at pH 5.0 and (iii) SW/sand at pH 8.0. Prior to contaminant addition, Fe(0) was allowed to pre-corrode within the systems for up to 46 days. The systems were then equilibrated for 30 days with a mixture of the two model contaminants. Result confirmed (i) the higher efficiency of SW over GI in removing both contaminants, (ii) the higher efficiency of Fe(0) for Orange II discoloration and (iii) the positive impact of initial low pH values on the efficiency of Fe(0)/H2O systems. The major output of this research is that conventional Fe(0)/H2O systems are not suitable for quantitative water defluoridation. It is suggested that ways to avoid defluoridation using Fe0 must be explored. One affordable opportunity is blending fluoride-polluted water with carefully harvested rainwater.
Collapse
Affiliation(s)
- Arnaud Igor Ndé-Tchoupé
- Department of Chemistry, Faculty of Sciences, University of Douala, B.P. 24157, Douala, Cameroon
| | - Charles Péguy Nanseu-Njiki
- Laboratory of Analytical Chemistry, Faculty of Sciences, University of Yaoundé I, B.P. 812, Yaoundé, Cameroon
| | - Rui Hu
- School of Earth Science and Engineering, Hohai University, Fo Cheng Xi Road 8, 211100, Nanjing, PR China
| | - Achille Nassi
- Department of Chemistry, Faculty of Sciences, University of Douala, B.P. 24157, Douala, Cameroon
| | - Chicgoua Noubactep
- Department of Applied Geology, Universität Göttingen, Goldschmidtstraße 3, Göttingen, D-37077, Germany.
| | - Tobias Licha
- Department of Applied Geology, Universität Göttingen, Goldschmidtstraße 3, Göttingen, D-37077, Germany
| |
Collapse
|
23
|
Fe0/H2O Filtration Systems for Decentralized Safe Drinking Water: Where to from Here? WATER 2019. [DOI: 10.3390/w11030429] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inadequate access to safe drinking water is one of the most pervasive problems currently afflicting the developing world. Scientists and engineers are called to present affordable but efficient solutions, particularly applicable to small communities. Filtration systems based on metallic iron (Fe0) are discussed in the literature as one such viable solution, whether as a stand-alone system or as a complement to slow sand filters (SSFs). Fe0 filters can also be improved by incorporating biochar to form Fe0-biochar filtration systems with potentially higher contaminant removal efficiencies than those based on Fe0 or biochar alone. These three low-cost and chemical-free systems (Fe0, biochar, SSFs) have the potential to provide universal access to safe drinking water. However, a well-structured systematic research is needed to design robust and efficient water treatment systems based on these affordable filter materials. This communication highlights the technology being developed to use Fe0-based systems for decentralized safe drinking water provision. Future research directions for the design of the next generation Fe0-based systems are highlighted. It is shown that Fe0 enhances the efficiency of SSFs, while biochar has the potential to alleviate the loss of porosity and uncertainties arising from the non-linear kinetics of iron corrosion. Fe0-based systems are an affordable and applicable technology for small communities in low-income countries, which could contribute to attaining self-reliance in clean water supply and universal public health.
Collapse
|
24
|
The Impact of Selected Pretreatment Procedures on Iron Dissolution from Metallic Iron Specimens Used in Water Treatment. SUSTAINABILITY 2019. [DOI: 10.3390/su11030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies were undertaken to determine the reasons why published information regarding the efficiency of metallic iron (Fe0) for water treatment is conflicting and even confusing. The reactivity of eight Fe0 materials was characterized by Fe dissolution in a dilute solution of ethylenediaminetetraacetate (Na2–EDTA; 2 mM). Both batch (4 days) and column (100 days) experiments were used. A total of 30 different systems were characterized for the extent of Fe release in EDTA. The effects of Fe0 type (granular iron, iron nails and steel wool) and pretreatment procedure (socking in acetone, EDTA, H2O, HCl and NaCl for 17 h) were assessed. The results roughly show an increased iron dissolution with increasing reactive sites (decreasing particle size: wool > filings > nails), but there were large differences between materials from the same group. The main output of this work is that available results are hardly comparable as they were achieved under very different experimental conditions. A conceptual framework is presented for future research directed towards a more processed understanding.
Collapse
|
25
|
Fe0/H2O Systems for Environmental Remediation: The Scientific History and Future Research Directions. WATER 2018. [DOI: 10.3390/w10121739] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Elemental iron (Fe0) has been widely used in groundwater/soil remediation, safe drinking water provision, and wastewater treatment. It is still mostly reported that a surface-mediated reductive transformation (direct reduction) is a relevant decontamination mechanism. Thus, the expressions “contaminant removal” and “contaminant reduction” are interchangeably used in the literature for reducible species (contaminants). This contribution reviews the scientific literature leading to the advent of the Fe0 technology and shows clearly that reductive transformations in Fe0/H2O systems are mostly driven by secondary (FeII, H/H2) and tertiary/quaternary (e.g., Fe3O4, green rust) reducing agents. The incidence of this original mistake on the Fe0 technology and some consequences for its further development are discussed. It is shown, in particular, that characterizing the intrinsic reactivity of Fe0 materials should be the main focus of future research.
Collapse
|
26
|
Abstract
Research on the use of metallic iron (Fe0) for environmental remediation and water treatment has taken off during the past three decades. The results achieved have established filtration on Fe0 packed beds as an efficient technology for water remediation at several scales. However, the further development of Fe0-based filtration systems is impaired by the non-professional behavior of scientists who ignore available advances in knowledge. The confusion is overcome when due consideration is given to the fact that revealing state-of-the-art knowledge is a prerequisite to presenting individual achievements.
Collapse
|