1
|
Cseresznye A, Hardy EM, Ait Bamai Y, Cleys P, Poma G, Malarvannan G, Scheepers PTJ, Viegas S, Martins C, Porras SP, Santonen T, Godderis L, Verdonck J, Poels K, João Silva M, Louro H, Martinsone I, Akūlova L, van Dael M, van Nieuwenhuyse A, Mahiout S, Duca RC, Covaci A. HBM4EU E-waste study: Assessing persistent organic pollutants in blood, silicone wristbands, and settled dust among E-waste recycling workers in Europe. ENVIRONMENTAL RESEARCH 2024; 250:118537. [PMID: 38408627 DOI: 10.1016/j.envres.2024.118537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
E-waste recycling is an increasingly important activity that contributes to reducing the burden of end-of-life electronic and electrical apparatus and allows for the EU's transition to a circular economy. This study investigated the exposure levels of selected persistent organic pollutants (POPs) in workers from e-waste recycling facilities across Europe. The concentrations of seven polychlorinated biphenyls (PCBs) and eight polybrominated diphenyl ethers (PBDEs) congeners were measured by GC-MS. Workers were categorized into five groups based on the type of e-waste handled and two control groups. Generalized linear models were used to assess the determinants of exposure levels among workers. POPs levels were also assessed in dust and silicone wristbands (SWB) and compared with serum. Four PCB congeners (CB 118, 138, 153, and 180) were frequently detected in serum regardless of worker's category. With the exception of CB 118, all tested PCBs were significantly higher in workers compared to the control group. Controls working in the same company as occupationally exposed (Within control group), also displayed higher levels of serum CB 180 than non-industrial controls with no known exposures to these chemicals (Outwith controls) (p < 0.05). BDE 209 was the most prevalent POP in settled dust (16 μg/g) and SWB (220 ng/WB). Spearman correlation revealed moderate to strong positive correlations between SWB and dust. Increased age and the number of years smoked cigarettes were key determinants for workers exposure. Estimated daily intake through dust ingestion revealed that ΣPCB was higher for both the 50th (0.03 ng/kg bw/day) and 95th (0.09 ng/kg bw/day) percentile exposure scenarios compared to values reported for the general population. This study is one of the first to address the occupational exposure to PCBs and PBDEs in Europe among e-waste workers through biomonitoring combined with analysis of settled dust and SWB. Our findings suggest that e-waste workers may face elevated PCB exposure and that appropriate exposure assessments are needed to establish effective mitigation strategies.
Collapse
Affiliation(s)
- Adam Cseresznye
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Emilie M Hardy
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg
| | - Yu Ait Bamai
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | - Paulien Cleys
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Giulia Poma
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Govindan Malarvannan
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Paul T J Scheepers
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - Susana Viegas
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Carla Martins
- Comprehensive Health Research Center, NOVA National School of Public Health, Public Health Research Centre, NOVA University Lisbon, Lisbon, Portugal
| | - Simo P Porras
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Tiina Santonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Lode Godderis
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium
| | - Jelle Verdonck
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Katrien Poels
- Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Maria João Silva
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Henriqueta Louro
- ToxOmics -Centre for Toxicogenomics and Human Health, Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge (INSA), NOVA Medical School, Lisbon, Portugal
| | - Inese Martinsone
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Lāsma Akūlova
- Institute of Occupational Safety and Environmental Health, Rīgas Stradiņš University, Riga, Latvia
| | - Maurice van Dael
- Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, the Netherlands
| | - An van Nieuwenhuyse
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Selma Mahiout
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Radu Corneliu Duca
- Environmental Hygiene and Human Biological Monitoring, Department of Health Protection, Laboratoire National de Santé (LNS), Luxembourg, Luxembourg; Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Adrian Covaci
- Toxicological Centre, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Yang Y, Liang Z, Shen J, Chen H, Qi Z. Estimation of indoor soil/dust-skin adherence factors and health risks for adults and children in two typical cities in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121889. [PMID: 37236583 DOI: 10.1016/j.envpol.2023.121889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Soil/dust (SD) skin adherence is key dermal exposure parameter used for calculating the health risk of dermal exposure to contaminants. However, few studies of this parameter have been conducted in Chinese populations. In this study, forearm SD samples were randomly collected using the wipe method from population in two typical cities in southern China as well as office staff in a fixed indoor environment. SD samples from the corresponding areas were also sampled. The wipes and SD were analyzed for tracer elements (aluminum, barium, manganese, titanium, and vanadium). The SD-skin adherence factors were 14.31 μg/cm2 for adults in Changzhou, 7.25 μg/cm2 for adults in Shantou, and 9.37 μg/cm2 for children in Shantou, respectively. Further, the recommended values for indoor SD-skin adherence factors for adults and children in Southern China were calculated to be 11.50 μg/cm2 and 9.37 μg/cm2, respectively, which were lower than the U.S. Environmental Protection Agency (USEPA) recommended values. And the SD-skin adherence factor value for the office staff was small (1.79 μg/cm2), but the data were more stable. In addition, PBDEs and PCBs in dust samples from industrial and residential area in Shantou were also determined, and health risks were assessed using the dermal exposure parameters measured in this study. None of the organic pollutants posed a health risk to adults and children via dermal contact. These studies emphasized the importance of localized dermal exposure parameters, and further studies should be conducted in the future.
Collapse
Affiliation(s)
- Yan Yang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China.
| | - Zhiqin Liang
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Jiarui Shen
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Haojia Chen
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515041, Guangdong, China; Synergy Innovation Institute of GDUT, Shantou, 515041, China
| | - Zenghua Qi
- School of Chemical Engineering and Light Industry, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Singh V, Cortes-Ramirez J, Toms LM, Sooriyagoda T, Karatela S. Effects of Polybrominated Diphenyl Ethers on Hormonal and Reproductive Health in E-Waste-Exposed Population: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137820. [PMID: 35805479 PMCID: PMC9265575 DOI: 10.3390/ijerph19137820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 02/03/2023]
Abstract
Electronic waste management is a global rising concern that is primarily being handled by informal recycling practices. These release a mix of potentially hazardous chemicals, which is an important public health concern. These chemicals include polybrominated diphenyl ethers (PBDEs), used as flame retardants in electronic parts, which are persistent in nature and show bioaccumulative characteristics. Although PBDEs are suspected endocrine disruptors, particularly targeting thyroid and reproductive hormone functions, the relationship of PBDEs with these health effects are not well established. We used the Navigation Guide methodology to conduct a systematic review of studies in populations exposed to e-waste to better understand the relationships of these persistent flame retardants with hormonal and reproductive health. We assessed nineteen studies that fit our pre-determined inclusion criteria for risk of bias, indirectness, inconsistency, imprecision, and other criteria that helped rate the overall evidence for its quality and strength of evidence. The studies suggest PBDEs may have an adverse effect on thyroid hormones, reproductive hormones, semen quality, and neonatal health. However, more research is required to establish a relationship of these effects in the e-waste-exposed population. We identified the limitations of the data available and made recommendations for future scientific work.
Collapse
Affiliation(s)
- Vishal Singh
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
- Correspondence:
| | - Javier Cortes-Ramirez
- Centre for Data Science, Queensland University of Technology, Brisbane, QLD 4059, Australia;
- Children’s Health and Environment Program, The University of Queensland, Brisbane, QLD 4101, Australia
- Faculty of Medical and Health Sciences, Universidad de Santander, Cúcuta 540003, Colombia
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Thilakshika Sooriyagoda
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, QLD 4059, Australia; (L.-M.T.); (T.S.)
| | - Shamshad Karatela
- School of Pharmacy, University of Queensland, Brisbane, QLD 4072, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Mackay, QLD 4740, Australia
| |
Collapse
|
4
|
Ma Y, Stubbings WA, Abdallah MAE, Cline-Cole R, Harrad S. Formal waste treatment facilities as a source of halogenated flame retardants and organophosphate esters to the environment: A critical review with particular focus on outdoor air and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150747. [PMID: 34619188 DOI: 10.1016/j.scitotenv.2021.150747] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of halogenated flame retardants (HFRs) and organophosphate esters (OPEs) has generated great concern about their adverse effects on environmental and ecological safety and human health. As well as emissions during use of products containing such chemicals, there are mounting concerns over emissions when such products reach the waste stream. Here, we review the available data on contamination with HFRs and OPEs arising from formal waste treatment facilities (including but not limited to e-waste recycling, landfill, and incinerators). Evidence of the transfer of HFRs and OPEs from products to the environment shows that it occurs via mechanisms such as: volatilisation, abrasion, and leaching. Higher contaminant vapour pressure, increased temperature, and elevated concentrations of HFRs and OPEs in products contribute greatly to their emissions to air, with highest emission rates usually observed in the early stages of test chamber experiments. Abrasion of particles and fibres from products is ubiquitous and likely to contribute to elevated FR concentrations in soil. Leaching to aqueous media of brominated FRs (BFRs) is likely to be a second-order process, with elevated dissolved humic matter and temperature of leaching fluids likely to facilitate such emissions. However, leaching characteristics of OPEs are less well-understood and require further investigation. Data on the occurrence of HFRs and OPEs in outdoor air and soil in the vicinity of formal e-waste treatment facilities suggests such facilities exert a considerable impact. Waste dumpsites and landfills constitute a potential source of HFRs and OPEs to soil, and improper management of waste disposal might also contribute to HFR contamination in ambient air. Current evidence suggests minimal impact of waste incineration plants on BFR contamination in outdoor air and soil, but further investigation is required to confirm this.
Collapse
Affiliation(s)
- Yulong Ma
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | | | - Reginald Cline-Cole
- Department of African Studies & Anthropology, School of History and Cultures, University of Birmingham, Birmingham B15 2TT, UK
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Recycling Plastics from WEEE: A Review of the Environmental and Human Health Challenges Associated with Brominated Flame Retardants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020766. [PMID: 35055588 PMCID: PMC8775953 DOI: 10.3390/ijerph19020766] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023]
Abstract
Waste electrical and electronic equipment (WEEE) presents the dual characteristic of containing both hazardous substances and valuable recoverable materials. Mainly found in WEEE plastics, brominated flame retardants (BFRs) are a component of particular interest. Several actions have been taken worldwide to regulate their use and disposal, however, in countries where no regulation is in place, the recovery of highly valuable materials has promoted the development of informal treatment facilities, with serious consequences for the environment and the health of the workers and communities involved. Hence, in this review we examine a wide spectrum of aspects related to WEEE plastic management. A search of legislation and the literature was made to determine the current legal framework by region/country. Additionally, we focused on identifying the most relevant methods of existing industrial processes for determining BFRs and their challenges. BFR occurrence and substitution by novel BFRs (NBFRs) was reviewed. An emphasis was given to review the health and environmental impacts associated with BFR/NBFR presence in waste, consumer products, and WEEE recycling facilities. Knowledge and research gaps of this topic were highlighted. Finally, the discussion on current trends and proposals to attend to this relevant issue were outlined.
Collapse
|
6
|
Fan X, Wang Z, Li Y, Wang H, Fan W, Dong Z. Estimating the dietary exposure and risk of persistent organic pollutants in China: A national analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117764. [PMID: 34280741 DOI: 10.1016/j.envpol.2021.117764] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Substantial heterogeneities have been found in previous estimations of the risk from dietary exposures to persistent organic pollutants (POPs) in China, mainly due to spatiotemporal variations. To comprehensively evaluate the dietary risks of POPs listed in the Stockholm Convention, more than 27,580 data records from 753 reports published over the last three decades were examined. Respectively, for various food categories, the results obtained for the range of mean concentrations of POPs are as follows: total dichlorodiphenyltrichloroethanes (DDTs: 1.4-27.1 μg/kg), hexachlorocyclohexanes (HCHs: 1.8-29.3 μg/kg), polybrominated diphenyl ethers (PBDEs: 0.046-2.82 μg/kg), polychorinated biphenyls (PCBs: 0.05-7.57 μg/kg), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD&Fs: 2.9-210 pg toxic equivalent (TEQ)/kg), perfluorooctanoic acid (PFOA: 0.02-0.97 μg/kg), perfluoroctane sulfonate (PFOS: 0.00082-2.76 μg/kg) and short-chain chlorinated paraffins (SCCPs: 64-348.92 μg/kg). Temporal decreasing trends were observed for DDTs, HCHs, PBDEs, PCDD&Fs, and PFOA, with no significant change for other POPs. Meanwhile, the estimated daily intake for adults were 75.2 ± 43.6 ng/kg/day for DDTs, 123 ± 87 ng/kg/day for HCHs, 0.37 ± 0.17 pg TEQ/kg/day for PCDD&Fs, 17.8 ± 9.5 ng/kg/day for PCBs, 3.3 ± 1.8 ng/kg/day for PBDEs, 3.6 ± 1.9 ng/kg/day for PFOA, 3.3 ± 2.0 ng/kg/day for PFOS, and 2.5 ± 1.6 μg/kg/day for SCCPs. Furthermore, non-carcinogenic risks were the highest for PCBs (0.89) and PCDD&Fs (0.53), followed by PFOA (0.18), PFOS (0.17), HCHs (0.062), SCCPs (0.025), DDTs (0.0075), and PBDEs (0.00047). These findings illustrated that exposure to POPs declined due to the control policies implemented in China, while the cumulative risk of POPs was still higher than 1, indicating continuous efforts are required to mitigate associated contamination.
Collapse
Affiliation(s)
- Xiarui Fan
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Ziwei Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Yao Li
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Hao Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| |
Collapse
|
7
|
Chen Z, Luo X, Zeng Y, Tan S, Guo J, Xu Z. Polybrominated diphenyl ethers in indoor air from two typical E-waste recycling workshops in Southern China: Emission, size-distribution, gas-particle partitioning, and exposure assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123667. [PMID: 33254748 DOI: 10.1016/j.jhazmat.2020.123667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 06/12/2023]
Abstract
The emission characteristics of respirable particulate matter (PM10), and polybrominated diphenyl ether (PBDE) size distribution, gas-particle partitioning and occupational exposure in two e-waste recycling workshops (manual and thermal dismantling workshop: ManuDW and TherDW) were investigated. The PM10 mass concentration was higher but the number concentration was lower in the ManuDW than in the TherDW. The gaseous phase PBDE concentration (40.5 ng/m3) was higher in the ManuDW than in the TherDW (10.6 ng/m3) while the particulate phase PBDE concentration was just reverse (57.7 vs 156 ng/m3). The size distribution of particle was similar for two workshops but the size distribution of particle-bound PBDE exhibited remarkable differences. BDE-209 was the dominant congener in particle-bound PBDE in the TherDW, while Tri-, Tetra-, and Deca-BDE were the three most abundant homologues in the ManuDW. The size distribution of particle-bound PBDE homologue profile in the ManuDW was also distinct from that in the TherDW. The PBDE exposure doses were 13.9 and 15.3 ng/kg/day in the ManuDW and the TherDW, far lower than reference doses. Gaseous and particle phase have same contribution to the total doses in the ManuDW but the exposure doses in the TherDW mainly come from the particle phase.
Collapse
Affiliation(s)
- Zhenyu Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Shufei Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
Yang J, Yang Y, Xie Z, Yu H, Huang Q, Xu Y, He J, Wen T, Liu Q. Ca 2+ mediated mechanism of octa-brominated dioxin/furan formation via BDE-209 thermolysis: Introducing the Mayer bond order difference. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123229. [PMID: 32585521 DOI: 10.1016/j.jhazmat.2020.123229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) that form during industrial thermal processes, such as the cement kiln co-processing of BDE-209, are highly toxic contaminants. Nevertheless, the formation mechanisms of octa-brominated dioxins/furans (OBDD/Fs), most PBDD/F congeners, and one precursor of the more toxic lower PBDD/Fs from BDE-209 have received little attention. In cement kiln co-processes, the Ca2+-mediated regulation of OBDD/F formation is still debated. In this study, simulation experiments revealed that the average brominating degree of PBDD/Fs was 7.8, indicating that OBDD/Fs are dominant congeners (93.6 % median). Density functional theory (DFT) calculations found a new transition state (TS1) with a lower energy barrier than that found in a previous study. Three major OBDD/F formation reactions suggested that the presence of Ca2+ was thermodynamically beneficial to the formation of OBDD/Fs. This promotion effect can be attributed to the transfer of electron density leading to a change in the Mayer bond order (MBO) among elements when Ca2+ was bound. Intriguingly, in the transition state structures of the Ca2+-bound and Ca2+-free systems, the MBO difference among the old and new bonds can reveal the difficulty of Ca2+-mediated OBDD/F formation reactions from BDE-209.
Collapse
Affiliation(s)
- Jinzhong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Yufei Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhen Xie
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Haibin Yu
- China National Environmental Monitoring Centre, Beijing 100012, PR China.
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Ya Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Jie He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Qingqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
9
|
Cai K, Song Q, Yuan W, Ruan J, Duan H, Li Y, Li J. Human exposure to PBDEs in e-waste areas: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115634. [PMID: 33254638 DOI: 10.1016/j.envpol.2020.115634] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Polybrominated biphenyl ethers (PBDEs) are commonly added to electronic products for flame-retardation effects, and are attracting more and more attentions due to their potential toxicity, durability and bioaccumulation. This study conducts a sysmtematic review to understand the human exposure to PBDEs from e-waste recycling, especially exploring the exposure pathways and human burden of PBDEs as well as investigating the temporal trend of PBDEs exposure worldwide. The results show that the particular foods (contaminated fish, poultry, meat and breast milk) ingestion, indoor dust ingestion and indoor air inhalation may be key factors leading to human health risks of PBDEs exposure in e-waste recycling regions. Residents and some vulnerable groups (occupational workers and children) in e-waste recycling areas may face higher exposure levels and health risks. PBDE exposure is closely related to exposure level, exposure duration, e-waste recycling methods, and dietary customs. High levels of PBDEs are found in human tissues (breast milk, hair, blood (serum), placenta and other tissues) in e-waste areas, at far higher levels than in other areas. Existing data indicate that PBDE exposure levels do not present any apparent downward trend, and will possibly cause serious human diseases. More epidemiological studies are still needed to provide a solid basis for health risk assessment.
Collapse
Affiliation(s)
- Kaihan Cai
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, 999078, China; Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau, 999078, China
| | - Qingbin Song
- Macau Environmental Research Institute, Macau University of Science and Technology, Macau, 999078, China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huabo Duan
- College of Civil Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ying Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China
| | - Jinhui Li
- School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Sabouhi M, Ali-Taleshi MS, Bourliva A, Nejadkoorki F, Squizzato S. Insights into the anthropogenic load and occupational health risk of heavy metals in floor dust of selected workplaces in an industrial city of Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140762. [PMID: 32712416 DOI: 10.1016/j.scitotenv.2020.140762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
The levels of Cd, Cr, Cu, Fe, Mn, Pb and Zn were determined in floor dusts from mechanical (MRWs) and battery repairing workshops (BRWs) in Yazd, Iran. The study aimed to evaluate the anthropogenic contribution to the presence of heavy metals (HMs), the possible sources and the related risks that could arise from occupational exposure in the studied workplace microenvironments. Among the analyzed heavy metals, Cu, Pb and Zn exhibited enhanced concentrations in the floor dusts. The EF calculations showed an extremely severe enrichment of HMs, especially for Cd, Cu and Pb, while floor dusts were characterized as "extremely polluted" with regards to those metals. In any case, both EF and Igeo values were significantly higher in the BRWs. These results were also supported by NIPI and PLI values, while contour maps of PLI values in both MRWs and BRWs outlined workshops in N-NE part of Yazd as more impacted compared to other spatial locations. Principal component analysis (PCA) and Pearson's correlation outscored workshops activities as the principal sources of heavy metals. The health risk assessment suggested considerable non-carcinogenic risks regarding Pb in the BRWs which exhibited HQing (mean 2.91) and HI (mean 3.03) values higher than safe level. Regarding carcinogenic risks, CR values for both Cd and Cr were below the safe level (1.0 × 10-6). The occupational exposure to Pb was evaluated through the predicted BLL values, where with averages of 3.33 μg/dl and 21.4 μg/dl for MRWs and BRWs workers, respectively, indicated a severe Pb exposure for BRWs workers.
Collapse
Affiliation(s)
- Morteza Sabouhi
- Department of Environment, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | | | - Anna Bourliva
- Department of Geophysics, School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Farhad Nejadkoorki
- Department of Environment, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Stefania Squizzato
- Department of Public Health Sciences, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
11
|
Lead and noise exposures at eight Chinese registered electronics recycling facilities. Int J Hyg Environ Health 2020; 230:113611. [PMID: 32919138 DOI: 10.1016/j.ijheh.2020.113611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to assess employees' exposure to lead and noise, and to recommend control strategies for reducing these exposures at eight registered electronics recycling facilities in Eastern China. Jiangsu Provincial Center for Disease Control and Prevention (JSCDC) performed a walkthrough and review of health and safety programs during a first visit and conducted full-shift personal and area air monitoring for lead, as well as personal noise exposure measurements on a second visit. Monitoring was performed over two work shifts for a total of 168 employees. Results indicated that employees working at glass breaking and cathode ray tubes dismantling were overexposed both to noise and lead. Airborne lead concentration ranged from 0.1 to 148 μg/m3; and 4 of the 101 samples were above the Chinese permissible exposure limit of 50 μg/m3. Overexposures to lead involved cathode ray tubes dismantling and glass breaking. Employees working at plastics shredding and glass breaking areas were overexposed to noise. Full-shift time-weighted average noise levels ranged from 64 to 107 dBA; and 85 of the 123 samples were above the Chinese permissible exposure limit of 85 dBA. Control measures to reduce exposure to lead and noise, including improvements in their lead protection and hearing conservation programs, at these electronics recycling facilities were recommended.
Collapse
|
12
|
Facile synthesis of tubular magnetic fluorinated covalent organic frameworks for efficient enrichment of ultratrace polybrominated diphenyl ethers from environmental samples. Talanta 2020; 221:121651. [PMID: 33076167 DOI: 10.1016/j.talanta.2020.121651] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), known as the most widely used brominated flame retardant, have received great public concern due to its hidden environment and health problems. Development of highly selective and sensitive analytical approaches for enrichment and detection of ultratrace PBDEs are in high demand. Conventional sample pretreatment techniques usually require tedious procedures, long time, and excessive consumption of solvent and sample, thus hindering ultrasensitive detection of PBDEs. To address this issue, we first reported a simple room-temperature approach for synthesis of tubular magnetic fluorinated covalent organic frameworks (MCNT@TAPB-TFTA). The introduction of fluorine atoms played multiple roles in improving the frameworks' hydrophobicity and the adsorption capabilities for PBDEs. Combined with atmospheric pressure gas chromatography-tandem mass spectrometry (APGC-MS/MS), several crucial parameters of magnetic solid-phase extraction (MSPE) including adsorbent dosage, adsorption time, pH, ion strength, the eluent, elution time and elution frequencies were examined in detail. The optimal method exhibited wide linear ranges (0.01-500 ng/L), low limit of detections (LODs, 0.0045-0.018 ng/L), good correlation coefficients (r ≥ 0.9977), and high enrichment factors (EFs, 1425-1886 folds) for eight PBDEs. Furthermore, this proposed method could be successfully applied to sensitive determination of ultratrace PBDEs in environmental samples, demonstrating the promising potential of the MCNT@TPAB-TFTA as an adsorbent in sample pretreatment.
Collapse
|
13
|
Guo J, Patton L, Wang J, Xu Z. Fate and migration of polybrominated diphenyl ethers in a workshop for waste printed circuit board de-soldering. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30342-30351. [PMID: 32451903 DOI: 10.1007/s11356-019-06735-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are released from the recycling process of PBDE-containing waste printed circuit board (WPCB), but studies on the mechanism of PBDE emission and migration are limited. In this study, PBDE concentrations in particulate matter (PM), dust, and fumes collected in a pilot-scale workshop for the WPCB de-soldering process were measured, and PBDE emission after gas treatment was estimated. The results showed that the mean concentrations of ∑8PBDEs in TSP and PM2.5 in the workshop were 20.3 ng/m3 (24.7 μg/g) and 16.1 ng/m3 (115 μg/g), respectively. In practice, the fumes containing gaseous and particulate PBDEs were treated by the combination of alkaline solution absorption and activated carbon adsorption. Compared to PBDE concentration in workshop floor dust (2680 ng/g), PBDE concentrations in solution scum (68,000 ng/g) and hood inside dust (20,200 ng/g) were condensed. The concentrations of ∑6PBDEs at the stack outlet (416 pg/m3) after gas treatment were lower than those in the stack pipe (1310 pg/m3) and hood inside (7440 pg/m3). The PBDEs in fumes were removed through physical adsorption of alkaline solution and activated carbon, and solution scum constituted the main mass discharges of PBDEs. The emission factor of PBDEs at the stack outlet was 47.3 ng ∑6PBDEs/kg WPCB. As a result, the WPCB de-soldering process is an important source of PBDE pollution, and gas treatment of solution absorption and activated carbon adsorption can reduce PBDE emission to some extent.
Collapse
Affiliation(s)
- Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
- Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Luorong Patton
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Jianbo Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
14
|
Guo J, Luo X, Tan S, Ogunseitan OA, Xu Z. Thermal degradation and pollutant emission from waste printed circuit boards mounted with electronic components. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121038. [PMID: 31450210 DOI: 10.1016/j.jhazmat.2019.121038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Waste printed circuit boards mounted with electronic components (WPCB-ECs) are generated from electronic waste dismantling and recycling process. Air-borne pollutants, including particulate matter (PM) and volatile organic compounds (VOCs), can be released during thermal treatment of WPCB-CEs. In this study, organic substances from WPCB-ECs were pyrolyzed by both thermo-gravimetric analysis (TGA) and in a quartz tube furnace. We discovered that board resin and solder coating were degraded in a one-stage process, whereas capacitor scarfskin and wire jacket had two degradation stages. Debromination of brominated flame retardants occurred, and HBr and phenol were the main products during TGA processing of board resin. Dehydrochlorination occurred, and HCl, benzene and toluene were detected during the pyrolysis of capacitor scarfskin. Benzene formation was found only in the first degradation stage (272-372 °C), while toluene was formed both in the two degradation stages. PM with bimodal mass size distributions at diameters of 0.45-0.5 and 4-5 μm were emitted during heating WPCB-ECs. The PM number concentrations were highest in the size ranges of 0.3-0.35 μm and 1.6-2 μm. The research produced new data on pollutant emissions during thermal treatment of WPCB-ECs, and information on strategies to prevent toxic exposures that compromise the health of recyclers.
Collapse
Affiliation(s)
- Jie Guo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xiaomei Luo
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Shufei Tan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Oladele A Ogunseitan
- Department of Population Health and Disease Prevention & School of Social Ecology, University of California, Irvine, CA, 92697-3957, USA
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
15
|
Li TY, Ge JL, Pei J, Bao LJ, Wu CC, Zeng EY. Emissions and Occupational Exposure Risk of Halogenated Flame Retardants from Primitive Recycling of E-Waste. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12495-12505. [PMID: 31603658 DOI: 10.1021/acs.est.9b05027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The production and usage of non-polybrominated diphenyl ether (PBDE) halogenated flame retardants (HFRs) have substantially increased after the ban of several PBDEs. This has resulted in widespread environmental occurrence of non-PBDE HFRs, further amplified by emissions from primitive recycling of obsolete electronics (e-waste). The present study conducted chamber experiments to characterize 15 HFRs (∑15HFR) from thermal treatment and open burning of typical e-waste. Emission factors of ∑15HFR from thermal treatment were 2.6 × 104-3.9 × 105 ng g-1, slightly higher than those from open burning (8.8 × 103-1.0 × 105 ng g-1). Greater output over input mass ratios of ∑15HFR were obtained in thermal treatment than in open burning. Particulate and gaseous HFRs dominated the emissions in thermal treatment and open burning, respectively, largely because of the different temperatures used in the two processes. Particulate HFRs were primarily affiliated with fine particles (Dp < 1.8 μm) peaking at 0.56-1.0 or 0.32-0.56 μm in both thermal treatment and open burning. Occupational exposure to most FRs was relatively low, but several PBDEs may pose potential health risk to workers in e-waste home-workshops. Potentially accruing emissions and health risks of non-PBDE HFRs from primitive recycling of e-waste remain a great concern.
Collapse
Affiliation(s)
- Ting-Yu Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Jia-Li Ge
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Jie Pei
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 511443 , China
| |
Collapse
|
16
|
Wu Z, Han W, Yang X, Li Y, Wang Y. The occurrence of polybrominated diphenyl ether (PBDE) contamination in soil, water/sediment, and air. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:23219-23241. [PMID: 31270770 DOI: 10.1007/s11356-019-05768-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/17/2019] [Indexed: 06/09/2023]
Abstract
As a kind of brominated flame retardants (BFRs), polybrominated diphenyl ethers (PBDEs) are extensively used in different types of electronic equipment, furniture, plastics, and textiles. PBDEs are ubiquitous environmental contaminants that may impact human health and ecosystems. Here we highlight recent findings on the occurrence, contamination status, and transport of PBDEs in soil, water/sediment, and air. Four aspects are discussed in detail: (1) sources of PBDEs to the environment; (2) occurrence and transport of PBDEs in soil; (3) PBDEs in aquatic ecosystems (water/sediment) and their water-sediment partitioning; and (4) the occurrence of PBDEs in the atmosphere and their gas-particle partitioning. Future prospects for the investigation on PBDEs occurrence are also discussed based on current scientific and practical needs.
Collapse
Affiliation(s)
- Zhineng Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Han
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xin Yang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yao Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|