1
|
Chen X, Li Z, Fu S, Liang L, Liu X, Hu F, Zhang W, Bi Y, Jiao Y, Gu S, Li Q. Sequential oxidation procedures with KMnO 4: Component characteristics of labile reducing capacity fractions in anaerobic sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177126. [PMID: 39461528 DOI: 10.1016/j.scitotenv.2024.177126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Reducing substances are a mixture of different forms and types and play extremely important roles in manipulating the redox status of sediments, benthic habitats, and substance exchanges at the sediment-water interface in aquatic ecosystems. However, little is known about their abundance, forms, and reducibility in sediments. In this study, the procedures were developed to sequentially fractionate sediment reducing capacity (RC) fractions with the pH dependence of KMnO4 oxidability. The procedures were then applied to 60 sediments from 2 lakes and 3 reservoirs, generating an RCpH7.0 fraction (oxidized at ~0.48 V [reference: SHE]) and an RCpH2.0 fraction (oxidized at ~0.95 V [reference: SHE]), and the component of each fraction was characterized. The RCpH7.0 fraction amounted to 45.4 ± 25.9 cmol e-·kg-1 DW, and the RCpH2.0 fraction amounted to 42.8 ± 22.9 cmol e-·kg-1 DW; fraction sizes depended greatly on sediment origin. Reducing organic substances (ROS) were the main contributors to the RC fractions, with mean value of 30.0 ± 24.1 and 38.5 ± 22.2 cmol e-·kg-1 DW in RCpH7.0 (% contribution: 68.0 ± 5.3 % of RCpH7.0) and RCpH2.0 (90.0 ± 1.5 % of RCpH2.0), respectively. The next contributor was Fe(II), with mean value of 13.5 ± 8.2 and 3.8 ± 3.7 cmol e-·kg-1 DW in RCpH7.0 (28.3 ± 5.2 %) and in RCpH2.0 (9.9 ± 8.6 %), respectively. The smallest component was sulfide (Sn), which had a mean of 2.0 ± 3.1 cmol e-·kg-1 DW in RCpH7.0 and was essentially negligible in RCpH2.0. The number of electrons lost per mole of reducing substances (Ni) differed between the two RC fractions and among sediments of different origins. NROS was lower in the RCpH7.0 fraction (0.22 ± 0.09) compared to the RCpH2.0 fraction (0.31 ± 0.12) and significantly related to levels of active Fe(III) and sulfides (Sn) (p < 0.05). The opposite pattern was seen for NFe(II) and NSn. Based on the compositive reducing capacity (CRC) for the RCpH7.0 fraction, sediment redox status could be classified as ROS-Fe(II) (3.8 ± 1.7 cmol e-·kg-1 DW) or ROS-Sn (10.1 ± 4.8 cmol e-·kg-1 DW) (weaker vs. stronger, respectively; p < 0.01). The RC-based index provides a more comprehensive perspective on characterizing sediment redox status compared to the Eh.
Collapse
Affiliation(s)
- Xuemei Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijun Li
- Weifang Xiashan Reservoir Management Service Center, Weifang 261325, China
| | - Songjie Fu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Lanwei Liang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaohan Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Hu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environment Studies, China University of Geosciences, Wuhan 430074, China
| | - Wen Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Jiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Gu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingman Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Cui S, Wang R, Chen Q, Pugliese L, Wu S. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100446. [PMID: 39104555 PMCID: PMC11298864 DOI: 10.1016/j.ese.2024.100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 08/07/2024]
Abstract
The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil-water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil-water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.
Collapse
Affiliation(s)
- Shihao Cui
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Rui Wang
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lorenzo Pugliese
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| | - Shubiao Wu
- Department of Agroecology, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark
| |
Collapse
|
3
|
Rincón-Rodríguez JC, Cárdenas-Hernández PA, Murillo-Gelvez J, Di Toro DM, Allen HE, Carbonaro RF, Chiu PC. Comparative Evaluation of Mediated Electrochemical Reduction and Chemical Redox Titration for Quantifying the Electron Accepting Capacities of Soils and Redox-Active Soil Constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17674-17684. [PMID: 39322992 DOI: 10.1021/acs.est.4c06514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The electron accepting capacity (EAC) of soil plays a pivotal role in the biogeochemical cycling of nutrients and transformation of redox-labile contaminants. Prior EAC studies of soils and soil constituents utilized different methods, reductants, and mediators, making cross-study comparison difficult. This study was conducted to quantify and compare the EACs of two soil constituents (hematite and Leonardite humic acid) and 12 soils of diverse composition, using chemical redox titration (CRT) with dithionite as the reductant and mediated electrochemical reduction (MER) with diquat as the mediator. The EACs of hematite and humic acid measured by CRT (EACCRT) and MER (EACMER) are similar and close to the theoretical/reported values. For soils, EACCRT and EACMER increased with iron and organic carbon (TOC) contents, suggesting iron and carbon were the main contributors to soil EAC. EACCRT > EACMER for all soils, and their difference (ΔEAC = EACCRT - EACMER) increased with TOC, presumably due to the longer contact time in CRT and thus more complete reduction of carbonaceous redox moieties. We propose an equation that relates EACCRT to EACMER (ΔEAC = 1796fTOC + 32) and another that predicts EACCRT from dithionite-reducible Fe and TOC (EACCRT = 2705 μmol e-/g C × fTOC + 17907 μmol e-/g Fe × fFedithionite-reducible). Our results suggest that at least 10-15% of soil organic carbon contributed to EACCRT.
Collapse
Affiliation(s)
- Juan C Rincón-Rodríguez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Paula A Cárdenas-Hernández
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Richard F Carbonaro
- Department of Chemical Engineering, Manhattan College, Riverdale, New York 10471, United States
- Mutch Associates LLC, Ramsey, New Jersey 07446, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
4
|
Lian F, Xing B. From Bulk to Nano: Formation, Features, and Functions of Nano-Black Carbon in Biogeochemical Processes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15910-15925. [PMID: 39189123 DOI: 10.1021/acs.est.4c07027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Globally increasing wildfires and widespread applications of biochar have led to a growing amount of black carbon (BC) entering terrestrial ecosystems. The significance of BC in carbon sequestration, environmental remediation, and the agricultural industry has long been recognized. However, the formation, features, and environmental functions of nanosized BC, which is one of the most active fractions in the BC continuum during global climate change, are poorly understood. This review highlights the formation, surface reactivity (sorption, redox, and heteroaggregation), biotic, and abiotic transformations of nano-BC, and its major differences compared to other fractions of BC and engineered carbon nanomaterials. Potential applications of nano-BC including suspending agent, soil amendment, and nanofertilizer are elucidated based on its unique properties and functions. Future studies are suggested to develop more reliable detection techniques to provide multidimensional information on nano-BC in environmental samples, explore the critical role of nano-BC in promoting soil and planetary health from a one health perspective, and extend the multifield applications of nano-BC with a lower environmental footprint but higher efficiency.
Collapse
Affiliation(s)
- Fei Lian
- Institute of Pollution Control and Environmental Health, and School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
5
|
Ge J, Wu S, Wu H, Lin J, Cai Y, Zhou D, Gu X. Prediction of As and Cd dissolution in various soils under flooding condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174853. [PMID: 39038669 DOI: 10.1016/j.scitotenv.2024.174853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Although the mobility of arsenic (As) and cadmium (Cd) in soils during the flooding-drainage process has been intensively studied, predicting their dissolution among various soils still remains a challenge. After comprehensively monitoring multiple parameters related to As and Cd dissolution in 8 soils for a 60-day anaerobic incubation, the redundancy analysis (RDA) and structural equation model (SEM) were employed to identify the key factors and influencing pathways controlling the dynamic release of As and Cd. Results showed that pH alone explained 90.5 % Cd dissolution, while the dissolved-Fe(II) and 5 M-HCl extractable Fe(II) jointly only explained 50.6 % As dissolution. After data normalization, the ratio of Fe(II) to 5 M-HCl extracted total Fe (i.e. FetotII/Fetot) significantly improved the correlation to R2 = 0.824 (p < 0.001) with a fixed slope of 0.393 among the 8 soils. Our results highlight the crucial role played by the reduction degree of total iron contents in determining both the reduction and dissolution of As during flooding. In contrast, dissolved-Fe(II) was too vulnerable to soil properties to be a stable indicator of As dissolution. Therefore, we propose to replace the dissolved-Fe(II) with this novel ratio as the key index to quantitatively assess the kinetic change of As solubility potential across various soils under flooding conditions.
Collapse
Affiliation(s)
- Jingwen Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Song Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Jianyu Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Yijun Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China
| | - Xueyuan Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Si D, Wu S, Wu H, Wang D, Fu QL, Wang Y, Wang P, Zhao FJ, Zhou D. Activated Carbon Application Simultaneously Alleviates Paddy Soil Arsenic Mobilization and Carbon Emission by Decreasing Porewater Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7880-7890. [PMID: 38670926 DOI: 10.1021/acs.est.4c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Flooding of paddy fields during the rice growing season enhances arsenic (As) mobilization and greenhouse gas (e.g., methane) emissions. In this study, an adsorbent for dissolved organic matter (DOM), namely, activated carbon (AC), was applied to an arsenic-contaminated paddy soil. The capacity for simultaneously alleviating soil carbon emissions and As accumulation in rice grains was explored. Soil microcosm incubations and 2-year pot experimental results indicated that AC amendment significantly decreased porewater DOM, Fe(III) reduction/Fe2+ release, and As release. More importantly, soil carbon dioxide and methane emissions were mitigated in anoxic microcosm incubations. Porewater DOM of pot experiments mainly consisted of humic-like fluorophores with a molecular structure of lignins and tannins, which could mediate microbial reduction of Fe(III) (oxyhydr)oxides. Soil microcosm incubation experiments cospiking with a carbon source and AC further consolidated that DOM electron shuttling and microbial carbon source functions were crucial for soil Fe(III) reduction, thus driving paddy soil As release and carbon emission. Additionally, the application of AC alleviated rice grain dimethylarsenate accumulation over 2 years. Our results highlight the importance of microbial extracellular electron transfer in driving paddy soil anaerobic respiration and decreasing porewater DOM in simultaneously remediating As contamination and mitigating methane emission in paddy fields.
Collapse
Affiliation(s)
- Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, Alabama 36849, United States
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Wang G, Chen L, Xing Y, Sun C, Fu P, Li Q, Chen R. Biochar establishing syntrophic partnership between exoelectrogens to facilitate extracellular electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166549. [PMID: 37633395 DOI: 10.1016/j.scitotenv.2023.166549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Biochar was regarded as a promising accelerator for extracellular electron transfer (EET), while the mechanism of biochar facilitating electricity harvest in bioelectrochemical system (BES) was in debates. In this study, sawdust-based biochar with low conductivity but strong redox-based electron exchange capacity was added into BES with two forms, including a suspended form (S-BC) added in anode chamber and a fixed form closely wrapping up the anode (F-BC). Compared with the control group, S-BC and F-BC addition dramatically increased accumulated electricity output by 2.0 and 5.1 times. However, electrochemical analysis characterized the lowest electrochemical property on anode surface in F-BC modified group. A 2nd period conducted by separating F-BC modified group with "aged F-BC + new anode" group and "single aged anode" group demonstrated that F-BC contributed >95 % to the current generation of F-BC modified group, while the anode almost acted as a conductor to transfer the generated electrons to cathode. Microbial community analysis revealed that both heterotrophic and autotrophic exoelectrogens contributed to current generation. The presence of biochar upregulated functional genes encoding cytochrome-c and type IV pilus, thereby boosting electricity harvest efficiency. Interestingly, the heterotrophic exoelectrogens of Geobacter/Desulfovibrio tended to attach on fixed surfaces of both biochar and anode, and the autotrophic exelectrogen of Hydrogenophaga was selectively enriched on biochar surfaces whatever fixed or suspended form. Consequently, a syntrophic partnership between Geobacter/Desulfovibrio and Hydrogenophaga was potentially establishment on F-BC surface for highly-efficient electricity harvest. In this syntrophic EET model, biochar potentially acted as the redox-active mediator, which temporarily accepted electron released by Geobacter/Desulfovibrio via acetate oxidation, and then donated them to Hydrogenophaga attached on biochar surfaces for autotrophic EET. This was distinct from a regular EET conducted by heterotrophic exoelectrogens. These findings provided new insights to understand the mechanisms of biochar facilitating EET by syntrophic metabolism pathway.
Collapse
Affiliation(s)
- Gaojun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Lu Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Yao Xing
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Xingrong (Xi'an) Environmental Development Co., No. 3160, Dazhai Road, Xi'an 710055, PR China
| | - Changxi Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Peng Fu
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China
| | - Qian Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Rong Chen
- Key Laboratory of Northwest Water Resource, Environment and Ecology (Ministry of Education), Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an 710055, PR China.
| |
Collapse
|
8
|
Xin D, Li W, Choi J, Yu YH, Chiu PC. Pyrogenic Black Carbon Suppresses Microbial Methane Production by Serving as a Terminal Electron Acceptor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20605-20614. [PMID: 38038997 PMCID: PMC10720376 DOI: 10.1021/acs.est.3c05830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Methane (CH4) is the second most important greenhouse gas, 27 times as potent as CO2 and responsible for >30% of the current anthropogenic warming. Globally, more than half of CH4 is produced microbially through methanogenesis. Pyrogenic black carbon possesses a considerable electron storage capacity (ESC) and can be an electron donor or acceptor for abiotic and microbial redox transformation. Using wood-derived biochar as a model black carbon, we demonstrated that air-oxidized black carbon served as an electron acceptor to support anaerobic oxidation of organic substrates, thereby suppressing CH4 production. Black carbon-respiring bacteria were immediately active and outcompeted methanogens. Significant CH4 did not form until the bioavailable electron-accepting capacity of the biochar was exhausted. An experiment with labeled acetate (13CH3COO-) yielded 1:1 13CH4 and 12CO2 without biochar and predominantly 13CO2 with biochar, indicating that biochar enabled anaerobic acetate oxidation at the expense of methanogenesis. Methanogens were enriched following acetate fermentation but only in the absence of biochar. The electron balance shows that approximately half (∼2.4 mmol/g) of biochar's ESC was utilized by the culture, corresponding to the portion of the ESC > +0.173 V (vs SHE). These results provide a mechanistic basis for quantifying the climate impact of black carbon and developing ESC-based applications to reduce CH4 emissions from biogenic sources.
Collapse
Affiliation(s)
| | | | - Jiwon Choi
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Yu-Han Yu
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Pei C. Chiu
- Department of Civil and Environmental
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Bai X, Huang D, Chen Y, Shao M, Wang N, Wang Q, Xu Q. Enhanced methane oxidation efficiency by digestate biochar in landfill cover soil: Microbial shifts and carbon metabolites insights. CHEMOSPHERE 2023; 343:140279. [PMID: 37758092 DOI: 10.1016/j.chemosphere.2023.140279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 09/30/2023]
Abstract
The ability of biochar to enhance the oxidation of methane (CH4) in landfill cover soil by promoting the growth and activity of methane-oxidizing bacteria (MOB) has attracted significant attention. However, the optimal characteristics of digestate-derived biochar (DBC) for promoting the MOB community and CH4 removal performance remain unclear. This study examined how the CH4 oxidation capacity and respiratory metabolism of MOB life process are affected by the application of DBC compared with the most commonly used woody-derived biochar (WBC). The addition of both WBC and DBC enhanced CH4 oxidation, with DBC exhibiting a nearly twofold increase in cumulative CH4 oxidation mass (7.14 mg CH4 g-1) compared to WBC. The high ion-exchange capacity of DBC was found to be more favorable for the growth of Type I MOB, which have more efficient metabolic pathways for CH4 oxidation. Type I MOB which are abundant in DBC may prefer monovalent positive ions, while the charge-rich nature of DBC may also have hindered extracellular protein aggregation. The superiority of DBC in terms of CH4 oxidation thus highlights the underlying mechanisms of biochar-MOB interactions, offering potential biochar options for landfill cover soil.
Collapse
Affiliation(s)
- Xinyue Bai
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| | - Dandan Huang
- School of Ecology, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Yuke Chen
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Mingshuai Shao
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Ning Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qian Wang
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen, 518055, PR China.
| |
Collapse
|
10
|
Chen L, Wang D, Sun T, Fan T, Wu S, Fang G, Yang M, Zhou D. Quantification of the redox properties of microplastics and their effect on arsenite oxidation. FUNDAMENTAL RESEARCH 2023; 3:777-785. [PMID: 38933300 PMCID: PMC11197510 DOI: 10.1016/j.fmre.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microplastics have attracted global concern. The environmental-weathering processes control their fate, transport, transformation, and toxicity to wildlife and human health, but their impacts on biogeochemical redox processes remain largely unknown. Herein, multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics. The spectroscopic results indicated that weathering of phenol-formaldehyde resins (PFs) by hydrogen peroxide (H2O2) led to a slight decrease in the content of phenol functional groups, accompanied by an increase in semiquinone radicals, quinone, and carboxylic groups. Electrochemical and wet-chemistry quantifications, coupled with microbial-chemical characterizations, demonstrated that the PFs exhibited appreciable electron-donating capacity (0.264-1.15 mmol e- g-1) and electron-accepting capacity (0.120-0.300 mmol e- g-1). Specifically, the phenol groups and semiquinone radicals were responsible for the electron-donating capacity, whereas the quinone groups dominated the electron-accepting capacity. The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and -accepting reactions. More importantly, the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation. In addition to the H2O2-weathered PFs, the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity. This study reports important redox properties of microplastics and their effect in mediating contaminant transformation. These findings will help to better understand the fate, transformation, and biogeochemical roles of microplastics on element cycling and contaminant fate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tianran Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Cao H, Pavitt AS, Hudson JM, Tratnyek PG, Xu W. Electron exchange capacity of pyrogenic dissolved organic matter (pyDOM): complementarity of square-wave voltammetry in DMSO and mediated chronoamperometry in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:767-780. [PMID: 36891820 DOI: 10.1039/d3em00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyrogenic dissolved organic matter (pyDOM) is derived from black carbon, which is important in the global carbon cycle and other biogeochemical redox processes. The electron-exchange capacity (EEC) of pyDOM has been characterized in water using mediated chronoamperometry (MCA), which gives precise results under specific operational conditions, but the broader significance of these EECs is less clear. In this study, we described a novel but complementary electrochemical approach to quantify EECs of pyDOM without mediation using square-wave voltammetry (SWV) in dimethyl sulfoxide (DMSO). Using both the SWV and MCA methods, we determined EECs for 10 pyDOMs, 6 natural organic matter (NOM) samples, and 2 model quinones. The two methods gave similar EECs for model quinones, but SWV gave larger EECs than MCA for NOM and pyDOM (by several-fold and 1-2 orders of magnitude, respectively). The differences in the EECs obtained by SWV and MCA likely are due to multiple factors, including the potential range of electrons sampled, kinetics of electron transfer from (macro)molecular structures, and coupling of electron and proton transfer steps. Comparison of the results obtained by these two methods should provide new insights into important environmental processes such as carbon-cycling, wildfire recovery, and contaminant mitigation using carbon-based amendments.
Collapse
Affiliation(s)
- Han Cao
- Department of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, USA.
| | - Ania S Pavitt
- OHSU/PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Jeffrey M Hudson
- OHSU/PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Paul G Tratnyek
- OHSU/PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | - Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, USA.
| |
Collapse
|
12
|
Chang J, Ren N, Yuan Q, Wang S, Liang D, He Z, Wang X, Li N. Charging-discharging cycles of geobattery activated carbon enhance iron reduction and vivianite recovery from wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163541. [PMID: 37076005 DOI: 10.1016/j.scitotenv.2023.163541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Vivianite as a significant secondary mineral of dissimilatory iron reduction (DIR) exhibits marvelous potential to solve eutrophication as well as phosphorus shortage. Geobattery represents by natural organic matters (NOM) with rich functional groups influences bioreduction of natural iron mineral. Activated carbon (AC) which contains abundant functional groups is expected to serve as geobattery, but there remains insufficient understanding on its geobattery mechanism and how it benefits the vivianite formation. In this study, the charging and discharging cycle of "geobattery" AC enhanced extracellular electron transfer (EET) and vivianite recovery was demonstrated. Feeding with ferric citrate, AC addition increased vivianite formation efficiency by 141 %. The enhancement was attributed to the electron shuttle capacity of storage battery AC, which was contributed by the redox cycle between CO and O-H. Feeding with iron oxides, huge gap of redox potential between AC and Fe(III) minerals broke through the reduction energy barrier. Therefore the iron reduction efficiency of four Fe(III) minerals was accelerated to the same high level around 80 %, and the vivianite formation efficiency were increased by 104 %-256 % in pure culture batches. Except acting as storage battery, AC as a dry cell contributed 80 % to the whole enhancement towards iron reduction, in which O-H groups were the dominant driver. Due to the rechargeable nature and considerable electron exchange capacity, AC served as geobattery playing the role of both storage battery and dry cell on electron storaging and transferring to influence biogeochemical Fe cycle and vivianite recovery.
Collapse
Affiliation(s)
- Jifei Chang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing Yuan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Shu Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Danhui Liang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zexuan He
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Nan Li
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
13
|
Si D, Wu H, Yang M, Fan T, Wang D, Chen L, Zhu C, Fang G, Wu S, Zhou D. Linking pyrogenic carbon redox property to arsenite oxidation: Impact of N-doping and pyrolysis temperature. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130477. [PMID: 36493646 DOI: 10.1016/j.jhazmat.2022.130477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Pyrogenic carbon-mediated arsenite (As(III)) oxidation shows great potential as a prerequisite for the efficient removal of arsenic in groundwater. Herein, the critical role of N-containing functional groups in low and high-temperature prepared pyrogenic carbons for mediating As(III) oxidation was systemically explored from an electrochemistry perspective. The pyrogenic carbon electron donating capacity and area-normalized specific capacitance were the key parameters explained the As(III) oxidation kinetics mediated by low electrical conductive 500 °C biomass-derived pyrogenic carbons (N contents of 0.36-7.72 wt%, R2 = 0.87, p < 0.001) and high electrical conductive 800 °C pyrogenic carbons (N contents of 1.00-8.00 wt%, R2 = 0.99, p < 0.001), respectively. The production of H2O2 from the reaction between electron donating phenol groups or semiquinone radicals and oxygen, and the direct electron transfer between semiquinone radicals and As(III) contributed to these pyrogenic carbons mediated As(III) oxidation. While the electron accepting quinone, pyridinic-N, and pyrrolic-N groups did not significantly contribute to the 500 °C pyrogenic carbons mediated As(III) oxidation, the direct electron conduction by these functional groups was responsible for the facilitated As(III) oxidation by the 800 °C pyrogenic carbons. Furthermore, the pyridinic-N and pyrrolic-N groups showed higher electron conduction efficiency than that of the quinone groups. The findings help to develop robust pyrogenic carbons for As(III) contaminated groundwater treatment.
Collapse
Affiliation(s)
- Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
14
|
Rashid MS, Liu G, Yousaf B, Hamid Y, Rehman A, Arif M, Ahmed R, Ashraf A, Song Y. A critical review on biochar-assisted free radicals mediated redox reactions influencing transformation of potentially toxic metals: Occurrence, formation, and environmental applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120335. [PMID: 36202269 DOI: 10.1016/j.envpol.2022.120335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Potentially toxic metals have become a viable threat to the ecosystem due to their carcinogenic nature. Biochar has gained substantial interest due to its redox-mediated processes and redox-active metals. Biochar has the capacity to directly adsorb the pollutants from contaminated environments through several mechanisms such as coprecipitation, complexation, ion exchange, and electrostatic interaction. Biochar's electron-mediating potential may be influenced by the cyclic transition of surface moieties and conjugated carbon structures. Thus, pyrolysis configuration, biomass material, retention time, oxygen flow, and heating time also affect biochar's redox properties. Generally, reactive oxygen species (ROS) exist as free radicals (FRs) in radical and non-radical forms, i.e., hydroxyl radical, superoxide, nitric oxide, hydrogen peroxide, and singlet oxygen. Heavy metals are involved in the production of FRs during redox-mediated reactions, which may contribute to ROS formation. This review aims to critically evaluate the redox-mediated characteristics of biochar produced from various biomass feedstocks under different pyrolysis conditions. In addition, we assessed the impact of biochar-assisted FRs redox-mediated processes on heavy metal immobilization and mobility. We also revealed new insights into the function of FRs in biochar and its potential uses for environment-friendly remediation and reducing the dependency on fossil-based materials, utilizing local residual biomass as a raw material in terms of sustainability.
Collapse
Affiliation(s)
- Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, Shaanxi, 710075, China
| | - Yasir Hamid
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Abdul Rehman
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Muhammad Arif
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 60000, Pakistan
| | - Rafay Ahmed
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Aniqa Ashraf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yu Song
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, PR China; School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, PR China
| |
Collapse
|
15
|
Dorner M, Lokesh S, Yang Y, Behrens S. Biochar-mediated abiotic and biotic degradation of halogenated organic contaminants - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158381. [PMID: 36055499 DOI: 10.1016/j.scitotenv.2022.158381] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Prevailing global increases in population, urbanization, and agricultural production are causing increased pressures on water resources, especially as the use of chemicals in agriculture, industry, and medicine provide new challenges for water treatment and reuse. Organohalogen compounds are persistent contaminants that often evade current wastewater treatment technologies, resulting in their accumulation in the environment and posing a serious threat to ecosystem health. Recent advances in understanding pyrogenic carbons as electron shuttling and storing materials have exposed their potential for enhancing the dehalogenation and overall degradation of organohalide contaminants in soil, sediment, surface water, and wastewater systems. Biochar is a porous carbonaceous material produced during the thermochemical decomposition of biomass feedstock in the presence of little or no oxygen (pyrolysis). Interest in biochar for application towards environmental remediation is largely based on its three distinct benefits: I) carbon sequestration to offset greenhouse gas emissions, II) adsorption of (in-) organic contaminants and nutrients, and III) a strong electron exchange capacity. Due to the innate complexity of biochar materials, several electron transfer mechanisms exist by which biochar may mediate contaminant degradation. These electron transfer pathways include electron-accepting and donating cycles through redox-active functional groups and direct electron transfer via conductive carbon matrices. These mechanisms are responsible for biochar's participation in multiple redox-driven biogeochemical transformations with proven consequences for effective organohalogen remediation. This literature review summarizes the current knowledge on the mechanisms and processes through which biochar can directly or indirectly mediate the transformation of organohalogen compounds under various environmental conditions. Perspectives and research directions for future application of biochars for targeted remediation strategies are also discussed.
Collapse
Affiliation(s)
- Mariah Dorner
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV, USA
| | - Sebastian Behrens
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
16
|
Construction of CuBi2O4/BiOBr/Biochar Z-Scheme Heterojunction for Degradation of Gaseous Benzene Under Visible Light. Catal Letters 2022. [DOI: 10.1007/s10562-022-04071-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
17
|
Zhang P, Duan W, Peng H, Pan B, Xing B. Functional Biochar and Its Balanced Design. ACS ENVIRONMENTAL AU 2022; 2:115-127. [PMID: 37101585 PMCID: PMC10114722 DOI: 10.1021/acsenvironau.1c00032] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biochar has attracted increasing research attention. Various modification methods have been proposed to enhance a certain biochar function. However, these modifications may also result in an unstable structure, additional energy consumption, secondary pollution, and/or extra cost. Balanced consideration of different aspects will ensure the sustainable development of biochar technology. This review first summarizes the most commonly used methods for biochar modification. These methods are categorized according to the purposes of modification, such as surface area enlargement, persistent free radical manipulation, magnetism introduction, and redox potential enhancement. More importantly, a systematic analysis and discussion are provided regarding the balanced consideration of biochar designs, such as the balance between effectiveness and stability, functions and risks, as well as effectiveness and cost. Then, perspectives regarding biochar modification are presented. This review calls for attention that biochar modifications should not be evaluated for their functions only. A balanced design of biochars will ensure both the practicability and the effectiveness of this technology.
Collapse
Affiliation(s)
- Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wenyan Duan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Hongbo Peng
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
- Faculty of Modern Agricultural Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
18
|
Wengang L, Fang C, Rong Z, Cuihong C. Biochar-Mediated Degradation of Roxarsone by Shewanella oneidensis MR-1. Front Microbiol 2022; 13:846228. [PMID: 35369465 PMCID: PMC8964303 DOI: 10.3389/fmicb.2022.846228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/08/2022] [Indexed: 11/30/2022] Open
Abstract
It is widely believed that biochar plays an essential role in sequestrating pollutants. The impacts of biochar on microbial growth, and consequently on the environmental fate of pollutants, however, remains poorly understood. In this study, wheat-straw-derived biochar was used to investigate how biochar amendment affected Shewanella oneidensis MR-1 growth and roxarsone transformation in water under anaerobic conditions. Three biochar with different physicochemical properties were used to mediate the roxarsone degradation. The results showed that the degradation rate of roxarsone could be accelerated by the increase of biochar pyrolysis temperature. From the characterization of biochar, the total specific surface area, micropore surface area and micropore volume of biochar increase, but the average pore diameter decreases as the pyrolysis temperature increases. Through infrared spectroscopy analysis, it was found that as the pyrolysis temperature increases, the degree of condensation of biochar increases, thereby increasing the pollutant removal rate. From the changes of the relative concentration of MR-1 and its secreted extracellular polymer content, the growth promotion ability of biochar also increases as the pyrolysis temperature increases. These results suggest that wheat-straw-derived biochar may be an important agent for activating microbial growth and can be used to accelerate the transformation of roxarsone, which could be a novel strategy for roxarsone remediation.
Collapse
Affiliation(s)
- Li Wengang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China
- Tangshan Ecological Environmental Bureau, Tangshan, China
| | - Chen Fang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, China
| | - Zhong Rong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Chen Cuihong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
19
|
Xin D, Girón J, Fuller ME, Chiu PC. Abiotic reduction of 3-nitro-1,2,4-triazol-5-one (NTO) and other munitions constituents by wood-derived biochar through its rechargeable electron storage capacity. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:316-329. [PMID: 35050280 DOI: 10.1039/d1em00447f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The environmental fate of 3-nitro-1,2,4-triazol-5-one (NTO) and other insensitive munitions constituents (MCs) is of significant concern due to their high water solubility and mobility relative to legacy MCs. Plant-based biochars have been shown to possess a considerable electron storage capacity (ESC), which enables them to undergo reversible electron transfer reactions. We hypothesized biochar can act as a rechargeable electron donor to effect abiotic reduction of MCs repeatedly through its ESC. To test this hypothesis, MC reduction experiments were performed using wood-derived biochars that were oxidized with dissolved oxygen or reduced with dithionite. Removal of aqueous NTO, an anion at circumneutral pH, by oxidized biochar was minimal and occurred through reversible adsorption. In contrast, NTO removal by reduced biochar was much more pronounced and occurred predominantly through reduction, with concomitant formation of 3-amino-1,2,4-triazol-5-one (ATO). Mass balance and electron recovery with ferricyanide further showed that (1) the amount of NTO reduced to ATO was relatively constant (85-100 μmol per gram of biochar) at pH 6-10; (2) the fraction of biochar ESC reactive toward NTO was ca. 30% of that toward ferricyanide; (3) the NTO-reactive fraction of the ESC was regenerable over multiple redox cycles. We also evaluated biochar transformation of other MCs, including nitroguanidine (NQ), 2,4-dinitroanisole (DNAN), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). While mass and electron balances could not be established due to sorption, DNAN and RDX reduction by reduced biochar was confirmed via detection of multiple reduction products. In contrast, NQ was not reduced under any of the conditions tested. This study is the first demonstration of organic contaminant degradation through biochar's rechargeable ESC. Our results indicate biochar is a regenerable electron storage medium and sorbent that can remove MCs from water through concurrent reduction and sorption, and is thus potentially useful for pollution control and remediation at military facilities.
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Julián Girón
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Mark E Fuller
- Aptim Federal Services, 17 Princess Road, Lawrenceville, NJ 08648, USA.
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
20
|
Insoluble carbonaceous materials as electron shuttles enhance the anaerobic/anoxic bioremediation of redox pollutants: Recent advances. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Xu W, Walpen N, Keiluweit M, Kleber M, Sander M. Redox Properties of Pyrogenic Dissolved Organic Matter (pyDOM) from Biomass-Derived Chars. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11434-11444. [PMID: 34319700 DOI: 10.1021/acs.est.1c02429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chars are ubiquitous in the environment and release significant amounts of redox-active pyrogenic dissolved organic matter (pyDOM). Yet, the redox properties of pyDOM remain poorly characterized. This work provides a systematic assessment of the quantity and redox properties of pyDOM released at circumneutral pH from a total of 14 chars pyrolyzed from wood and grass feedstocks from 200 to 700 °C. The amount of released pyDOM decreased with increasing pyrolysis temperature of chars, reflecting the increasing degree of condensation and decreasing char polarity. Using flow-injection analysis coupled to electrochemical detection, we demonstrated that electron-donating capacities (EDCpyDOM; up to 6.5 mmole-·gC-1) were higher than electron-accepting capacities (EACpyDOM; up to 1.2 mmole-·gC-1) for all pyDOM specimens. The optical properties and low metal contents of the pyDOM implicate phenols and quinones as the major redox-active moieties. Oxidation of a selected pyDOM by the oxidative enzyme laccase resulted in a 1.57 mmole-·gC-1 decrease in EDCpyDOM and a 0.25 mmole-·gC-1 increase in EACpyDOM, demonstrating a largely irreversible oxidation of presumably phenolic moieties. Non-mediated electrochemical reduction of the same pyDOM resulted in a 0.17 mmole-·gC-1 increase in EDCpyDOM and a 0.24 mmole-·gC-1 decrease in EACpyDOM, consistent with the largely reversible reduction of quinone moieties. Our results imply that pyDOM is an important dissolved redox-active phase in the environment and requires consideration in assessing and modeling biogeochemical redox processes and pollutant redox transformations, particularly in char-rich environments.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Civil and Environmental Engineering, Villanova University, Villanova, Pennsylvania 19085, United States
| | - Nicolas Walpen
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Marco Keiluweit
- School of Earth & Sustainability and Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Markus Kleber
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, United States
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
22
|
Cheng Q, Call DF. Developing microbial communities containing a high abundance of exoelectrogenic microorganisms using activated carbon granules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144361. [PMID: 33736328 DOI: 10.1016/j.scitotenv.2020.144361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Microorganisms that can transfer electrons outside their cells are useful in a range of wastewater treatment and remediation technologies. Conventional methods of enriching exoelectrogens are cost-prohibitive (e.g., controlled-potential electrodes) or lack specificity (e.g., soluble electron acceptors). In this study a low-cost and simple approach to enrich exoelectrogens from a mixed microbial inoculum was investigated. After the method was validated using the exoelectrogen Geobacter sulfurreducens, microorganisms from a pilot-scale biological activated carbon (BAC) filter were subjected to incubations in which acetate was provided as the electron donor and granular activated carbon (GAC) as the electron acceptor. The BAC-derived community oxidized acetate and reduced GAC at a capacity of 1.0 mmol e- (g GAC)-1. After three transfers to new bottles, acetate oxidation rates increased 4.3-fold, and microbial morphologies and GAC surface coverage became homogenous. Although present at <0.01% in the inoculum, Geobacter species were significantly enriched in the incubations (up to 96% abundance), suggesting they were responsible for reducing the GAC. The ability to quickly and effectively develop an exoelectrogenic microbial community using GAC may help initiate and/or maintain environmental systems that benefit from the unique metabolic capabilities of these microorganisms.
Collapse
Affiliation(s)
- Qiwen Cheng
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States
| | - Douglas F Call
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, 2501 Stinson Drive, Raleigh, NC 27695-7908, United States.
| |
Collapse
|
23
|
Natalio F, Corrales TP, Feldman Y, Lew B, Graber ER. Sustainable Lightweight Biochar-Based Composites with Electromagnetic Shielding Properties. ACS OMEGA 2020; 5:32490-32497. [PMID: 33376886 PMCID: PMC7758945 DOI: 10.1021/acsomega.0c04639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Global warming has prompted a search for new materials that capture and sink carbon dioxide (CO2). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum). This gypsum-biochar composite exhibits decreased density and flexural moduli with increasing biochar content, particularly after 20% w/w. Gypsum-biochar drywall-like composite prototypes display increasing shielding efficiency mostly in the microwave range as a function of biochar content, differing from other conventional metal (copper) and synthetic carbon-based materials. This narrow range of electromagnetic interference (EMI) shielding is attributed to natural alignment (isotropy) of the carbon ultrastructure (e.g., lignin) induced by heat and intrinsic interconnectivity in addition to traditional phenomena such as dissipation of surface currents and polarization in the electric field. These biomass-derived products could be used as sustainable lightweight materials in a future bio-based economy.
Collapse
Affiliation(s)
- Filipe Natalio
- Department
of Plant & Environmental Sciences, Weizmann
Institute of Science, Rehovot 7610001, Israel
- Kimmel
Center for Archeological Science, Weizmann
Institute of Science, Rehovot 7610001, Israel
| | - Tomas P. Corrales
- Departamento
de Física, Universidad Técnica
Federico Santa María, Casilla 110-V, Valparaíso, Chile
| | - Yishay Feldman
- Chemical
Services Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Beni Lew
- Institute
of Agricultural Engineering, The Volcani
Center, Agricultural Research Organization, P.O. Box 15159, Rishon LeTzion 7528809, Israel
| | - Ellen R. Graber
- Institute
of Soil, Water and Environmental Sciences, The Volcani Center, Agricultural Research Organization, P.O. Box 15159, Rishon LeTzion 7528809, Israel
| |
Collapse
|
24
|
Li J, Li Q, Steinberg CEW, Zhao Q, Pan B, Pignatello JJ, Xing B. Reaction of Substituted Phenols with Lignin Char: Dual Oxidative and Reductive Pathways Depending on Substituents and Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15811-15820. [PMID: 33241687 DOI: 10.1021/acs.est.0c04991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biomass chars are known to be intrinsically redox-reactive toward some organic compounds, but the mechanisms are still unclear. To address this, a char made anoxically at 500 °C from dealkaline lignin was reacted either in the fresh state or after 180-day aging in air with p-nitrophenol (NO2-P), p-hydroxybenzaldehyde (CHO-P), phenol (H-P), or p-methoxyphenol (MeO-P). The reactions were carried out under oxic or anoxic conditions. Degradation occurred in all cases. Both oxidation and reduction products were identified, with yields dependent on the presence or absence of air during reaction or storage. They included oligomers, amines, and ring-hydroxylated compounds, among others. Exposure to air suppressed sorption, annihilated reducing sites, and provided a source of reactive oxygen species that assisted degradation. Sorption suppression was due to the incorporation of hydrophilic groups by chemisorption of oxygen, and possibly blockage of sites by products. Fresh char has comparable electron-donating and accepting capacity, whereas there is a preponderance of electron-accepting over donating capacity in aged char. Under anoxic conditions, both oxidation and reduction occurred. Under oxic conditions or after aging in air, oxidation predominated, and linear free energy relationships were found between the rate constant and the Hammett or Brown substituent electronic parameter or the standard electrode potential of the phenol. The results demonstrate that chars possess heterogeneous redox activities depending on reaction pairs, reaction conditions, and aging.
Collapse
Affiliation(s)
- Jing Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500 Yunnan, China
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Qingqing Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Christian E W Steinberg
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500 Yunnan, China
- Faculty of Life Sciences, Laboratory of Freshwater & Stress Ecology, Humboldt-Universität zu Berlin, Arboretum, Späthstr. 80/81, 12437 Berlin, Germany
| | - Qing Zhao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500 Yunnan, China
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Qiu Y, Zhang Q, Gao B, Li M, Fan Z, Sang W, Hao H, Wei X. Removal mechanisms of Cr(VI) and Cr(III) by biochar supported nanosized zero-valent iron: Synergy of adsorption, reduction and transformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115018. [PMID: 32806451 DOI: 10.1016/j.envpol.2020.115018] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/02/2020] [Accepted: 06/10/2020] [Indexed: 05/20/2023]
Abstract
In this study, sludge-derived biochar was prepared and utilized to support nano-zero-valent iron (NZVI-SDBC) for removing Cr(VI) and Cr(III) from aqueous solution with the aim of investigating their removal and transformation. Under the conditions of initial pH of 4, dosage of 1 g/L, temperature of 25 °C, and rotational speed of 160 rpm, 64.13% Cr species could be removed by NZVI-SDBC from Cr(VI) solution and 28.89% from Cr(III) solution. Coexisting ions experiments showed that Cu(II) and humic acids dramatically affected the removal of Cr(VI) and Cr(III), while the effect of Na(I) and Ca(II) was almost negligible. Based on this, through the coexistence and pre-loaded Cr(III) experiments, the conversion from Cr(VI) to Cr(III) was demonstrated to enhance the further attraction on Cr(VI) and promote the subsequent removal of Cr(VI). The SDBC of NZVI-SDBC could serve as electron shuttle mediator to facilitate the electron transfer between adsorbed Cr(VI) and NZVI for ortho-reduction. The transformation and removal mechanisms were further discussed by various characterizations. The kinetics of Cr(VI) removal suggested that the removal process of Cr(VI) could be divided into three phases dominated by different mechanisms (adsorption, direct/ortho reduction, electrostatic attraction), in which Cr(VI) and Cr(III) showed different behaviors of interaction. The removal of Cr(III) mainly depended on sufficient adsorption sites and the direct complexation with Fe(II). Finally, the reusability of NZVI-SDBC was assessed by adsorption/desorption recycling test. These results provided new insights into the removal and transformation mechanisms of Cr(VI) and Cr(III) by biochar-based nanocomposites.
Collapse
Affiliation(s)
- Yue Qiu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Zixi Fan
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wenjiao Sang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Huiru Hao
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Xiaonan Wei
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, PR China
| |
Collapse
|
26
|
Li S, Wang Z, Xie X, Liang G, Cai X, Zhang X, Wang Z. Fabrication of vessel-like biochar-based heterojunction photocatalyst Bi 2S 3/BiOBr/BC for diclofenac removal under visible LED light irradiation: Mechanistic investigation and intermediates analysis. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:121407. [PMID: 32145925 DOI: 10.1016/j.jhazmat.2019.121407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/05/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
In this work, a novel, economical and effective vessel-like biochar-based photocatalyst Bi2S3/BiOBr/BC was synthesized by a facile one-pot solvothermal method for the first time. A series of characterization analyses demonstrated the successful preparation of photocatalyst Bi2S3/BiOBr/BC. Furthermore, diclofenac (DCF) as the target contaminant was applied to elucidate the enhanced photocatalytic performance (93.65%, 40 min) under energy-saving visible LED light irradiation. Comparison experiments among different photocatalysts and photoelectrochemical tests results illustrated that excellent photocatalytic performance of Bi2S3/BiOBr/BC 10% might be attributed to the electrons transfer of biochar and higher charge separation efficiency of heterojunction structure. Besides, lower electrical energy per order value indicated photocatalyst/visible LED light system was more energy-saving. Proper photocatalyst dosage (0.6 g/L) and relatively acidic water environment (pH = 5.0) would be beneficial to DCF photodegrdation by Bi2S3/BiOBr/BC. Good reusability and stability of Bi2S3/BiOBr/BC were verified via five consecutive recycle experiments. Furthermore, the role of active species was determined through trapping experiments and O2- and h+ dominated the photodegradation reaction to mineralize DCF molecules. Eleven main intermediates and four possible photodegradation pathways were proposed by HRMS analysis. Accordingly, photocatalyst Bi2S3/BiOBr/BC would provide potential technical support for emerging pollutant removal in water matrix.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zirun Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoyun Xie
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Guiwei Liang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xuewei Cai
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoli Zhang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaowei Wang
- Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
27
|
Xin D, Barkley T, Chiu PC. Visualizing electron storage capacity distribution in biochar through silver tagging. CHEMOSPHERE 2020; 248:125952. [PMID: 32007771 DOI: 10.1016/j.chemosphere.2020.125952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/02/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Electron storage capacity (ESC) is the capacity of a black carbon to store and reversibly donate and accept electrons in redox processes. Electrochemical and chemical analyses have shown the ESC of black carbon (e.g., plant-based biochars) was on the order of a few mmol/g. However, it remains unknown where ESC is located. The spatial distribution of ESC is important because it controls the bioaccessibility of ESC and the rates of biochar redox reactions. Here we used silver to tag the ESC of a wood-derived biochar. Ag+ was allowed to diffuse into the pores of reduced biochar at a constant pH. Up to 2.49 mmol Ag+/g biochar (corresponding to 62% of its ESC) was reduced to Ago nanoparticles (nAg), which served as an ESC marker and was visualized by electron microscopy. Abundant and dense nAg were observed on the biochar surface. In addition, microtomed samples showed ubiquitous and well-dispersed nAg in the interior of biochar, which explains pore diffusion-limited redox reactions and the partial bioaccessibility of its ESC. In addition to probing ESC distribution in black carbon, this method represents a new, ESC-based approach to incorporate large quantities of Ag and other redox-active elements into carbon media for potential environmental applications.
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| | - Thomas Barkley
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
28
|
Xin D, Chiu PC. Visualizing the distribution of black carbon's electron storage capacity using silver. MethodsX 2020; 7:100838. [PMID: 32195150 PMCID: PMC7078392 DOI: 10.1016/j.mex.2020.100838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 02/17/2020] [Indexed: 11/15/2022] Open
Abstract
We have developed a method that combines chemical reduction, silver tagging, and electron microscopy (EM) for visualizing the electron storage capacity (ESC) of black carbon (BC). ESC is a BC's capacity to store and reversibly exchange electrons with abiotic and microbial agents, processes that are relevant to biochemistry, greenhouse gas production, contaminant fate, and remediation. In addition to the amount of electrons BC can store, the locations and spatial distribution of ESC on and inside biochar are critical for understanding the bioaccessibility of ESC and the kinetics of redox reactions involving BC. To locate the ESC in a BC particle, we fully reduced a BC, removed excess reductant, and applied silver ion (Ag+) as a tagging agent that diffused into BC to react with functional groups where electrons were stored (i.e., ESC) to form silver nanoparticles (nAg). The nAg deposited on and inside BC were then imaged using multiple EM techniques to visualize the locations and distribution of the ESC. The method is a new and potentially useful tool for investigating ESC production and for elucidating BC-mediated redox transformation.•Novel method to probe and assess the distribution of ESC on/within BC.•Visual confirmation of significant ESC both on the surface and in the interior of BC.•A new method to incorporate silver or other redox-sensitive elements into a carbon medium.
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
29
|
Lv Y, Zhang J, Asgodom ME, Liu D, Xie H, Qu H. Study on the degradation of accumulated bisphenol S and regeneration of magnetic sludge-derived biochar upon microwave irritation in the presence of hydrogen peroxide for application in integrated process. BIORESOURCE TECHNOLOGY 2019; 293:122072. [PMID: 31484102 DOI: 10.1016/j.biortech.2019.122072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Based on the multi-functional magnetic sludge-derived biochar (MSBC), an innovative integrated process-coupling accumulation by adsorbing, degradation by microwave (MW)-induced catalytic oxidation in the presence of H2O2 and the regeneration of adsorbent simultaneously, was proposed. In this study, bisphenol S (4,4'-sulfonyldiphenol) was chosen as the pollutant model, its behaviors and related mechanism of BPS and MSBC in MW + H2O2 system were investigated. The BPS effective degradation on MSBC was proved by decoupling the adsorption and degradation with solvent extraction. OH and h+ play vital roles based on the scavenger tests. The synergistic effects of hot-spot of microwave irradiation, activation of H2O2, and charge transfer-induced doping effects of MSBC were attributed to the reactions. This work proves the feasibility in economics and energy-save treatment approach for low concentration organic pollutants in water.
Collapse
Affiliation(s)
- Ying Lv
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Jingyi Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Michael Engda Asgodom
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Dingyi Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China.
| | - Hongxia Qu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province, China
| |
Collapse
|
30
|
Dai H, Gao S, Lai C, He H, Han F, Pan X. Biochar enhanced microbial degradation of 17β-estradiol. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1736-1744. [PMID: 31498354 DOI: 10.1039/c9em00168a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Steroid estrogens (SEs), especially 17β-estradiol (E2), can be a serious threat to the health of organisms. The removal of E2 from the natural environment is mainly carried out by microbial degradation partly mediated by biochar, which contains quinone structures. In this study, reed straw biochar samples made at four different heat treatment temperatures (HTTs) were used to mediate E2 microbial degradation by Shewanella oneidensis MR-1. The removal efficiency of E2 (95%) was highest in the presence of HTT - 500 °C biochar under anaerobic conditions after 120 h of microbial degradation. The effect of biochar on promoting microbial degradation was far more superior under anaerobic conditions than under aerobic conditions. The redox-activity and types of surface functional groups of biochar reveal that biochar can accept electrons generated by microorganisms in a timely manner. This mechanism promotes the metabolic process of cells and microbial degradation of E2 (exponential increase). Biochar particles rather than biochar-derived water-soluble organic compounds are responsible for this stimulating effect. These results highlight the impact that biochar has on microbial degradation of trace pollutants in a natural environment.
Collapse
Affiliation(s)
- Han Dai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Xu X, Zhang P, Qiu H, Cao X. Pyrolysis-temperature depended quinone and carbonyl groups as the electron accepting sites in barley grass derived biochar. CHEMOSPHERE 2019; 232:273-280. [PMID: 31154188 DOI: 10.1016/j.chemosphere.2019.05.225] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/25/2019] [Accepted: 05/25/2019] [Indexed: 06/09/2023]
Abstract
Biochar has been proven to possess the electron transfer property that can participate in the biogeochemical redox reaction in the environment. In this study, the electron accepting capacities (EACs) of the barley grass biochars produced at the various temperatures from 350 °C to 800 °C were investigated. The EAC values were in the range of 0.27-0.72 mmol e- (g biochar)-1 and showed increase as the pyrolysis temperature increased from 350 °C to 450 °C, slight decrease with temperature increasing from 450 °C to 500 °C, and then increase again from 650 °C to 800 °C. The O-containing groups were the EAC moieties identified by temperature programmed desorption coupled with mass spectroscopy (TPD-MS) and fourier transform infrared spectroscopy (FTIR) and carbonyl and quinone were the main EAC moieties, accounting for 75.4%-95.7% as the pyrolysis temperature increased from 350 °C to 800 °C. Overall, carbonyl and quinone determined the EACs properties of biochar which were affected by the pyrolysis temperature. The results will help us to develop biochar with controlled electron accepting property for specific environmental applications.
Collapse
Affiliation(s)
- Yue Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengyu Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Environmental Protection and Ecological Security, Shanghai, 200290, China.
| |
Collapse
|
32
|
Xin D, Xian M, Chiu PC. Chemical methods for determining the electron storage capacity of black carbon. MethodsX 2018; 5:1515-1520. [PMID: 30519534 PMCID: PMC6260285 DOI: 10.1016/j.mex.2018.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 12/25/2022] Open
Abstract
Electron storage capacity (ESC) is a new and important property that determines the capacity of a black carbon to mediate abiotic and microbial electron transfer reactions in natural and engineered systems. It is necessary to develop accurate and reproducible methods to measure black carbon's ESC in order to understand its redox behavior and to predict its capacity to support redox transformation of contaminants in subsurface environments. In this study, we developed chemical methods that employed combinations of reductants and oxidants of different redox potentials – Ti(III) citrate or dithionite as reductant, and ferricyanide or dissolved O2 as oxidant – to measure the ESC of a wood-derived biochar. Pore diffusion within biochar particles was rate-limiting and controlled the timescale for redox equilibrium and ESC measurements. The new methods can handle sample mass on the order of a gram Sample pretreatment (e.g., oxidation via aeration) is necessary to produce consistent results For a given reductant-oxidant pair, colorimetric (or potentiometric) measurements gave constant and reproducible ESC
Collapse
Affiliation(s)
- Danhui Xin
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, United States
| | - Minghan Xian
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, United States
| | - Pei C Chiu
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, 19716, United States
| |
Collapse
|