1
|
Cao H, Liu J, Deng P, Beiyuan J, Li L, Wei X, Du Z, Chen Y, Lai J, Wang J. Chromium accumulation in rice cultivated by distinctive chromium contaminated soils: The effects of geochemical speciation and microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125847. [PMID: 39952593 DOI: 10.1016/j.envpol.2025.125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
Chromium (Cr), recognized as a deleterious metal, is ubiquitously present in soil-rice systems, posing a considerable risk to human health through the food chain. However, the controlling factors of Cr transfer from the soil to the paddy system remains largely unknown. This study aimed to examine the transfer patterns of Cr in paddy soil systems during the whole growing periods by comparatively using two series of Cr-contaminated typical agricultural soils. The results showed that the paddy cultivated in lower Cr-contaminated soil exhibited higher bioaccumulation factors (BAFs) due to the greater proportion of bioavailable Cr, in contrast to paddy grown in higher Cr-contaminated soil. Besides, the proportion of residual Cr in the rhizosphere soil notably decreased, and the residual Cr demonstrated a significant negative correlation with the total contents of Fe (p < 0.05) and Mn (p < 0.05). It suggests that the increase in Fe and Mn content promotes the transformation of Cr into bioavailable forms, thereby intensifying the migration of Cr from the soil to the paddy system. Moreover, it was found that Leptothrix that mediate the formation of manganese oxides and Cellulomonas that reduce Fe(III) may be directly or indirectly involved in the activation of Cr in soil. Microbial species such.as Dechloromonas, Candidatus, Rathayibacter and Vogesella, which showed significant correlations with oxidizable and reducible Cr, may play a pivotal role in modulating the bioavailability of Cr in soil by facilitating oxidation and reduction reactions. All these findings contribute to an enhanced comprehension of the pivotal factors governing the transfer of Cr from paddy soils to rice tissues, shedding light on their roles and functions in this process. They have significant implications for initiating appropriate decisions regarding the management of Cr contamination and the implementation of control strategies in paddy systems.
Collapse
Affiliation(s)
- Huimin Cao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Pengyuan Deng
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510655, China
| | - Xudong Wei
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zihuang Du
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuyi Chen
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiahong Lai
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Caballero-Mejía B, Moliner A, Escolástico C, Hontoria C, Mariscal-Sancho I, Pérez-Esteban J. Use of magnetite nanoparticles and magnetic separation for the removal of metal(loid)s from contaminated mine soils. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137081. [PMID: 39787850 DOI: 10.1016/j.jhazmat.2024.137081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 01/12/2025]
Abstract
Magnetite nanoparticles have been successfully used for removal and immobilization of contaminants in water, yet their application in soils combined with in situ magnetic separation remains unexplored. We evaluated the effectiveness and optimal conditions for using magnetite nanoparticles combined with magnetic separation to remove metal(loid)s from contaminated mine soils. Soil samples were incubated (15, 45 days) with varying doses of magnetite (0, 25, 50 g kg⁻¹) and moisture (dry, field capacity) and separated using electromagnet or permanent magnet. This technique achieved up to 44 % As, 65 % Cd, 60 % Cu, 47 % Fe, 40 % Mn, 65 % Pb, and 62 % Zn removal, leaving minimal residual magnetite in the soil. These high removal efficiencies were attributed to the nanoparticles' magnetic properties, adsorption capacity and ability to form aggregates with soil particles. Optimal conditions were 25 g kg⁻¹ of magnetite incubated for 45 days at field capacity and separated by the electromagnet. Higher doses (50 g kg⁻¹) offered minimal improvement at increased costs. The combined use of magnetite nanoparticles and in situ magnetic separation demonstrated a low-impact and cost-effective method for reducing metal(loid) concentrations to levels that facilitate subsequent soil remediation strategies.
Collapse
Affiliation(s)
- Bibiana Caballero-Mejía
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain; Universidad Nacional de Colombia (Medellín), Calle 59A No. 63-20, Medellín 050034, Colombia.
| | - Ana Moliner
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain.
| | - Consuelo Escolástico
- Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain.
| | - Chiquinquirá Hontoria
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain.
| | - Ignacio Mariscal-Sancho
- Departamento de Producción Agraria, Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, Madrid 28040, Spain.
| | - Javier Pérez-Esteban
- Departamento de Química Orgánica y Bio-Orgánica, Universidad Nacional de Educación a Distancia (UNED), Avenida de Esparta s/n, Las Rozas de Madrid 28232, Spain.
| |
Collapse
|
3
|
Ng WM, Chong WH, Abdullah AZ, Lim J. Magnetic Capture of Functionalized Nanoscale Zerovalent Iron for Soil Remediation: A Feasibility Study on Transport Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3572-3582. [PMID: 39893692 DOI: 10.1021/acs.langmuir.4c04720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Nanoscale zerovalent iron (nZVI) has been proposed as a promising nanomaterial for soil remediation. However, injecting nZVI into contaminated sites to target and treat pollutant sources may pose potential environmental risks due to its colloidal stability and mobility in the environment. In this regard, this study assessed the feasibility of implementing magnetic capture of surface-functionalized nZVI in soil environments under the influence of the convective flow current. Here, functionalized nZVI particles were prepared by introducing carboxymethyl cellulose (CMC) as a stabilizing agent during the synthesis of nZVI by using the liquid-phase reduction method. The functionalized nZVI particles were then injected into a two-dimensional flow column containing a sand matrix with a high gradient magnetic trap (HGMT) embedded within the system. Particle transports in both the absence and presence of a magnetic field were recorded by using a digital camera, and the breakthrough curves were generated from the data collected spectrophotometrically. The results showed that the relative breakthrough concentration of nZVI decreased from 0.92 to nearly zero, with a delayed breakthrough time as the applied magnetic field strength increased from zero (no magnetic field) to 0.093 T, demonstrating a 100% capture efficiency. It was found that the magnetic capture for the nZVI particles was contributed by two mechanisms: (1) low gradient magnetic separation (LGMS), driven by the penetrating magnetic field from the permanent magnets, and (2) high gradient magnetic separation (HGMS), which occurred near the wire surfaces within the HGMT section magnetized by the permanent magnets. Findings in this work have proven the feasibility of magnetic separation as a control strategy for nanoparticle applications in environmental remediation.
Collapse
Affiliation(s)
- Wei Ming Ng
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Wai Hong Chong
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - Ahmad Zuhairi Abdullah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - JitKang Lim
- School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
4
|
Wang W, Wang X, Wu X, Zhang J, Qin H, Li J. Relationships of ternary activities for the enhanced Cr(VI) removal by coupling nanoscale zerovalent iron with sulfidation and carboxymethyl cellulose. ENVIRONMENTAL RESEARCH 2024; 263:120274. [PMID: 39486681 DOI: 10.1016/j.envres.2024.120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Nanoscale zerovalent iron (nZVI) has been extensively applied in water pollution control. However, the reactivity of nZVI toward contaminants is mainly limited by its corrosion and agglomeration. In this study, the nZVI modified by sulfidation coupled with carboxymethyl cellulose (CMC) (C-S-nZVI) was synthesized and characterized by TEM and electrochemical techniques. Taking Cr(VI) as the contaminant, it was found that the sulfidation could couple with CMC modification to not only enhance the reactivity of nZVI toward Cr(VI), but also regulate the sedimentation activity and corrosion activity of nZVI in water. Particularly, the optimal kobs (0.0816 min-1) obtained by the C-S-nZVIone-0.16 (i.e., one-step sulfidation and its S/Fe molar ratio was 0.16) was approximately 27.2 times higher than that by the nZVI (0.0030 min-1). Moreover, based on the correlation analysis of the ternary activities, this study confirmed that the reactivity of C-S-nZVI toward Cr(VI) was negatively correlated with its sedimentation activity (slope = -0.7623, R = 0.59) and corrosion activity (slope = -0.0171, R = 0.56), respectively. XPS and TEM results further revealed that CMC could couple with iron sulfides (FeSx) to enhance the mass transfer of Cr(VI) toward nZVI and subsequent electron transfer from Fe0 core to out, ultimately improving the reduction of Cr(VI) by nZVI. Overall, this study introduced a new evaluation method based on the ternary activity of nZVI, providing theoretical support for the practical application of nZVI-based technology.
Collapse
Affiliation(s)
- Wenhao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xuechen Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jinhua Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Hejie Qin
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, PR China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
5
|
Ali MA, Sardar MF, Dar AA, Niaz M, Ali J, Wang Q, Zheng Y, Luo Y, Albasher G, Li F. Integrative approach to mitigate chromium toxicity in soil and enhance antioxidant activities in rice (Oryza sativa L.) using magnesium-iron nanocomposite and Staphylococcus aureus strains. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:398. [PMID: 39190219 DOI: 10.1007/s10653-024-02145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Pollutants in soil, particularly chromium (Cr), pose high environmental and health risks due to their persistence, bioavailability, and potential for causing toxicity. Cr impairment in plants act as a deleterious environmental pollutant that enters the food chain and eventually disturbs human health. Current study demonstrated the potential of integrative foliar application of magnesium-iron (Mg + Fe) nanocomposite with Staphylococcus aureus strains to alleviate Cr toxicity in rice (Oryza sativa) crops by improving yield and defense system. Growth and yield traits such as shoot length (15%), root length (17%), shoot fresh weight (14%), shoot dry weight (9%), root fresh weight (23%), root dry weight (7%), number of tillers (33%), number of grains (10%) and spike length (13%) improved by combined application of Mg + Fe (20 mg L-1) nanocomposite and S. aureus strains with Cr (110 mg kg-1), compared to when applied alone. Mutual Mg + Fe and S. aureus strains application augmented the SPAD value (9%), total chlorophyll (11%), a (12%), b (17%), and carotenoids (32%), with Cr (110 mg kg-1), compared to alone. Malondialdehyde (13%), hydrogen peroxide (H2O2) (11%), and electrolyte leakage (7%) were significantly regulated in shoots with combined Mg + Fe and S. aureus strains application with Cr (110 mg kg-1) contrasted to alone. Peroxidase (20%), superoxide dismutase (17%), ascorbate peroxidase (18%), and catalase (20%) were increased in shoots with combined Mg + Fe and S. aureus strains application with Cr (110 mg kg-1) in comparison to alone. The combined application of Mg + Fe (20 mgL-1) nanocomposite and S. aureus strains with Cr (110 mg kg-1) enhanced the macro-micronutrients in shoots compared to alone. Cr accumulation in roots (21%), shoots (25%), and grains (47%) were significantly reduced under Cr (110 mg kg-1) with combined Mg + Fe and S. aureus strains application, compared to alone. Subsequently, applying combined Mg + Fe and S. aureus strains is a sustainable solution to boost crop production under Cr toxicity.
Collapse
Affiliation(s)
- Muhammad Azhar Ali
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Afzal Ahmed Dar
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Mohsin Niaz
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong, China
| | - Jawad Ali
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Qian Wang
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Yu Zheng
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Yadan Luo
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266100, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Lewandowská Š, Vaňková Z, Beesley L, Cajthaml T, Wickramasinghe N, Vojar J, Vítková M, Tsang DCW, Ndungu K, Komárek M. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171892. [PMID: 38531450 DOI: 10.1016/j.scitotenv.2024.171892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
The majority of the studies on nanoscale zero-valent iron (nZVI) are conducted at a laboratory-scale, while field-scale evidence is scarce. The objective of this study was to compare the metal(loid) immobilization efficiency of selected Fe-based materials under field conditions for a period of one year. Two contrasting metal(loid) (As, Cd, Pb, Zn) enriched soils from a smelter-contaminated area were amended with sulfidized nZVI (S-nZVI) solely or combined with thermally stabilized sewage sludge and compared to amendment with microscale iron grit. In the soil with higher pH (7.5) and organic matter content (TOC = 12.7 %), the application of amendments resulted in a moderate increase in pH and reduced As, Cd, Pb, and Zn leaching after 1-year, with S-nZVI and sludge combined being the most efficient, followed by iron grit and S-nZVI alone. However, the amendments had adverse impacts on microbial biomass quantity, S-nZVI being the least damaging. In the soil with a lower pH (6.0) and organic matter content (TOC = 2.3 %), the results were mixed; 0.01 M CaCl2 extraction data showed only S-nZVI with sludge as remaining effective in reducing extractable concentrations of metals; on the other hand, Cd and Zn concentrations were increased in the extracted soil pore water solutions, in contrast to the two conventional amendments. Despite that, S-nZVI with sludge enhanced the quantity of microbial biomass in this soil. Additional earthworm avoidance data indicated that they generally avoided soil treated with all Fe-based materials, but the presence of sludge impacted their preferences somewhat. In summary, no significant differences between S-nZVI and iron grit were observed for metal(loid) immobilization, though sludge significantly improved the performance of S-nZVI in terms of soil health indicators. Therefore, this study indicates that S-nZVI amendment of soils alone should be avoided, though further field evidence from a broader range of soils is now required.
Collapse
Affiliation(s)
- Šárka Lewandowská
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Zuzana Vaňková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Luke Beesley
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic; School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester M5 4WT, UK
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
| | - Niluka Wickramasinghe
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Jiří Vojar
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Martina Vítková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579 Oslo, Norway
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
7
|
Luo Y, Pang J, Pan S, Wang J, Jiang X, Xu Q, Zhang H, Ruan C, Ren J, Zhang C, Shi J. Penicillium oxalicum SL2-enhanced nanoscale zero-valent iron effectively reduces Cr(VI) and shifts soil microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134058. [PMID: 38508106 DOI: 10.1016/j.jhazmat.2024.134058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Most current researches focus solely on reducing soil chromium availability. It is difficult to reduce soil Cr(VI) concentration below 5.0 mg kg-1 using single remediation technology. This study introduced a sustainable soil Cr(VI) reduction and stabilization system, Penicillium oxalicum SL2-nanoscale zero-valent iron (nZVI), and investigated its effect on Cr(VI) reduction efficiency and microbial ecology. Results showed that P. oxalicum SL2-nZVI effectively reduced soil total Cr(VI) concentration from 187.1 to 3.4 mg kg-1 within 180 d, and remained relatively stable at 360 d. The growth curve of P. oxalicum SL2 and microbial community results indicated that γ-ray irradiation shortened the adaptation time of P. oxalicum SL2 and facilitated its colonization in soil. P. oxalicum SL2 colonization activated nZVI and its derivatives, and increased soil iron bioavailability. After restoration, the negative effect of Cr(VI) on soil microorganisms was markedly alleviated. Cr(VI), Fe(II), bioavailable Cr/Fe, Eh, EC and urease (SUE) were the key environmental factors of soil microbiota. Notably, Penicillium significantly stimulated the growth of urease-positive bacteria, Arthrobacter, Pseudarthrobacter, and Microvirga, synergistically reducing soil chromium availability. The combination of P. oxalicum SL2 and nZVI is expected to form a green, economical and long-lasting Cr(VI) reduction stabilization strategy.
Collapse
Affiliation(s)
- Yating Luo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Soil Contamination Bioremediation, College of Environment and Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Jingli Pang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyi Pan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohan Jiang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiao Xu
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 China
| | - Haonan Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chendao Ruan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiayu Ren
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chun Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Yuan Z, Peng A, Chu Z, Zhang X, Huang H, Mi Y, Xia D, Wu X, Ye Z, Tao Y, Yan X. Sustainable remediation of Cr(VI)-contaminated soil by soil washing and subsequent recovery of washing agents using biochar supported nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171107. [PMID: 38387560 DOI: 10.1016/j.scitotenv.2024.171107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Soil contamination by Cr(VI) has attracted widespread attention globally in recent years, but it remains a significant challenge in developing an environmentally friendly and eco-sustainable technique for the disposal of Cr(VI)-contaminated soil. Herein, a sustainable cyclic soil washing system for Cr(VI)-polluted soil remediation and the recovery of washing agents using biochar supported nanoscale zero-valent iron (nZVI-BC) was established. Citric acid (CA) was initially screened to desorb Cr(VI) from contaminated soil, mobilizing Cr from the highly bioaccessible fractions. The nZVI-BC exhibited superior properties for Cr(VI) and Cr(total) removal from spent effluent, allowing effective recovery of the washing agents. The elimination mechanism of Cr(total) by nZVI-BC involved the coordinated actions of electrostatic adsorption, reduction, and co-precipitation. The contributions to Cr(VI) reduction by Fe0, surface-bound Fe(II), and soluble Fe(II) were 0.6 %, 39.8 %, and 59.6 %, respectively. Meanwhile, CA favored the activity of surface-bound Fe(II) and Fe0 in nZVI-BC, enhancing the production of soluble Fe(II) to strengthen Cr(VI) removal. Finally, the recovered washing agent was proven to be reused three times. This study showcases that the combined soil washing using biodegradable chelant CA and effluent treatment by nZVI-BC could be a sustainable and promising strategy for Cr(VI)-contaminated soil remediation.
Collapse
Affiliation(s)
- Zhe Yuan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Aifang Peng
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Zhaopeng Chu
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Xinyi Zhang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - He Huang
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Yuanzhu Mi
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Dongsheng Xia
- Engineering Research Center of Ministry of Education for Clean Production of Textile Printing and Dyeing, Wuhan 430200, China
| | - Xiaogang Wu
- School of Urban Construction, Yangtze University, Jingzhou 434103, PR China
| | - Zhihong Ye
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400000, China
| | - Yufang Tao
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| | - Xuemin Yan
- College of Chemistry & Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
9
|
Xie L, Chen Q, Liu Y, Ma Q, Zhang J, Tang C, Duan G, Lin A, Zhang T, Li S. Enhanced remediation of Cr(VI)-contaminated soil by modified zero-valent iron with oxalic acid on biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167399. [PMID: 37793443 DOI: 10.1016/j.scitotenv.2023.167399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Hexavalent chromium (Cr(VI)) is carcinogenic and widely presented in soil. In this study, modified zero-valent iron (ZVI) with oxalic acid on biochar (OA-ZVI/BC) was prepared using wet ball milling method for the remediation of Cr(VI)-contaminated soil. Microscopic characterizations showed that ZVI were distributed on the biochar uniformly and confirmed the enhanced interface interaction between biochar and ZVI by wet ball milling. Electrochemical analysis indicated the strong electron transfer ability and enhanced corrosion behavior of OA-ZVI/BC. Moreover, inhibitory efficiencies of Cr(VI) removal with the addition of 1,10-phenanthroline suggested abundant Fe2+ generation in OA-ZVI/BC, which might facilitate the reduction of Cr(VI) to Cr(III). Theory calculation further demonstrated the ZVI modified by oxalic acid was more susceptible to solid-solid interfacial reactions with Cr(VI), and more electrons were transferred to Cr(VI). When applied to Cr(VI)-contaminated soil, OA-ZVI/BC could passivate 96.7 % total Cr(VI) and maintained for 90 days. The toxicity characteristic leaching procedure (TCLP) and simple based extraction test (SBET) were used to evaluate the leaching toxicity and bioaccessibility of Cr(VI), respectively. The TCLP-Cr(VI) decreased to 0.11 mg·L-1 after OA-ZVI/BC treatment, much lower than that of soils with ZVI/BC and OA-ZVI remediation (1.5 mg·L-1 and 4.1 mg·L-1). The bioaccessibility of Cr(VI) reduced by 93.5 % after 3-month remediation. Sequential extraction showed that Cr fractions in the soil after OA-ZVI/BC remediation was converted from acetic acid-extractable (HOAc-extractable) to more stable forms (e.g., residual and oxidizable forms). Benefiting from the synergies of oxalic acid, biochar and wet ball milling, OA-ZVI/BC exhibited an excellent performance on the remediation of Cr(VI)-contaminated soil, whose mechanisms involved adsorption, reduction (Fe0/Fe2+, Fe2+/Fe3+) and co-precipitation. This study herein develops a promising ZVI technology in the remediation of heavy metal-contaminated soil.
Collapse
Affiliation(s)
- Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qingjun Chen
- China National Petroleum and Chemical Planning Institute, Beijing 100013, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenliu Tang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Guilan Duan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aijun Lin
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
10
|
Liu J, Sun S, Zhang H, Kong Q, Li Q, Yao X. Remediation materials for the immobilization of hexavalent chromium in contaminated soil: Preparation, applications, and mechanisms. ENVIRONMENTAL RESEARCH 2023; 237:116918. [PMID: 37611786 DOI: 10.1016/j.envres.2023.116918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Hexavalent chromium is a toxic metal that can induce severe chromium contamination of soil, posing a potential risk to human health and ecosystems. In recent years, the immobilization of Cr(VI) using remediation materials including inorganic materials, organic materials, microbial agents, and composites has exhibited great potential in remediating Cr(VI)-contaminated soil owing to the environmental-friendliness, short period, simple operation, low cost, applicability on an industrial scale, and high efficiency of these materials. Therefore, a systematical summary of the current progress on various remediation materials is essential. This work introduces the production (sources) of remediation materials and examines their characteristics in detail. Additionally, a critical summary of recent research on the utilization of remediation materials for the stabilization of Cr(VI) in the soil is provided, together with an evaluation of their remediation efficiencies toward Cr(VI). The influences of remediation material applications on soil physicochemical properties, microbial community structure, and plant growth are summarized. The immobilization mechanisms of remediation materials toward Cr(VI) in the soil are illuminated. Importantly, this study evaluates the feasibility of each remediation material application for Cr(VI) remediation. The latest knowledge on the development of remediation materials for the immobilization of Cr(VI) in the soil is also presented. Overall, this review will provide a reference for the development of remediation materials and their application in remediating Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Jiwei Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Shuyu Sun
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, 250014, China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, China
| | - Qian Li
- School of Modern Agriculture and Environment, Weifang Institute of Technology, Weifang, Shandong, 261000, China
| | - Xudong Yao
- Project Department, Shandong Luqiao Detection Technology Co., Ltd., Rizhao, Shandong, 276800, China
| |
Collapse
|
11
|
Xue W, Li J, Chen X, Liu H, Wen S, Shi X, Guo J, Gao Y, Xu J, Xu Y. Recent advances in sulfidized nanoscale zero-valent iron materials for environmental remediation and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101933-101962. [PMID: 37659023 DOI: 10.1007/s11356-023-29564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Over the past decade, sulfidized nanoscale zero-valent iron (S-nZVI) has been developed as a promising tool for the remediation of contaminated soil, sediment, and water. Although most studies have focused on applying S-nZVI for clean-up purposes, there is still a lack of systematic summary and discussion from its synthesis, application, to toxicity assessment. This review firstly summarized and compared the properties of S-nZVI synthesized from one-step and two-step synthesis methods, and the modification protocols for obtaining better stability and reactivity. In the context of environmental remediation, this review outlined an update on the latest development of S-nZVI for removal of heavy metals, organic pollutants, antibiotic resistance genes (ARGs), and antibiotic resistant bacteria (ARB) and also discussed the underlying removal mechanisms. Environmental factors affecting the remediation performance of S-nZVI (e.g., humic acid, coexisting ions, S/Fe molar ratio, pH, and oxygen condition) were highlighted. Besides, the application potential of S-nZVI in advanced oxidation processes (AOP), especially in activating persulfate, was also evaluated. The toxicity impacts of S-nZVI on the environmental microorganism were described. Finally, the future challenges and remaining restrains to be resolved for better applicability of S-nZVI are also proposed. This review could provide guidance for the environmental remediation with S-nZVI-based technology from theoretical basis and practical perspectives.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xinyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Hongdou Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Jian Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Wang T, Cao W, Wang Y, Qu C, Xu Y, Li H. Surface modification of quartz sand: A review of its progress and its effect on heavy metal adsorption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115179. [PMID: 37356400 DOI: 10.1016/j.ecoenv.2023.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Quartz sand (SiO2) is a prevalent filtration medium, boasting wide accessibility, superior stability, and cost-effectiveness. However, its utility is often curtailed by its sleek surface, limited active sites, and swift saturation of adsorption sites. This review outlines the prevalent strategies and agents for quartz sand surface modification and provides a comprehensive analysis of the various modification reagents and their operative mechanisms. It delves into the mechanism and utility of surface-modified quartz sand for adsorbing heavy metal ions (HMIs). It is found that the reported modifiers usually form connections with the surface of quartz sand through electrostatic forces, van der Waals forces, pore filling, chemical bonding, and/or molecular entanglement. The literature suggests that these modifications effectively address issues inherent to natural quartz sand, such as its low superficial coarseness, rapid adsorption site saturation, and limited adsorption capacity. Regrettably, comprehensive investigations into the particle size, regenerative capabilities, and application costs of surface-modified quartz sand and the critical factors for its wider adoption are lacking in most reports. The adsorption mechanisms indicate that surface-modified quartz sand primarily removes HMIs from aqueous solutions through surface complexation, ion exchange, and electrostatic and gravitational forces. However, these findings were derived under controlled laboratory conditions, and practical applications for treating real wastewater necessitate overcoming further laboratory-scale obstacles. Finally, this review outlines the limitations of partially surface modified quartz sand and suggests potential venues for future developments, providing a valuable reference for the advancement of cost-effective, HMI-absorbing, surface-modified quartz sand filter media.
Collapse
Affiliation(s)
- Ting Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Weiyuan Cao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Yingqi Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Chao Qu
- Handan Environmental Monitoring Center Station, Handan 056000, China
| | - Yufeng Xu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Chinese Acad Sci, Res Ctr Ecoenvironm Sci, Beijing 100085, China.
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
13
|
Liu Y, Qiao J, Sun Y. Enhanced immobilization of lead, cadmium, and arsenic in smelter-contaminated soil by sulfidated zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130783. [PMID: 36696773 DOI: 10.1016/j.jhazmat.2023.130783] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/17/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Soils contaminated with multiple heavy metal(loid)s (HMs) such as lead (Pb), cadmium (Cd), and arsenic (As) are of great concern in many countries. In this study, taking three lead-zinc smelter soils, the performance of sulfidated zero-valent iron (S-ZVI) toward Pb, Cd, and As immobilization was systemically investigated. Results showed that more than 88% of water-extractable Pb and Cd could be immobilized and transformed into reducible, oxidizable, and/or reducible forms by S-ZVI within 3 h, whereas only 3-56% of them could be immobilized by unsulfidated ZVI even after 72 h. Meanwhile, the phytoavailability of the tested HMs could be effectively reduced by 79% after S-ZVI amendment. More importantly, anoxic/oxic incubation tests revealed that the dissolved concentrations of HMs were much lower in S-ZVI-treated soils than in the untreated or unmodified ZVI-treated soils. Speciation analysis further suggested that unmodified ZVI seemed to reduce the long-term soil stability by changing the residual HMs species to mild-acid soluble and/or reducible ones. In contrast, S-ZVI could effectively alleviate the remobilization of HMs under the changeover of soil redox environments. All these findings indicate that S-ZVI may be a promising amendment for the immobilization of Pb, Cd, and As in smelter-contaminated soil.
Collapse
Affiliation(s)
- Yang Liu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yuankui Sun
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
14
|
Zhang X, Li Q, Nie K, Cao K, Liao Q, Si M, Yang Z, Yang W. Synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite in reductive immobilization of alkaline Cr(VI)-contaminated soil. CHEMOSPHERE 2023; 321:138132. [PMID: 36780997 DOI: 10.1016/j.chemosphere.2023.138132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Effective remediation of Cr(VI)-contaminated soil with strong alkalinity and high Cr(VI) concentration is a severe challenge. Herein, a proton-buffering montmorillonite-supported sulfidated nano zerovalent iron (nFeS/Fe0@H-Mt) was developed for remediation of alkaline Cr(VI)-contaminated soil. The reductive efficiencies of water-soluble Cr(VI) reached 99.7%, 99.3% and 99.8% in three tested soils with initial concentrations of 439.6, 3307.5 and 4626.7 mg kg-1, respectively, after 15 d of nFeS/Fe0@H-Mt treatment. Further speciation analyses demonstrated most available Cr species (exchangeable and carbonate-bound Cr) were transformed into more stable Cr species. The leachable Cr(VI) and total Cr obtained by toxicity leaching procedures decreased to extremely low levels and maintained long-term stability for 120 d. Such superior reductive immobilization performance of FeS/Fe0@H-Mt was attributed to the synergistic effect of sulfidated nano zerovalent iron and proton-buffering montmorillonite, which induced the coordination of proton donation and electron transfer. The proton-buffering montmorillonite (H-Mt) could prevent the aggregation of nanoparticles and provide protons to accelerate the corrosion of Fe0. In addition, the FeS component improved electron selectivity and facilitated electron transfer of Fe0 to Cr(VI). Our study demonstrated that the coordination of proton donation and electron transfer significantly enhanced the Cr(VI) reduction under the alkaline condition thus leading to effective remediation of alkaline Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Qi Li
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Kai Nie
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Kaiting Cao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Mengying Si
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China
| | - Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan, 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, PR China.
| |
Collapse
|
15
|
Xu R, Wang YN, Sun Y, Wang H, Gao Y, Li S, Guo L, Gao L. External sodium acetate improved Cr(VI) stabilization in a Cr-spiked soil during chemical-microbial reduction processes: Insights into Cr(VI) reduction performance, microbial community and metabolic functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114566. [PMID: 36680991 DOI: 10.1016/j.ecoenv.2023.114566] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Interest combined chemical and microbial reduction for Cr(VI) remediation in contaminated sites has greatly increased. However, the effect of external carbon sources on Cr(VI) reduction during chemical-microbial reduction processes has not been studied. Therefore, in this study, the role of external sodium acetate (SA) in improving Cr(VI) reduction and stabilization in a representative Cr(VI)-spiked soils was systemically investigated. The results of batch experiments suggested that the soil Cr(VI) content declined from 1000 mg/kg to 2.6-5.1 mg/kg at 1-5 g C/kg SA supplemented within 15 days of reaction. The external addition of SA resulted in a significant increase in the relative abundances of Cr(VI)-reducing microorganisms, such as Tissierella, Proteiniclasticum and Proteiniclasticum. The relative abundance of Tissierella increased from 9.1% to 29.8% with the SA treatment at 5 g C/kg soil, which was the main contributors to microbial Cr(VI) reduction. Redundancy analysis indicated that pH and SA were the predominant factors affecting the microbial community in the SA treatments at 2 g C/kg soil and 5 g C/kg soil. Functional prediction suggested that the addition of SA had a positive effect on the metabolism of key substances involved in Cr(VI) microbial reduction. This work provides new insightful guidance on Cr(VI) remediation in contaminated soils.
Collapse
Affiliation(s)
- Rong Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Ya-Nan Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Yingjie Sun
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Huawei Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China.
| | - Ying Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China
| | - Shupeng Li
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lili Guo
- Beijing Construction Engineering Environmental Remediation Co., Ltd., National Engineering Laboratory for Safety Remediation of Contaminated Sites, Beijing 100015, China
| | - Lei Gao
- School of Marine Sciences and Engineering, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
16
|
Yang J, Guo Q, Li L, Wang R, Chen Y, Wang X. Insights into the evolution of Cr(VI) species in long-term hexavalent chromium contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160149. [PMID: 36372161 DOI: 10.1016/j.scitotenv.2022.160149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Compare to the content of Cr(VI), the distribution of specific Cr(VI) species in soil is rarely paid attention to, which may lead to an inaccurate environmental risk assessment of Cr(VI) contaminated soil or inability to meet stringent requirement for soil remediation. Herein, to reveal the primary mechanisms and factors controlling the evolution of Cr(VI) species in soil, the distribution of Cr(VI) and Cr(III) species in soils with different particle sizes and textures was systematically investigated by using a modified sequential extraction procedure and spectroscopy characterizations (e.g., SEM-EDS mapping). The results show that a significant proportion of Cr(VI) can be captured by minerals containing exchangeable calcium ions and metal oxide hydrates in the soil, forming a relatively stable adsorbed Cr(VI). Also, a small fraction of Cr(VI) can precipitate as calcium chromate with free calcium ion which is the most stable Cr(VI) species in the soil. The majority of Cr(VI) discharged into soil tends to be reduced by ferrous ions or minerals containing ferrous ions with a product of Fe(III)-Cr(III) coprecipitate. Therefore, the speciation of Cr in the soil is closely correlated to Fe and Ca. After the equilibrium of adsorption, precipitation, and reduction reactions of Cr(VI), the rest of Cr(VI) retains as the form of its original water-soluble state in soil. The evolution of Cr(VI) species and the content of specific Cr species in soil are mainly determined by the contents of iron, exchangeable calcium ions and metal oxide hydrates, which effect the Cr(VI) reduction, precipitation and adsorption, respectively.
Collapse
Affiliation(s)
- Jing Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Qian Guo
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Lei Li
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Ruixue Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, PR China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400716, PR China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
17
|
Wang X, Zhang Y, Zhang Y, Xu C. Remediation of Cr(VI)-contaminated soil by sulfidated zero-valent iron: The effect of citric acid as eluant and modifying agent. CHEMOSPHERE 2023; 313:137436. [PMID: 36462563 DOI: 10.1016/j.chemosphere.2022.137436] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Leaching and chemical reduction are two commonly used methods for Cr(VI)-contaminated soil remediation. Leaching focuses more on leaching Cr(VI) out of the soil. Chemical reduction has the disadvantages of poor fluidity of reductant. Combining these two remediation methods, this study investigated the performance of Cr(VI)-contaminated soil when H2O and citric acid were used as eluant separately and sulfidated zero-valent iron (SZVI) as reductant. And based on the properties of Cr(VI) chelated with -COOH to form a complex and the characteristics of -OH anchored to FeSx, citric acid modified SZVI (Cit-SZVI) was prepared. The prepared Cit-SZVI was characterized by SEM-EDS, XPS, XRD to study its surface properties. The transformation of Cr species in soil was explored by BCR sequential extraction. The results indicated Cr(VI) removal by SZVI was significantly promoted when citric acid as eluant compared with H2O. With SZVI dosage of 2.0 wt%, 23.1 mg/L Cr(VI) was basically removed within 60 min when citric acid as eluant, while only 60% Cr(VI) was removed when H2O as eluant even after 3 h. The kobs of Cit-SZVI was 1.4 times that of SZVI when H2O as eluant. The characterization of Cit-SZVI showed that more FeSx was formed on the surface of the Cit-SZVI, and more -OH of citric acid was anchored to FeSx, leaving -COOH available to chelate Cr(VI). Compared with H2O as eluant and SZVI/Cit-SZVI as reducing agent, the removal effect of Cr(VI) was the best when citric acid as eluant and SZVI as reducing agent. BCR sequential extraction showed that Cr(VI) was effectually fixed, weak acid extractable Cr proportion decreased significantly and residual Cr proportion increased in the treated soil. The combination of leaching and chemical reduction proposed in this study can greatly enhance the Cr(VI) removal effect in soil, which is important for the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yanshi Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
18
|
Qin W, Ma Y, He T, Hu J, Gao P, Yang S. Enhanced Heterogeneous Fenton-like Process for Sulfamethazine Removal via Dual-Reaction-Center Fe-Mo/rGO Catalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4138. [PMID: 36500765 PMCID: PMC9740472 DOI: 10.3390/nano12234138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
A heterogeneous Fenton-like catalyst with single redox site has a rate-limiting step in oxidant activation, which limited its application in wastewater purification. To overcome this, a bimetallic doping strategy was designed to prepare a heterogeneous Fenton-like catalyst (Fe-Mo/rGO) with a double-reaction center. Combined with electrochemical impedance spectroscopy and density functional theory calculation, it was confirmed that the formation of an electron-rich Mo center and an electron-deficient Fe center through the constructed Fe-O-Mo and Mo-S-C bonding bridges induced a higher electron transfer capability in the Fe-Mo/rGO catalyst. The designed Fe-Mo/rGO catalyst exhibited excellent sulfamethazine (SMT) degradation efficiency in a broad pH range (4.8-8.4). The catalytic performance was hardly affected by inorganic anions (Cl-, SO42- and HCO3-) in the complicated and variable water environment. Compared to Fe/rGO and Mo/rGO catalysts, the SMT degradation efficiency increased by about 14.6 and 1.6 times in heterogeneous Fenton-like reaction over Fe-Mo/rGO catalyst. The electron spin resonance and radical scavenger experiments proved that ·O2-/HO2· and 1O2 dominate the SMT removal in the Fe-Mo/rGO/H2O2 system. Fe and Mo, as active centers co-supported on rGO, significantly enhanced the electron transfer between catalyst, oxidant, and pollutants, which accelerated the reactive oxygen species generation and effectively improved the SMT degradation. Our findings offer a novel perspective to enhance the performance of heterogeneous Fenton-like catalysts by accelerating the electron transfer rate in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Weihua Qin
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Yueming Ma
- National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Ting He
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingbin Hu
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| | - Pan Gao
- National Engineering Laboratory for Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing 102206, China
| | - Shaoxia Yang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
19
|
Oral O, Yigit A, Kantar C. Role of reactor type on Cr(VI) removal by zero-valent iron in the presence of pyrite: Batch versus sequential batch reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115854. [PMID: 35961140 DOI: 10.1016/j.jenvman.2022.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This study was conducted to understand the role of application sequence of pyrite and zero-valent iron (Fe0) (simultaneous vs. sequential) on chromium (VI) removal by Fe0. In batch experiments, pyrite and Fe0 were homogeneously mixed in batch reactors maintained at a constant total solids loading of 2 g L-1. In sequential batch experiments, however, the first reactor containing variable doses of pyrite was operated for 20 min, and the liquid fraction from the first reactor was then subsequently loaded into the second reactor containing a fixed Fe0 dose of 1.2 g L-1. The batch reactors achieved much higher Cr(VI) removal efficiency than sequential batch reactors under similar operating conditions due to discrepancies in Fe redox cycling activities between these two systems. In batch reactors, the Fe0 particles deposited on pyrite surface due to electrostatic attraction between negatively charged pyrite and positively charged Fe0, thus, rendering the overall solids surface charge neutral at optimum pyrite and Fe0 doses. As a result, the whole system behaved like a composite material, with pyrite functioning as a support material for Fe0. This stimulated Fe redox cycling more effectively to generate new Fe(II) sites on Fe0 for enhanced Cr(VI) removal relative to Fe0 only system. In sequential batch reactors, however, the Fe redox cycling activity was limited, but significantly increased with increasing pyrite dose in the first reactor. Overall, our results indicate that the stimulatory effect of pyrite on Cr(VI) removal by Fe0 may be much higher if the reactors are operated in batch mode.
Collapse
Affiliation(s)
- Ozlem Oral
- Canakkale Onsekiz Mart University, Department of Environmental Engineering, 17100, Canakkale, Turkey.
| | - Aynur Yigit
- Canakkale Onsekiz Mart University, Department of Environmental Engineering, 17100, Canakkale, Turkey
| | - Cetin Kantar
- Canakkale Onsekiz Mart University, Department of Environmental Engineering, 17100, Canakkale, Turkey.
| |
Collapse
|
20
|
Duan L, Wang Q, Li J, Wang F, Yang H, Guo B, Hashimoto Y. Zero valent iron or Fe 3O 4-loaded biochar for remediation of Pb contaminated sandy soil: Sequential extraction, magnetic separation, XAFS and ryegrass growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119702. [PMID: 35787422 DOI: 10.1016/j.envpol.2022.119702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
In this study, the feasibility of using zero-valent iron (ZVI) and Fe3O4-loaded biochar for Pb immobilization in contaminated sandy soil was investigated. A 180-day incubation study, combined with dry magnetic separation, chemical extraction, mineralogical characterization, and model plant (ryegrass, namely the Lilium perenne L.) growth experiment was conducted to verify the performance of these two materials. The results showed that both amendments significantly transferred the available Pb (the exchangeable and carbonates fraction) into more stable fractions (mainly Fe/Mn oxides-bound Pb), and ZVI alone showed a better performance than the magnetic biochar alone. The magnetic separation and extended X-ray absorption fine structure (EXAFS) analysis proved that Fe (oxyhydr)oxides on aged ZVI particles were the major scavengers of Pb in ZVI-amended soils. In comparison, the reduced Pb availability in magnetic biochar-amended soil could be explained by the association of Pb with Fe/Mn (oxyhydr)oxides in aged magnetic biochar, also the possible precipitation of soil Pb with soluble anions (e.g. OH-, PO43-, and SO42-) released from magnetic biochar. ZVI increased ryegrass production while Fe3O4-loaded biochar had a negative effect on the ryegrass growth. Moreover, both markedly decreased the Pb accumulation in aboveground and root tissues. The simple dry magnetic separation presents opportunities for the removal of Pb from soils, even though the efficiencies were not high (17.5% and 12.9% of total Pb from ZVI and biochar-treated soils, respectively). However, it should be noted that the ageing process easily result in the loss of magnetism of ZVI while the magnetic biochar tends to be more stable and has high retrievability during the dry magnetic separation application.
Collapse
Affiliation(s)
- Lunchao Duan
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China; Jiangsu Province Science and Technology Resources Coordination and Service Center, Nanjing, Jiangsu, 210000, China
| | - Qianhui Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China.
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu, 210023, China
| | - Hao Yang
- School of Geography, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Binglin Guo
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, 519082, Zhuhai, China
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
21
|
Han P, Xie J, Qin X, Yang X, Zhao Y. Experimental study on in situ remediation of Cr(VI) contaminated groundwater by sulfidated micron zero valent iron stabilized with xanthan gum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154422. [PMID: 35276162 DOI: 10.1016/j.scitotenv.2022.154422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Micron zero valent iron (mZVI) was an underground remediation material, which had great application potential to replace nano zero valent iron (nZVI) from the perspective of economic and health benefits. However, mZVI was highly prone to gravitational settling, which limited its wide application for in situ remediation of contaminated groundwater. This paper was devoted to develop an efficient and economical groundwater remediation material based on mZVI, which should possess excellent stability, reactivity, and transportability. Thereby xanthan gum (XG) stabilized and Na2S2O4 sulfidated mZVI (XG-S-mZVI) was synthesized and characterized with SEM, XRD, XPS, and FTIR techniques. In terms of stability, the adsorbed XG and the dispersed XG worked together to resist the sedimentation of S-mZVI. In terms of reactivity, sulfidation enhanced the electron transfer rate and electron selectivity of XG-S-mZVI, thereby improved the reactivity of XG-S-mZVI. The hexavalent chromium (Cr(VI)) removal rate constant by XG-S-mZVI was determined to be 832.4 times than bare mZVI. In terms of transportability, the transportability of XG-S-mZVI was greatly improved (~80 cm in coarse sand and ~50 cm in medium sand). Straining was the main mechanism of XG-S-mZVI retention in porous media. XG-S-mZVI in situ reactive zone (XG-S-mZVI-IRZ) was only suitable to the media with a grain size larger than 0.25 mm. This study could provide theoretical support and guidance for the implementation of IRZ technology based on mZVI.
Collapse
Affiliation(s)
- Peiling Han
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Jiayin Xie
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Xueming Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Xinru Yang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun 130021, China.
| |
Collapse
|
22
|
Liu N, Gong Y, Peng X, Li S, Zhang WX. A win-win solution to chromate removal by sulfidated nanoscale zero-valent iron in sludge. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128683. [PMID: 35303665 DOI: 10.1016/j.jhazmat.2022.128683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the reaction between sulfidated nanoscale zero valent iron (S-nZVI) and Cr(VI) in the sludge system and explores the effect of S-nZVI on microbes. Results of the batch experiments indicated that the optimal Cr(VI) removal capacity (35.3 mg/g) was reached when the S/Fe ratio was at 0.05. It was about 20-time higher than that of nanoscale zero valent iron (nZVI) (<2.0 mg/g). However, the removal efficiency decreased as the S/Fe molar ratio further increased. Solid characterizations revealed that the S-nZVI consisted of a Fe0 core encapsulated by a flake FeS shell and had a similar "core-shell" structure to that of the nZVI. X-ray photoelectron spectroscopy (XPS) indicated that Cr(VI) was reduced to less toxic Cr(III). In addition, the 16 S rRNA gene and cryo-scanning electron microscopy (cryo-SEM) results showed S-nZVI mildly influenced the initial microbial diversity. Some microflora including Caldiserica, Planctomycetes were promoted, while others groups such as Actinobacteria, Bacteroidetes and Chloroflexi were inhibited: specifically, bacteria such as Proteobacteria (possibly related to sulfide oxidization) began to develop after the S-nZVI feeding. The high Cr(VI) removal efficiency and the mildly influenced microbial diversity make the usage of S-nZVI a win-win solution for Cr(VI) removal in sludge.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China
| | - Yuxiu Gong
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China
| | - Xingxing Peng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong, China
| | - Shaolin Li
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, China.
| |
Collapse
|
23
|
Zheng Y, Yu L, Yan Y, Li H, Yu Q, Jiao B, Li D. Rapid Cr(VI) reduction structure in chromium contaminated soil: The UV-assisted electrokinetic circulation of background iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153508. [PMID: 35101496 DOI: 10.1016/j.scitotenv.2022.153508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Substantially decreasing the severe hazards connected with the toxic Cr(VI), developing effective reduction remediation strategies may be crucial under favorable economic conditions for the contaminated soil containing Cr(VI) to protect human health. Several typical enhancers (phosphate, fulvic acid, citric acid) were used to test electrokinetic remediation (EKR) coupled with UV radiation-induced photochemical reduction for contaminated soil containing Cr(VI). The added citrate, while improving the Cr(VI) electromigration, worked as the ultimate sacrificial electron donors, with the dissolved soil background Fe(III) as electron shuttle, to Cr(VI) rapid reduction. The dissolved soil background Fe(III) convert into Fe(II) ions through the UV radiation-induced ligand-metal charge transfers reaction, which constituted a novel electrokinetic circulation reduction pathway for the elimination of surface-bound/dissolved Cr(VI) (difficult to electromigration) in the near-anodic soil layers. More than 80% dissolved and surface-bound Cr(VI) was eliminated from the soil. In particular, the dissolved and surface-bound Cr(VI) was enhanced by more than 62.37% removal in near-anodic soil layers compared to conventional citric acid-enhanced EKR and provided no extra cost other than UV radiation. This configuration may be a cost-effective and feasible remediation design in the future for the in-situ Cr(VI) reduction of contaminated sites.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Lin Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Yujie Yan
- Engineering Research Center of Biofilm Water Purification and Utilization Technology, Ministry of Education, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Huilin Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Qiu Yu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Binquan Jiao
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China
| | - Dongwei Li
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China; College of Resource and Safety Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
24
|
Wang Z, Wang Y, Gomes RL, Gomes HI. Selenium (Se) recovery for technological applications from environmental matrices based on biotic and abiotic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128122. [PMID: 34979385 DOI: 10.1016/j.jhazmat.2021.128122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selenium (Se) is an essential element with application in manufacturing from food to medical industries. Water contamination by Se is of concern due to anthropogenic activities. Recently, Se remediation has received increasing attention. Hence, different types of remediation techniques are listed in this work, and their potential for Se recovery is evaluated. Sorption, co-precipitation, coagulation and precipitation are effective for low-cost Se removal. In photocatalytic, zero-valent iron and electrochemical systems, the above mechanisms occur with reduction as an immobilization and detoxification process. In combination with magnetic separation, the above techniques are promising for Se recovery. Biological Se oxyanions reduction has been widely recognized as a cost-effective method for Se remediation, simultaneously generating biosynthetic Se nanoparticles (BioSeNPs). Increasing the extracellular production of BioSeNPs and controlling their morphology will benefit its recovery. However, the mechanism of the microbial production of BioSeNPs is not well understood. Se containing products from both microbial reduction and abiotic methods need to be refined to obtain pure Se. Eco-friendly and cost-effective Se refinery methods need to be developed. Overall, this review offers insight into the necessity of shifting attention from Se remediation to Se recovery.
Collapse
Affiliation(s)
- Zhongli Wang
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| | - Yanming Wang
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Helena I Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
25
|
Ao M, Chen X, Deng T, Sun S, Tang Y, Morel JL, Qiu R, Wang S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127233. [PMID: 34592592 DOI: 10.1016/j.jhazmat.2021.127233] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 05/27/2023]
Abstract
Chromium (Cr) is a toxic heavy metal that is heavily discharged into the soil environment due to its widespread use and mining. High Cr levels may pose toxic hazards to plants, animals and humans, and thus have attracted global attention. Recently, much progress has been made in elucidating the mechanisms of Cr uptake, transport and accumulation in soil-plant systems, aiming to reduce the toxicity and ecological risk of Cr in soil; however, these topics have not been critically reviewed and summarised to date. Accordingly, based on available data-especially from the last five years (2017-2021)-this review traces a plausible link among Cr sources, levels, chemical forms, and phytoavailability in soil; Cr accumulation and translocation in plants; and Cr phytotoxicity and detoxification in plants. Additionally, given the toxicity and hazard posed by Cr(VI) in soils and the application of reductant materials to reduce Cr(VI) to Cr(III) for the remediation of Cr(VI)-contaminated soils, the reduction and immobilisation mechanisms by organic and inorganic reductants are summarised. Finally, some priority research challenges concerning the biogeochemical behaviour of Cr in soil-plant systems are highlighted, as well as the environmental impacts resulting from the application of reductive materials and potential research prospects.
Collapse
Affiliation(s)
- Ming Ao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoting Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Tenghaobo Deng
- Public Monitoring Center for Agro-Product of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shengsheng Sun
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jean Louis Morel
- Laboratoire Sols et Environnement, UMR 1120, Université de Lorraine, INRAE, 54518 Vandoeuvre-lès-Nancy, France
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
26
|
Yuan Y, Wei X, Yin H, Zhu M, Luo H, Dang Z. Synergistic removal of Cr(VI) by S-nZVI and organic acids: The enhanced electron selectivity and pH-dependent promotion mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127240. [PMID: 34844358 DOI: 10.1016/j.jhazmat.2021.127240] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The effects of organic acids on hexavalent chromium (Cr(VI)) removal by reduced iron-based materials have been extensively studied. Nevertheless, the promotion mechanism from the perspective of the electron transfer process is still unclear. Herein, sulfidated nanoscale zero-valent iron (S-nZVI) and the selected organic acids, citric acid (containing both -OH and -COOH groups) and oxalic acid (containing only -COOH groups), showed significant synergistic promotion effects in Cr(VI) removal. The FeS and FeS2 on S-nZVI surface could enhance the Cr(VI) reduction as the reductive entity and electron conductor. Furthermore, even though the reactivity of FeS with Cr(VI) is higher than that with FeS2, the Cr(VI) removal efficiency by FeS2 was much higher than that by FeS with organic acids. Under neutral and alkaline conditions (pH 6.0-8.0), organic acids promoted the diffusion, adsorption and complexation of Cr(VI) on S-nZVI surface, thus enhancing the electron selectivity towards Cr(VI). However, when the solution pH changed to acidic conditions (pH 4.0), organic acids facilitated the dissolution of Fe(II) ions from S-nZVI and enhanced the electron utilization towards Cr(VI) via the fast Fe(III) reduction process. This study provided a new insight into the Cr(VI) removal, which was beneficial to understand the application boundaries of S-nZVI for Cr(VI) remediation.
Collapse
Affiliation(s)
- Yibo Yuan
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| | - Xipeng Wei
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China.
| | - Minghan Zhu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| | - Haoyu Luo
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, School of Environment and Energy, South China University of Technology, Guangzhou 510006 Guangdong, China
| |
Collapse
|
27
|
Yu C, Li H, Ma H, Zhang L, Li Y, Lin Q. Characteristics and mechanism of Cu(II) adsorption on prepared calcium alginate/carboxymethyl cellulose@MnFe2O4. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03555-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Guo Y, Li X, Liang L, Lin Z, Su X, Zhang W. Immobilization of cadmium in contaminated soils using sulfidated nanoscale zero-valent iron: Effectiveness and remediation mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126605. [PMID: 34329110 DOI: 10.1016/j.jhazmat.2021.126605] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/24/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Sulfidated nanoscale zero-valent iron (S-nZVI) has shown excellent removal capacity for the removal of cadmium (Cd) in aqueous phase. Herein, the effectiveness and the mechanism of S-nZVI for the remediation of Cd contaminated soil were investigated for the first time. The results of sequential extraction procedures (SEP) showed that the exchangeable (EX) Cd was decreased by over 97.6% at the optimal dosage of 5 g kg-1 S-nZVI during 30 d incubation and converted to less available Cd such as iron-manganese oxides-bound (OX) and organic matter-bound (OM) fractions. pH has negligible effect on the immobilization of Cd in soil, since OX fraction was stabilized in the range of 72-92% at initial soil pH range from 5.3 to 7.5. SEM-EDS analysis of the separated magnetic particles implied that Cd was successfully enriched on S-nZVI and the distribution of Cd was closely related to Fe, S, and O. CdO and CdS was confirmed as the key products for Cd immobilization in soil. Meanwhile, the S-nZVI was oxided to α-FeOOH, γ-FeOOH, and γ-Fe2O3. The existence of CdO was visibly related to the iron oxides, suggesting the synergetic immobilization effect by iron oxides. Overall, S-nZVI was promising for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yiqing Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Li Liang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xintai Su
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Wenchao Zhang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
29
|
Qu M, Chen H, Wang Y, Wang X, Tong X, Li S, Xu H. Improved performance and applicability of copper-iron bimetal by sulfidation for Cr(VI) removal. CHEMOSPHERE 2021; 281:130820. [PMID: 34015648 DOI: 10.1016/j.chemosphere.2021.130820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The reactivity of zero-valent iron (ZVI) for the Cr(VI) removal in groundwater is mainly limited by the formation of a passivation layer during its application in permeable reactive barrier (PRB). A kind of sulfidated copper-iron bimetal (S-ZVICu) with high reactivity for Cr(VI) removal was prepared by depositing FeSx onto copper modified ZVI via a one-pot method. The surface characteristic, reactivity and Cr(VI) removal performance of S-ZVICu were investigated. It was found that S-ZVICu had a Cr(VI) removal capacity as high as 67.5 mg/g and little risk of secondary contaminant of Cu(II). The optimal Cu/Fe mass ratio and S/Fe molar ratio were 0.0125 and 0.084, respectively. The S-ZVICu exhibited great superiority of Cr(VI) removal compared with ZVI, sulfidated ZVI (SZVI) and coper-iron bimetal (ZVICu). Mineralogy and morphology analysis showed that S-ZVICu had a hierarchical structure of Fe0/Cu0/FeSx, which could effectively reduce the risk of secondary contaminant of copper ions. The mechanism analysis suggested that the copper and FeSx successively plated on the surface of ZVI played a dual role in promoting the corrosion of zero-valent iron, and was facilitated to electron transfer between Fe0, Cu0, FeSx and Cr(VI). In addition, the loose FeSx layer had a positive effect on alleviating the oxidation of ZVI in air, which was helpful in maintaining the reactivity of S-ZVICu in the air. S-ZVICu is an environmentally friendly material for sustainable and effective removal of Cr(VI) in groundwater.
Collapse
Affiliation(s)
- Min Qu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huixia Chen
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yuan Wang
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xuejiao Tong
- Yuhuan Environmental Technology Co. LTD., Shijiazhuang, 050091, Hebei Province, China
| | - Shupeng Li
- Beijing Construction Engineering Group Environmental Remediation Co. Ltd., Beijing, 100015, China
| | - Hongbin Xu
- CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
30
|
Jiang Y, Yang S, Wang M, Xue Y, Liu J, Li Y, Zhao D. A novel ball-milled aluminum-carbon composite for enhanced adsorption and degradation of hexabromocyclododecane. CHEMOSPHERE 2021; 279:130520. [PMID: 33857650 DOI: 10.1016/j.chemosphere.2021.130520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/14/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecane (HBCD) is one of the priority persistent organic pollutants (POPs), yet a cost-effective technology has been lacking for the removal and degradation of HBCD. Zero-valent aluminum (ZVAl) is an excellent electron donor. However, the inert and hydrophilic surface oxide layer impedes the release of the electrons from the core metallic Al, resulting in poor reactivity towards HBCD. In this research, a new type of modified mZVAl particles (AC@mZVAlbm/NaCl) were prepared through ball milling mZVAl in the presence of activated carbon (AC) and NaCl, and tested for adsorption and reductive degradation of HBCD in water. AC@mZVAlbm/NaCl was characterized with a metallic Al core with newly created reactive surface coated with a thin layer of crushed carbon nanoparticles. AC@mZVAlbm/NaCl was able to rapidly (within 1 h) adsorb HBCD (C0 = 2 mg L-1) and thus effectively enriched HBCD on the carbon surface of AC@mZVAlbm/NaCl. The pre-enriched HBCD was subsequently degraded by the electrons from the core Al, and ∼63.44% of the pre-sorbed HBCD was completely debrominated after 62 h of the contact. A notable time lag (∼12 h) from the onset of the adsorption to the debromination was observed, signifying the importance of the solid-phase mass transfer from the initially adsorbed AC particles to the reactive Al-AC interface. Overall, AC@mZVAlbm/NaCl synergizes the adsorptive properties of AC and the high reactivity of metallic Al, and enables a novel two-step adsorption and reductive degradation process for treating HBCD or likely other POPs.
Collapse
Affiliation(s)
- Yuting Jiang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Manqian Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yichao Xue
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Junqin Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Dongye Zhao
- Department of Civil and Environmental Engineering, 238 Harbert Engineering Center, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
31
|
Sang L, Wang G, Liu L, Bian H, Jiang L, Wang H, Zhang Y, Zhang W, Peng C, Wang X. Immobilization of Ni (Ⅱ) at three levels of contaminated soil by rhamnolipids modified nano zero valent iron (RL@nZVI): Effects and mechanisms. CHEMOSPHERE 2021; 276:130139. [PMID: 33690039 DOI: 10.1016/j.chemosphere.2021.130139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A kind of biosurfactant rhamnolipid modified zero-valent iron nanoparticles have been synthesized and applied to evaluate the immobilization efficiency of Ni (Ⅱ) contaminated soil at three concentration levels (200Ni, 600Ni and 1800Ni). The results of SEM and XRD were clearly indicative of the well-attached phenomenon of rhamnolipid on the nZVI, featuring better stability and dispersity, and FTIR analysis proposed the interactions between rhamnolipid and nZVI through monodentate chelating between carboxylate groups and nZVI or hydrogen bonding with Fe-O groups on the surface. Sequential extraction procedures (SEP) analysis illustrated that the majority of labile fractions had been transformed into less accessible fractions (Fe-Mn oxide-bound fractions and residual fractions) after 28 days of incubation. And for low-concentrations polluted soil, soil self-remediation played a dominant role, while RL@nZVI exhibited a more significant stabilizing effect for medium and high-concentrations pollution. Furthermore, XPS and XRD analyses of Ni-adsorbed RL@nZVI identified the formation of NiO, Ni(OH)2 and revealed the possible interaction mechanisms including reduction, adsorption and precipitation/co-precipitation. These results confirmed that RL@nZVI presented a promising prospect for the immobilization of Ni polluted soil.
Collapse
Affiliation(s)
- Li Sang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Bian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingling Jiang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huadong Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yinjie Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedong Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
32
|
Yi Y, Wang X, Ma J, Ning P. Fe(III) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(VI). POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.04.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Garcia AN, Zhang Y, Ghoshal S, He F, O'Carroll DM. Recent Advances in Sulfidated Zerovalent Iron for Contaminant Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8464-8483. [PMID: 34170112 DOI: 10.1021/acs.est.1c01251] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities.
Collapse
Affiliation(s)
- Ariel Nunez Garcia
- Department of Civil and Environmental Engineering, Western University, 1151 Richmond Rd., London, Ontario N6A 5B8, Canada
| | - Yanyan Zhang
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province China
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, 817 Sherbrooke Street West, Montreal, Quebec H3A 0C3, Canada
| | - Feng He
- Institute of Environmental Chemistry and Pollution Control College of Environment, Zhejiang University of Technology 18 Chaowang Rd, Hangzhou, China 310014
| | - Denis M O'Carroll
- School of Civil and Environmental Engineering, Water Research Centre, University of New South Wales, Sydney New South Wales 2052, Australia
| |
Collapse
|
34
|
Yang Z, Zhang X, Jiang Z, Li Q, Huang P, Zheng C, Liao Q, Yang W. Reductive materials for remediation of hexavalent chromium contaminated soil - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145654. [PMID: 33582355 DOI: 10.1016/j.scitotenv.2021.145654] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Chemical reduction of Cr(VI) to Cr(III) by reductive materials is the most widely used technology for the remediation of Cr(VI)-contaminated soil due to its high efficiency, adaptability and low cost. This paper reviews chromium chemistry and the materials that can effectively reduce Cr(VI) to Cr(III) for the remediation of Cr(VI)-contaminated soil, namely iron-bearing reductants, sulfur-based compounds and organic amendments. Moreover, we discuss the corresponding mechanisms involved in the process of immobilization of Cr(VI) in polluted soil, and emphasize the relationship between the materials remediation performance and soil environmental conditions. Besides, perspectives on the potential future researches of novel materials design and technological development in the remediation of Cr(VI) contaminated soil are also put forward.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Xiaoming Zhang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Zhi Jiang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Qi Li
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Peicheng Huang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Chujing Zheng
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China
| | - Qi Liao
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China
| | - Weichun Yang
- Department of Environmental Engineering, School of Metallurgy and Environment, Central South University, Lushan South Road 932, Changsha, Hunan 410083, PR China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, PR China.
| |
Collapse
|
35
|
Li J, Zhang Y, Wang F, Wang L, Liu J, Hashimoto Y, Hosomi M. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144521. [PMID: 33450681 DOI: 10.1016/j.scitotenv.2020.144521] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/23/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The potential of using zero-valent iron (ZVI) or a Fe3O4-loaded magnetic biochar to stabilize arsenic (As) in contaminated soil was investigated in the processes of incubation trial, chemical extraction, pot experiments with ryegrass growth. Additionally, a dry magnetic separation technique was applied to verify the possible permanent removal of As from the bulk soil. Results showed the ZVI amendment greatly reduced the As leaching, and the leached concentration became much lower than the Japanese environment standard (10 μg/L) after 180 days of incubation. Contrarily, the magnetic biochar amendment readily increased the As leachability due to the changes in pH, dissolved organic carbon, and soluble P and Si. The ZVI had a greater effect over the magnetic biochar, supported by the significantly reduced As leachability in the combined amendments. Furthermore, results from sequential extraction analysis indicate that both amendments significantly decreased the available As in (NH4)2SO4 and NH4H2PO4 extraction and increased the As bound to amorphous Fe oxides. But ZVI amendment alone performed better than magnetic biochar amendment alone. Plant growth experiment showed that the ZVI amendment enhanced ryegrass growth and significantly increased the ryegrass biomass. However, the magnetic biochar amendment resulted in an adverse effect on the ryegrass root growth, probably due to a marked enhancement of salinity. Meanwhile, the As uptake by ryegrass was significantly reduced in both ZVI and magnetic biochar-amended soils. Results of dry magnetic separation showed that averaged 20% and 25% of total As could be retrieved from ZVI and magnetic biochar amended soil, respectively; and the As bound to amorphous Fe oxides was the main retrieved fraction. This study indicated that ZVI or magnetic biochar could be applied as a promising amendment for reducing (phyto)availability of As in soil, and dry magnetic separation could be served as an alternative option for permanently removing As.
Collapse
Affiliation(s)
- Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Ying Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
| | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
36
|
Li Y, Zhao HP, Zhu L. Remediation of soil contaminated with organic compounds by nanoscale zero-valent iron: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143413. [PMID: 33246720 DOI: 10.1016/j.scitotenv.2020.143413] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
In recent years, nanoscale zero-valent iron (nZVI) has been gradually applied in soil remediation due to its strong reducing ability and large specific surface area. Compared to conventional remediation solutions, in situ remediation using nZVI offers some unique advantages. In this review, respective merits and demerits of each approach to nZVI synthesis are summarized in detail, particularly the most commonly used aqueous-phase reduction method featuring surface modification. In order to overcome undesired oxidation and agglomeration of fresh nZVI due to its high reactivity, modifications of nZVI have been developed such as doping with transition metals, stabilization using macromolecules or surfactants, and sulfidation. Mechanisms underlying efficient removal of organic pollutants enabled by the modified nZVI lie in alleviative oxidation and agglomeration of nZVI and enhanced electron utilization efficiency. In addition to chemical modification, other assisting methods for further improving nZVI mobility and reactivity, such as electrokinetics and microbial technologies, are evaluated. The effects of different remediation technologies and soil physicochemical properties on remediation performance of nZVI are also summarized. Overall, this review offers an up-to-date comprehensive understanding of nZVI-driven soil remediation from scientific and practical perspectives.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Han YS, Park JH, Ahn JS. Aging effects on fractionation and speciation of redox-sensitive metals in artificially contaminated soil. CHEMOSPHERE 2021; 263:127931. [PMID: 33297015 DOI: 10.1016/j.chemosphere.2020.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 06/12/2023]
Abstract
Artificially contaminated soil is often used in laboratory experiments as a substitute for actual field contaminated soils. In the preparation and use of laboratory contaminated soils, questions remain as to how much and how long metals remain in labile form and in their oxidation state during the contamination process. Therefore, the objectives of this study were to determine if the speciation of added contaminants can be retained in the original form and to observe the change in lability of each element with aging time. In this study, natural soil was artificially polluted with five redox-sensitive toxic elements in their oxidized or reduced forms, i.e., As(III)/As(V), Sb(III)/Sb(V), Cr(III)/Cr(VI), Mo(VI), and W(V). Metal distribution was measured in progressive chemical fractionation using sequential extraction methods in contaminated soils after 3, 100, and 300 days of aging. The results indicated that the more strongly bound fraction of metals increased by day 100; whereas the fractions were not significantly different from those in the 300-day-aged soil. Among five metals, the ratio of weakly-bound fractions remained highest in As- and lowest in Cr-contaminated soils. The W(VI)-contaminated soil showed strong sorption without changes in speciation during aging. The oxidized or reduced metal species converged to occur as a single species under given soil conditions, regardless of the initial form of metal used to spike the soil. Both As and Sb existed as their oxidized form while Cr existed as its reduced form. The results of this study may provide a useful and practical guideline for artificial soil contamination.
Collapse
Affiliation(s)
- Young-Soo Han
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea; Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin Hee Park
- Department of Environmental & Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Joo Sung Ahn
- Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| |
Collapse
|
38
|
Xu J, Guo J, Xu M, Chen X. Enhancement of microbial redox cycling of iron in zero-valent iron oxidation coupling with deca-brominated diphenyl ether removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141328. [PMID: 32798868 DOI: 10.1016/j.scitotenv.2020.141328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Iron-redox cycling microorganisms are important for understanding the biogeochemical iron and play key roles in zero-valent iron (ZVI) mediated environmental bioremediation. Their influence on ZVI oxidation coupling with organic contaminant removal is of particular interest but is still poorly understood. The objective of this research was to study microbial redox cycles of iron in ZVI oxidation and deca-brominated diphenyl ether (deca-BDE) removal. It was found that iron-oxidizing bacteria (IOB) enhanced ZVI oxidation by using iron as the sole electron donor. Iron-reducing bacteria (IRB) with high activity of Fe (III) reduction, also significantly accelerated rather than inhibited ZVI oxidation. ZVI oxidation activity was increased from 3.42% to 24.28% by IOB and 19.49% by IRB. When deca-BDE was present in the medium, ZVI oxidation activity by IOB and IRB was increased from 2.67% to 48.33% and 64.33%, respectively. However, no co-accelerating effect of IOB and IRB occurred but rather a neutralizing influence on ZVI oxidation was detected with iron-redox cycling bacteria (IORB). ZVI oxidation activity by IORB only increased to 13.14% and 37.0% in the absence and presence of deca-BDE, respectively. Meanwhile, IRB also exhibited the highest removal activity of deca-BDE. Approximately 71.67% of deca-BDE was removed by IRB, compared to 18.91% by IOB and 43.24% by IORB. Deca-BDE significantly influenced the effects of iron-metabolizing microorganisms on ZVI oxidation by altering the composition of microbial communities. Pseudomonas, Paenibacillus, and Sporolactobacillus were the key genera influencing ZVI oxidation and deca-BDE removal. Sporolactobacillus was firstly reported to be able to stimulate both ZVI oxidation and deca-BDE removal. Pseudomonas accelerated ZVI oxidation but had no significant contribution to deca-BDE removal. However, Paenibacillus inhibited both Fe(III) reduction and deca-BDE removal. It is expected that continuous integration of ZVI oxidation and organic contaminant removal can be achieved by regulating the key genera in iron-metabolizing microbial communities.
Collapse
Affiliation(s)
- Jingjing Xu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, PR China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, PR China
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou 510070, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Institute of Microbiology, Guangdong, Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
39
|
Ammonium thiocyanate functionalized graphene oxide-supported nanoscale zero-valent iron for adsorption and reduction of Cr(VI). J Colloid Interface Sci 2020; 580:345-353. [DOI: 10.1016/j.jcis.2020.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/22/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022]
|
40
|
Yi Y, Wang X, Ma J, Ning P. An efficient Egeria najas-derived biochar supported nZVI composite for Cr(VI) removal: Characterization and mechanism investigation based on visual MINTEQ model. ENVIRONMENTAL RESEARCH 2020; 189:109912. [PMID: 32980006 DOI: 10.1016/j.envres.2020.109912] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 05/22/2023]
Abstract
Egeria najas is a submerged aquatic plant, and the literatures on resourcification of submerged aquatic plant biochar remain limited. Until now, there has been no study on submerged aquatic plant biochar supported nZVI that is widely applied for removal of diversified contaminants in solution. In this study, an efficient approach to the preparation of Egeria najas-derived biochar supported nZVI composite is first developed for Cr(VI) removal in wastewater. The adsorption behavior and mechanism of Cr(VI) removal on the as-prepared Egeria najas-derived biochar/nZVI (EN@nZVI) composite were investigated. The results of FTIR and XPS indicate that the EN@nZVI surface had many functional groups such as R-COOH, R-OH, R-NH2 and R-C-O-C, etc, which could provide active sites during the adsorption process. The BET results showed that the EN@nZVI had large specific surface area and average pore, which were 142.49 m2/g and 9.85 nm, respectively. EN@nZVI demonstrated high reactivity for Cr(VI) removal. Compared with nZVI, Cr(VI) removal efficiency by EN@nZVI is 50% higher than that of nZVI within 0.5 h. Furthermore, the maximum adsorption capacity of Cr (VI) was 56.79 mg/g and the energy of activation (Ea) was 31.30 kJ/mol. The adsorption process was well described by the pseudo-second order model and Sips adsorption isotherm model. The reaction mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, surface complex formation, reduction and ion exchange reaction.
Collapse
Affiliation(s)
- Yan Yi
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| |
Collapse
|
41
|
Xu S, Zhang L, Zhao J, Cheng J, Yu Q, Zhang S, Zhao J, Qiu X. Remediation of chromium-contaminated soil using delaminated layered double hydroxides with different divalent metals. CHEMOSPHERE 2020; 254:126879. [PMID: 32361545 DOI: 10.1016/j.chemosphere.2020.126879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Soil is commonly polluted by chromium, and layered double hydroxides (LDHs) are widely used for chromium removal due to their strong adsorption capacity and the unique properties of their delaminated products. In this study, delaminated LDHs (S-Mg-LDH and S-Ca-LDH) and their original LDHs were used to remediate Cr(VI)-contaminated soil. A series of characterizations confirmed the successful synthesis of delaminated LDHs whose sheet structure was thinner with a greater surface energy than the original LDHs. The remediation results indicated that delaminated LDHs could more efficiently immobilize Cr(VI) in soil. The immobilization rate of S-Mg-LDH was 64.32%, while Mg-LDH was only 8.09%. However, at low dosages, the efficiency of S-Ca-LDH was 28.1% while Ca-LDH was 5.16%, but they had similar effects at high doses. Moreover, soil pH had little effect on their removal efficiencies. The toxicity characteristic leaching procedure (TCLP) results showed that the leaching of Cr(VI) in soil after treatment with S-Mg-LDH, S-Ca-LDH, Mg-LDH, and Ca-LDH was reduced by 75.43%, 72.43%, 86.55%, and 75.90%, respectively. The phytotoxicity tests of soil treated by S-Mg-LDH and S-Ca-LDH revealed that they effectively reduced the toxicity of chromium and lowered its bioaccumulation. Overall, this study confirms the feasibility of delaminated LDHs for Cr(VI) immobilization in soils.
Collapse
Affiliation(s)
- Shuang Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Luping Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jiawen Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jing Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Qianqian Yu
- School of Earth Science, China University of Geosciences, Wuhan, 430074, China
| | - Shuwang Zhang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Jialing Zhao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Xinhong Qiu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China; Hubei Environmental Engineering Technology Research Center for Chemical Engineering Pollution Control, Wuhan, China.
| |
Collapse
|
42
|
Guan X, Du X, Liu M, Qin H, Qiao J, Sun Y. Enhanced trichloroethylene dechlorination by carbon-modified zero-valent iron: Revisiting the role of carbon additives. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122564. [PMID: 32244144 DOI: 10.1016/j.jhazmat.2020.122564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Given that there are still some debates on the influence of carbon modification on zerovalent iron (ZVI) decontamination process, the roles of carbon on trichloroethylene (TCE) reduction by ZVI were re-investigated in this work. Compared to activated carbons (AC) with high adsorption ability, carbon fibers (CF) with good electronic conductivity performed much better in enhancing ZVI performance in terms of both reactivity and selectivity. Moreover, it was interesting to observe that a low carbon loading is sufficient to effectively improve TCE reduction and this promoting effect would decline with further increasing the carbon amounts from 1.0 wt.% to 50 wt.%. Regarding to the ZVI selectivity, a relatively high carbon loading (especially for CF, it may be as high as 50 wt.%) was needed to protect ZVI from non-productive reactions with H2O/H+ effectively. However, a mixture of 10 wt.% AC and 1.0 wt.% CF could combine their respective merits of inhibiting side reactions and enhancing TCE reduction, and thus simultaneously enhanced the reactivity and selectivity of ZVI. Mechanistic investigations revealed that carbon modification could enhance the ZVI performance through improving TCE adsorption and/or accelerating electron transfer, while the latter one may play a more important role especially at high carbon loadings.
Collapse
Affiliation(s)
- Xiaohong Guan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xueying Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Meichuan Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Hejie Qin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Junlian Qiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yuankui Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
43
|
Gao X, Zhang Y, Li F, Tian B, Wang X, Wang Z, Carozza JC, Zhou Z, Han H, Xu C. Surface Modulation and Chromium Complexation: All-in-One Solution for the Cr(VI) Sequestration with Bifunctional Molecules. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8373-8379. [PMID: 32421314 DOI: 10.1021/acs.est.0c00710] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The sulfidation of zero valent iron (ZVI) to an Fe@FeSx (S-ZVI) composite has been intensively explored in the ZVI field. Yet, further benefits from the FeSx coating layer are seldom realized, especially those effectively using its intrinsic physical and chemical properties for elaborate design. Here, we demonstrate that in a traditional Cr(VI) sequestration reaction, the FeSx layer displays a great utility in immobilizing molecules containing hydroxyl groups (-OH) and hence, attracting Cr(VI) complexes chelated with carboxyl organics (RCOOH). Such intermolecular attraction readily promotes the diffusion of the Cr(VI) complexes to the S-ZVI surface, affording a higher reaction rate for the Cr(VI) sequestration process. In addition, the above mechanism was used to guide a rational selection of molecules incorporating both hydroxyl and carboxyl functional groups with a proper ratio and thereby, a significantly improved reaction efficiency was achieved. Furthermore, the FeSx phase was revealed to be consumed in the reaction, acting as a supplementary reductant. This work is the first to unveil the relationship between molecules with specific functionalization and the FeSx phase, providing a general rule in choosing appropriate reaction media for Cr(VI) sequestration and related reactions.
Collapse
Affiliation(s)
- Xuyan Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Yue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fengmin Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Boyang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiao Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhiwei Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jesse C Carozza
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haixiang Han
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Chunhua Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
44
|
Li J, Yoshi S, Hashimoto Y, Wang L, Wang F, Riya S, Terada A, Hosomi M. Reducing geogenic arsenic leaching from excavated sedimentary soil using zero-valent iron amendment followed by dry magnetic separation: A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138203. [PMID: 32247979 DOI: 10.1016/j.scitotenv.2020.138203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Although the deep-layer sedimentary soils excavated from construction sites contain low level of geogenic arsenic (As), remediation is necessary when the As leachability exceeds the environmental standard (10 μg/L) in Japan. In this study, the zero-valent iron (ZVI) amendment followed by dry magnetic separation (ZVI-DMS) was implemented for the treatment of a geogenic As-contaminated alkaline sedimentary soil (pH 8.9; 7.5 mg/kg of total As; 0.33 mg/kg of water-extractable As). This technology involves pH adjustment (adding H2SO4), ZVI addition, water content reduction (adding water adsorbent CaSO4·0.5H2O), and dry magnetic separation. The short-term and long-term As leachability before and after treatment was compared using sequential water leaching tests (SWLT). The results illustrated that As could be removed from the bulk soil through the magnetic separation of As-ZVI complexes, although the amount was limited (about 2% of total As). Moreover, immobilization played a dominant role in suppressing As leaching. The H2SO4 addition decreased pH to a circumneutral range and thereby suppress As release. The CaSO4·0.5H2O addition also contributed to the pH decrease and reduced As leachability. Besides, CaSO4·0.5H2O-dissolution released Ca2+ that favored As adsorption, and enhanced dissolved organic carbon (DOC) coagulation that decelerated As dissolution. SWLT results indicated that As leachability from remediated soil satisfied the environmental standard (10 μg/L) in both short-term and long-term perspective. However, the secular stability of treated soil deserves more attention due to the easy re-release of As caused by As-bearing framboidal pyrite oxidation. Additionally, during ZVI-DMS process, there is a need to scientifically decide the dosage of ZVI to avoid excessive addition. Our results demonstrated that ZVI-DMS technology could be a promising remediation strategy for geogenic As contaminated sedimentary soils/rocks.
Collapse
Affiliation(s)
- Jining Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| | | | - Yohey Hashimoto
- Department of Bioapplications and Systems Engineering (BASE), Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Lei Wang
- Institute of Construction Materials, Technische Universität Dresden, 01062 Dresden, Germany
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Shohei Riya
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
45
|
Yao Y, Mi N, He C, He H, Zhang Y, Zhang Y, Yin L, Li J, Yang S, Li S, Ni L. Humic acid modified nano-ferrous sulfide enhances the removal efficiency of Cr(VI). Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116623] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|