1
|
Maheepala SS, Hatamoto M, Watari T, Yamaguchi T. Aerobic-anaerobic DHS reactor for enhancing denitrification in municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177283. [PMID: 39488287 DOI: 10.1016/j.scitotenv.2024.177283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Providing anaerobic environments can enhance the denitrification capacity of wastewater treatment systems. This study developed an aerobic-anaerobic downflow hanging sponge (DHS) reactor to increase denitrification. A siphon tube was integrated with a conventional DHS to create anaerobic conditions by controlling a water column inside the reactor. The siphon heights were set in the middle of the reactor, representing 2/5 of the total volume. Anaerobic conditions were maintained at the bottom (1/5), whereas aerobic conditions were maintained at the top (2/5). The middle part experienced alternating aerobic-anaerobic conditions within a siphon cycle. The hydraulic retention time (HRT) was 3 h, and the temperature was maintained at 30 °C. The study was divided into the low-loading and standard phases based on the influent soluble chemical oxygen demand (sCOD) concentration. During the low-loading phase, the aerobic-anaerobic DHS exhibited a higher sCOD removal rate (53.6 ± 26.6 %) than the control aerobic DHS (35.6 ± 31.9). However, the removal efficiencies for NH₄+-N and total nitrogen (TN) were lower, averaging 37.1 ± 24.7 % and 31.5 ± 21 %, respectively. In the standard phase, the aerobic-anaerobic DHS achieved an sCOD removal rate of 69.3 ± 14.8 % and an NH₄+-N removal rate of 17.2 ± 11.4 %. The control aerobic DHS showed higher sCOD and NH₄+-N removal at 84.7 ± 10.8 % and 54.1 ± 12.8 %, respectively, possibly due to the reduced aerobic zone volume in the aerobic-anaerobic DHS. The TN removal rates were also lower in the aerobic-anaerobic DHS (17.1 ± 11.4 %) than in the control DHS (25 ± 12.3 %). However, based on the ratio of nitrification to TN removal, the aerobic-anaerobic DHS showed a high denitrification rate of 85 %-100 %. The highest number of denitrifiers was in the middle section of the aerobic-anaerobic DHS, with Rhodocyclaceae the most prominent, followed by Comamonadaceae. Maintaining an anaerobic zone improved the denitrification capacity, indicating the potential of the aerobic-anaerobic DHS for efficient municipal wastewater treatment.
Collapse
Affiliation(s)
- Shehani Sharadha Maheepala
- Department of Civil Engineering and Bioengineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan.
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan.
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan.
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka 940-2188, Japan.
| |
Collapse
|
2
|
Wimalaweera IP, Wei Y, Zuo F, Tang Q, Ritigala T, Wang Y, Zhong H, Weerasooriya R, Jinadasa S, Weragoda S. Enhancing Rubber Industry Wastewater Treatment through an Integrated AnMBR and A/O MBR System: Performance, Membrane Fouling Analysis, and Microbial Community Evolution. MEMBRANES 2024; 14:130. [PMID: 38921497 PMCID: PMC11205297 DOI: 10.3390/membranes14060130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
This study explores the effectiveness of an integrated anaerobic membrane bioreactor (AnMBR) coupled with an anoxic/oxic membrane bioreactor (A/O MBR) for the treatment of natural rubber industry wastewater with high sulfate, ammonia, and complex organic contents. This study was conducted at the lab-scale over a duration of 225 days to thoroughly investigate the efficiency and sustainability of the proposed treatment method. With a hydraulic retention time of 6 days for the total system, COD reductions were over 98%, which reduced the influent from 22,158 ± 2859 mg/L to 118 ± 74 mg/L of the effluent. The system demonstrates average NH3-N, TN, and total phosphorus (TP) removal efficiencies of 72.9 ± 5.7, 72.8 ± 5.6, and 71.3 ± 9.9, respectively. Despite an average whole biological system removal of 50.6%, the anaerobic reactor eliminated 44.9% of the raw WW sulfate. Analyses of membrane fouling revealed that organic fouling was more pronounced in the anaerobic membrane, whereas aerobic membrane fouling displayed varied profiles due to differential microbial and oxidative activities. Key bacterial genera, such as Desulfobacterota in the anaerobic stage and nitrifiers in the aerobic stage, are identified as instrumental in the biological processes. The microbial profile reveals a shift from methanogenesis to sulfide-driven autotrophic denitrification and sulfammox, with evidence of an active denitrification pathway in anaerobic/anoxic conditions. The system showcases its potential for industrial application, underpinning environmental sustainability through improved wastewater management.
Collapse
Affiliation(s)
- Ishanka Prabhath Wimalaweera
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka;
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka;
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
| | - Fumin Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qihe Tang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tharindu Ritigala
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (I.P.W.); (F.Z.); (Q.T.); (T.R.); (Y.W.); (H.Z.)
- Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rohan Weerasooriya
- National Institute of Fundamental Studies, Hanthana Road, Kandy 20000, Sri Lanka;
| | - Shameen Jinadasa
- Department of Civil Engineering, University of Peradeniya, Kandy 20400, Sri Lanka;
- School of Engineering and Technology, Central Queensland University, Bundaberg, QLD 4670, Australia
| | - Sujithra Weragoda
- China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka;
- National Water Supply and Drainage Board, Kandy 20800, Sri Lanka
| |
Collapse
|
3
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, González-Martínez A, González-López J. Anticancer drugs impact the performance and prokaryotic microbiome of an aerobic granular sludge system operated in a sequential batch reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133674. [PMID: 38335605 DOI: 10.1016/j.jhazmat.2024.133674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/15/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Increased concerns exist about the presence of anticancer drugs in wastewater. However, knowledge of the impacts of anticancer drugs on the performance of the system and microbial communities during wastewater treatment processes is limited. We examined the effect of three anticancer drugs commonly detected in influents of wastewater treatment plants applied at three different concentration levels on the performance, efficiency of anticancer drug removal, and prokaryotic microbiome in an aerobic granular sludge system (AGS) operated in a sequential batch reactor (SBR). We showed that an AGS can efficiently remove anticancer drugs, with removal rates in the range of 53-100% depending on the type of drug and concentration level. Anticancer drugs significantly decreased the abundance of total bacterial and archaeal communities, an effect that was linked to reduced nitrogen removal efficiency. Anticancer drugs also reduced the diversity, altered the prokaryotic community composition, reduced network complexity, and induced a decrease of a wide range of predicted bacterial functions. Specific bacterial taxa responsive to the addition of anticancer drugs with known roles in nitrification and denitrification were identified. This study shows anticancer drugs should be monitored in the future as they can induce changes in the performance and microbiome of wastewater treatment technologies.
Collapse
Affiliation(s)
| | | | | | - Jesús González-López
- Institute of Water Research, University of Granada, C/Ramon y Cajal, 4, 18071 Granada, Spain
| |
Collapse
|
4
|
Wang H, Zhang L, Tian C, Fan S, Zheng D, Song Y, Gao P, Li D. Effects of nitrogen supply on hydrogen-oxidizing bacterial enrichment to produce microbial protein: Comparing nitrogen fixation and ammonium assimilation. BIORESOURCE TECHNOLOGY 2024; 394:130199. [PMID: 38092074 DOI: 10.1016/j.biortech.2023.130199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
To investigate the effects of nitrogen source supply on microbial protein (MP) production by hydrogen-oxidizing bacteria (HOB) under continuous feed gas provision, a sequencing batch culture comparison (N2 fixation versus ammonium assimilation) was performed. The results confirmed that even under basic cultivation conditions, N2-fixing HOB (NF-HOB) communities showed higher levels of CO2 and N2 fixation (190.45 mg/L Δ CODt and 11.75 mg/L Δ TNbiomass) than previously known, with the highest biomass yield being 0.153 g CDW/g COD-H2. Rich ammonium stimulated MP synthesis and the biomass accumulation of communities (increased by 7.4 ~ 14.3 times), presumably through the enhancement of H2 and CO2 absorption. The micro mechanism may involve encouraging the enrichment of species like Xanthobacter and Acinetobacter then raising the abundance of nitrogenase and glutamate synthase to facilitate the nitrogen assimilation. This would provide NF-HOB with ideas for optimizing their MP synthesis activity.
Collapse
Affiliation(s)
- Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Tian
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Fan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhan Song
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Gao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Wijerathna WSMSK, Wimalaweera TIP, Samarajeewa DR, Lindamulla LMLKB, Rathnayake RMLD, Nanayakkara KGN, Jegatheesan V, Wei Y, Jinadasa KBSN. Imperative assessment on the current status of rubber wastewater treatment: Research development and future perspectives. CHEMOSPHERE 2023; 338:139512. [PMID: 37474026 DOI: 10.1016/j.chemosphere.2023.139512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The environment has been significantly impacted by the rubber industry through the release of large quantities of wastewater during various industrial processes. Therefore, it is crucial to treat the wastewater from the rubber industry before discharging it into natural water bodies. With the understanding that alarmingly depleting freshwater sources need to be preserved for future generations, this paper reviews the status of the rubber industry and the pollution caused by them, focusing mainly on water pollution. The review pays special attention to the recent advancements in wastewater treatment techniques for rubber industry wastewater categorizing them into pre-treatment, secondary, and tertiary treatment processes while discussing the advantages and disadvantages. Through a comprehensive analysis of existing literature, it was determined that organic content and NH4+ are the most frequently focused water quality parameters, and despite some treatment methods demonstrating superior performance, many of the methods still face limitations and require further research to improve systems to handle high organic loading on the treatment systems and to implement them in industrial scale. The paper also explores the potential of utilizing untreated or treated wastewater and byproducts of wastewater treatment in contributing towards achieving several United Nations sustainable development goals (UN-SDGs); SDG 6, SDG 7, SDG 9, and SDG 12.
Collapse
Affiliation(s)
- W S M S K Wijerathna
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - T I P Wimalaweera
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - D R Samarajeewa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - L M L K B Lindamulla
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - R M L D Rathnayake
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - V Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Institute of Fundamental Studies, Hantana Road, Kandy, 20000, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
6
|
Tang M, Guo Z, Xu X, Sun L, Wang X, Yang Y, Chen J. Performance and microbial mechanism of eletrotrophic bio-cathode denitrification under low temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116960. [PMID: 36493545 DOI: 10.1016/j.jenvman.2022.116960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Insufficient amount of carbon in wastewater and low temperatures hinder the use of biological nitrogen removal for purification of wastewaters. Nitrogen removal using cold-tolerant electrotrophic cathodic microbes is a novel and unique autotrophic denitrification technique in which electrical current, not chemicals, is used as a source of electrons. In this study, integrated MFC (RW) and open-circuit MFC (RO) were cultured and acclimatized in stages at a low temperature (10 °C) to impart cold tolerance to electrotrophic cathodic microbes, investigate the effectiveness of simultaneous nitrification and denitrification (SND) process, and address the possible mechanism of microbial action. The results showed that (i) microbial communities in the RW system were successfully enriched with the cold-tolerant electrotrophic cathodic microbes after five stages, and (ii) the degree of NH4+-N removal and SND were 75.50% and 81.91%, respectively, but the respective values in the RO system were only 40.47% and 54.01%. The desirable SND efficiency was obtained in RW at a DO of ∼0.6 mg/L, a current of ∼20 mA, and pH ∼7.0. In RW, Thauera, Pesudomonas, and Hydrogenophaga were the main electrotrophic cathodic denitrifying bacteria with cold tolerance capable of degrading ammonia, nitrate, and nitrite through autotrophic denitrification and cathodic-driven bio-electrochemical denitrification. Besides, for RW, results from high throughput sequencing analysis revealed that the abundance of genes related to energy production and conversion, amino acid transport, and metabolism, signal transduction, environmental adaptation, and enzymatic activity (AMO, HAO, NAR, NIR, NOR, and NOS) were significantly higher than the corresponding parameters of the RO system. This may explain the reason behind RW having excellent ammonia and TN removal performance at low temperatures.
Collapse
Affiliation(s)
- Meizhen Tang
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China.
| | - Zhina Guo
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Xiaoyan Xu
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Lianglun Sun
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Xiaoning Wang
- Shandong Deli Environmental Protection Engineering Co. Ltd, PR China
| | - Yuewei Yang
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| | - Junfeng Chen
- School of Life Sciences, Qufu Normal University, No.57 Jingxuan West Road, Qufu, 273165, PR China
| |
Collapse
|
7
|
Zhong L, Wu T, Ding J, Xu W, Yuan F, Liu BF, Zhao L, Li Y, Ren NQ, Yang SS. Co-composting of faecal sludge and carbon-rich wastes in the earthworm's synergistic cooperation system: Performance, global warming potential and key microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159311. [PMID: 36216047 DOI: 10.1016/j.scitotenv.2022.159311] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Composting is an effective alternative for recycling faecal sludge into organic fertilisers. A microflora-earthworm (Eisenia fetida) synergistic cooperation system was constructed to enhance the composting efficiency of faecal sludge. The impact of earthworms and carbon-rich wastes (rice straw (RS) and sawdust (S)) on compost properties, greenhouse gas emissions, and key microbial species of composting were evaluated. The addition of RS or S promoted earthworm growth and reproduction. The earthworm-based system reduced the volatile solid of the final substrate by 13.19-16.24 % and faecal Escherichia coli concentrations by 1.89-3.66 log10 cfu/g dry mass compared with the earthworm-free system. The earthworm-based system increased electrical conductivity by 0.322-1.402 mS/cm and reduced C/N by 56.16-64.73 %. The NH4+:NO3- ratio of the final faecal sludge and carbon-rich waste was <0.16. The seed germination index was higher than 80 %. These results indicate that earthworms contribute to faecal sludge maturation. Earthworm addition reduced CO2 production. The simultaneous addition of earthworms and RS system (FRS2) resulted in the lowest global warming potential (GWP). The microbial diversity increased significantly over time in the RS-only system, whereas it initially increased and later decreased in the FRS2 system. Cluster analysis revealed that earthworms had a more significant impact on the microbial community than the addition of carbon-rich waste. Co-occurrence networks for earthworm-based systems were simple than those for earthworm-free systems, but the major bacterial genera were more complicated. Highly abundant key species (norank_f_Chitinophagaceae and norank_f_Gemmatimonadaceae) are closely related. Microbes may be more cooperative than competitive, facilitating the conversion of carbon and nitrogen in earthworm-based systems. This work has demonstrated that using earthworms is an effective approach for promoting the efficiency of faecal sludge composting and reducing GWP.
Collapse
Affiliation(s)
- Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Xu
- General Water of China Co., Ltd., Beijing 100022, China
| | - Fang Yuan
- General Water of China Co., Ltd., Beijing 100022, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yan Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
8
|
Tanikawa D, Motokawa D, Itoiri Y, Kimura ZI, Ito M, Nagano A. Biogas purification and ammonia load reduction in sewage treatment by two-stage down-flow hanging sponge reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158355. [PMID: 36041617 DOI: 10.1016/j.scitotenv.2022.158355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
In this study, a two-stage down-flow hanging sponge (TSDHS) reactor was used as biotrickling filter for biogas desulfurization by utilizing the anaerobic digester supernatant (ADS) of sewage sludge of an activated sludge process (ASP). The reactor comprises a closed-type first-stage down-flow hanging sponge (1st DHS) and an open-type second-stage down-flow hanging sponge (2nd DHS) reactors. In the 1st DHS, hydrogen sulfide in biogas was dissolved into the ADS, and then it was oxidized into elemental sulfur and sulfate by microbe using dissolved oxygen and nitrite in the ADS. More than 99.9 % of hydrogen sulfide was removed within 400 s of empty bed residence time, and >50 % of removed hydrogen sulfide was oxidized into elemental sulfur and accumulated at the surface of the sponge carrier in the 1st DHS. The 1st DHS effluent was fed into the 2nd DHS for nitrogen removal via nitrification and sulfur-based denitrification with the recirculation of the 2nd DHS effluent under nonaeration condition. In the 2nd DHS, 36.8 % of ammonia and 5.3 % of total inorganic nitrogen were removed. Sulfurimonas and Halothiobacillus were increased and contributed to the sulfur-based denitrification as well as the accumulation of elemental sulfur in the 1st DHS, respectively. In the 2nd DHS, Nitrosococcus, Nitrobacter, and Sulfuritalea were considered as the contributors of nitrogen removal via nitrification and sulfur-based denitrification. Further, this study shows that a TSDHS reactor can achieve not only desulfurization of biogas in the 1st DHS but also a 3.5 %-15 % reduction of the ammonia load in the 2nd DHS by effective utilization of the ADS during sewage treatment, assuming that the ADS is returned to the ASP.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan.
| | - Daisuke Motokawa
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Yuya Itoiri
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Zen-Ichiro Kimura
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506 Kure, Japan
| | - Masahiro Ito
- Technical Research & Development Center, Sanki Engineering Co., Ltd., P.C. 2420007 Yamato, Japan
| | - Akihiro Nagano
- Technical Research & Development Center, Sanki Engineering Co., Ltd., P.C. 2420007 Yamato, Japan
| |
Collapse
|
9
|
Zhang B, Deng J, Xie J, Wu H, Wei C, Li Z, Qiu G, Wei C, Zhu S. Microbial community composition and function prediction involved in the hydrolytic bioreactor of coking wastewater treatment process. Arch Microbiol 2022; 204:426. [PMID: 35751757 DOI: 10.1007/s00203-022-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/08/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
The hydrolytic acidification process has a strong ability to conduct denitrogenation and increase the biological oxygen demand/chemical oxygen demand ratio in O/H/O coking wastewater treatment system. More than 80% of the total nitrogen (TN) was removed in the hydrolytic bioreactor, and the hydrolytic acidification process contributed to the provision of carbon sources for the subsequent nitrification process. The structure and diversity of microbial communities were elaborated using high-throughput MiSeq of the 16S rRNA genes. The results revealed that the operational taxonomic units (OTUs) belonged to phyla Bacteroidetes, Betaproteobacteria, and Alphaproteobacteria were the dominant taxa involved in the denitrogenation and degradation of refractory contaminants in the hydrolytic bioreactor, with relative abundances of 22.94 ± 3.72, 29.77 ± 2.47, and 18.23 ± 0.26%, respectively. The results of a redundancy analysis showed that the OTUs belonged to the genera Thiobacillus, Rhodoplanes, and Hylemonella in the hydrolytic bioreactor strongly positively correlated with the chemical oxygen demand, TN, and the removal of phenolics, respectively. The results of a microbial co-occurrence network analysis showed that the OTUs belonged to the phylum Bacteroidetes and the genus Rhodoplanes had a significant impact on the efficiency of removal of contaminants that contained nitrogen in the hydrolytic bioreactor. The potential function profiling results indicate the complementarity of nitrogen metabolism, methane metabolism, and sulfur metabolism sub-pathways that were considered to play a significant role in the process of denitrification. These results provide new insights into the further optimization of the performance of the hydrolytic bioreactor in coking wastewater treatment.
Collapse
Affiliation(s)
- Baoshan Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jinsi Deng
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junting Xie
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haizhen Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Zemin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Guanglei Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, China.
| | - Shuang Zhu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
10
|
Pan J, Liu L, Pan H, Yang L, Su M, Wei C. A feasibility study of metal sulfide (FeS and MnS) on simultaneous denitrification and chromate reduction. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127491. [PMID: 34673399 DOI: 10.1016/j.jhazmat.2021.127491] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Metal sulfide-based biological process is considered as a promising biotechnology for next-generation wastewater treatment. However, it is not clear if simultaneous bio-reduction of nitrate and chromate was achievable in this process. This study aimed to evaluate the feasibility of metal sulfides (FeS and MnS) on simultaneous denitrification and chromate reduction in autotrophic denitrifying column bioreactors. Results showed that simultaneous reduction of nitrate and chromate was achieved using metal sulfides (FeS and MnS) as electron donors, in which sulfate was the sole soluble end-product. Apart from the sulfur element in the metal sulfides, Fe(II) and Mn(II) were also involved in nitrate and chromate reduction as indicative by the formation of their oxidative states compounds. In microbial communities, SHD-231 and Thiobacillus were the most predominant bacteria, which might have played important roles in simultaneous denitrification and chromate reduction. Compared to FeS, MnS showed a higher performance on nitrate and chromate removal, which could also reduce the toxic inhibition of chromate on nitrate reduction. According to results of XRD and XPS, as well as a lower sulfate production in the FeS system, FeS might have been covered easily to hydroxides due to its bio-oxidation, which limited mass transfer efficiency and bio-availability of FeS. The findings in this study offered insights in the development of promising approaches for the treatment of toxic and hazardous compounds using metal sulfide.
Collapse
Affiliation(s)
- Jianxin Pan
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Liangliang Liu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Hanping Pan
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lihui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Meirong Su
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
11
|
Clagnan E, Brusetti L, Pioli S, Visigalli S, Turolla A, Jia M, Bargna M, Ficara E, Bergna G, Canziani R, Bellucci M. Microbial community and performance of a partial nitritation/anammox sequencing batch reactor treating textile wastewater. Heliyon 2021; 7:e08445. [PMID: 34901500 PMCID: PMC8637490 DOI: 10.1016/j.heliyon.2021.e08445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 01/04/2023] Open
Abstract
Implementation of onsite bioremediation technologies is essential for textile industries due to rising concerns in terms of water resources and quality. Partial nitritation-anaerobic ammonium oxidation (PN/A) processes emerged as a valid, but unexplored, solution. In this study, the performance of a PN/A pilot-scale (9 m3) sequencing batch reactor treating digital textile printing wastewater (10-40 m3 d-1) was monitored by computing nitrogen (N) removal rate and efficiencies. Moreover, the structure of the bacterial community was assessed by next generation sequencing and quantitative polymerase chain reaction (qPCR) analyses of several genes, which are involved in the N cycle. Although anaerobic ammonium oxidation activity was inhibited and denitrification occurred, N removal rate increased from 16 to 61 mg N g VSS-1 d-1 reaching satisfactory removal efficiency (up to 70%). Ammonium (18-70 mg L-1) and nitrite (16-82 mg L-1) were detected in the effluent demonstrating an unbalance between the aerobic and anaerobic ammonia oxidation activity, while constant organic N was attributed to recalcitrant azo dyes. Ratio between nitrification and anammox genes remained stable reflecting a constant ammonia oxidation activity. A prevalence of ammonium oxidizing bacteria and denitrifiers suggested the presence of alternative pathways. PN/A resulted a promising cost-effective alternative for textile wastewater N treatment as shown by the technical-economic assessment. However, operational conditions and design need further tailoring to promote the activity of the anammox bacteria.
Collapse
Affiliation(s)
- Elisa Clagnan
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Lorenzo Brusetti
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Silvia Pioli
- Free University of Bolzano, Faculty of Science and Technology, Piazza Università 1, 39100 Bolzano, Italy
| | - Simone Visigalli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Andrea Turolla
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Mingsheng Jia
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Martina Bargna
- Lariana Depur Spa, Via Laghetto 1, 22073 Fino Mornasco, Italy
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Giovanni Bergna
- Lariana Depur Spa, Via Laghetto 1, 22073 Fino Mornasco, Italy
| | - Roberto Canziani
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| | - Micol Bellucci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), Piazza L. da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
12
|
Dinh NT, Nguyen TH, Mungray AK, Duong LD, Phuong NT, Nguyen DD, Chung WJ, Chang SW, Tuan PD. Biological treatment of saline domestic wastewater by using a down-flow hanging sponge reactor. CHEMOSPHERE 2021; 283:131101. [PMID: 34182628 DOI: 10.1016/j.chemosphere.2021.131101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/29/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, the effect of salinity on the removal of organic matter and nitrogen concentrations in bioreactor was investigated using a hybrid bench scale down-flow hanging sponge (DHS) system for 145 days of operation. The reactor had three identical sections that were filled to 30% volume with Bio-Bact to serve as attached media. The DHS reactor was fed with domestic wastewater that was mixed with increasing concentration of sodium chloride from 0.5 to 3.0% stepwise. The influent and effluent concentrations of BOD5, CODCr, NH4+-N, and TN were analyzed to evaluate the performance of the DHS reactor during the operational period. Results indicate that when salinity was increased from 0.5 to 3.0%, the removal efficiency gradually decreased from 80.3% to 61.5% for CODCr, 76.4%-65.0% for BOD5, 64.1%-48.4% for NH4+-N, and 50%-36% for TN. Besides, the changes in biofilm characteristics with increasing salinity were observed during the operational period. The results indicate that salinity has a significant influence on the removal of organic matters and nitrogen transformation in the biofilm of the bioreactor. Even so, the DHS reactor revealed a good potential for treating saline wastewater.
Collapse
Affiliation(s)
- Nga T Dinh
- Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment, Viet Nam.
| | - T Hiep Nguyen
- Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment, Viet Nam
| | - Arvind Kumar Mungray
- Department of Chemical Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - La Duc Duong
- Institute of Chemistry and Materials, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen-Tri Phuong
- Département de Chimie, Biochimie et Physique, Université Du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, QC, G8Z 4M3, Canada
| | - D Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam; Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea.
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - S W Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Phan D Tuan
- Research Institute for Sustainable Development, Hochiminh City University of Natural Resources and Environment, Viet Nam
| |
Collapse
|
13
|
Tanikawa D, Kataoka T, Ueno T, Minami T, Motokawa D, Itoiri Y, Kimura ZI. Seeding the drainage canal of a wastewater treatment system for the natural rubber industry with rubber for the enhanced removal of organic matter and nitrogen. CHEMOSPHERE 2021; 283:131233. [PMID: 34146874 DOI: 10.1016/j.chemosphere.2021.131233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Current pretreatment methods for wastewater from natural rubber (NR) factories either have low rubber recovery efficiency or are costly to operate. A wastewater treatment system was developed that combines a pretreatment canal (PTC) seeded with rubber, an anaerobic baffled reactor (ABR), and a down-flow hanging sponge (DHS) reactor. The PTC is simple to implement and contributes to not only rubber recovery but also organic matter removal in the ABR and nitrogen removal in the DHS reactor. In experiments, the PTC recovered 16.6% of residual rubber through coagulation. The ABR increased the chemical oxygen demand removal efficiency and methane recovery compared with other anaerobic reactors treating raw NR wastewater. The DHS reactor removed 30.7% of total inorganic nitrogen (TIN) by nitrification, anaerobic ammonia oxidation and denitrification. Feeding the bottom stage of the DHS reactor with sodium acetate solution increased the TIN removal efficiency to 87.8%. The water quality of the final effluent achieved the Vietnamese standards for the NR industry. Microbial community analysis was performed to identify the dominant microorganisms and mechanisms in the PTC, ABR, and DHS reactor.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan.
| | - Taiki Kataoka
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan
| | - Taichi Ueno
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan
| | - Taisuke Minami
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan
| | - Daisuke Motokawa
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan
| | - Yuya Itoiri
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan
| | - Zen-Ichiro Kimura
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, P.C. 7378506, Kure, Japan
| |
Collapse
|
14
|
Zhao R, Feng J, Huang J, Li X, Li B. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142632. [PMID: 33045611 DOI: 10.1016/j.scitotenv.2020.142632] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
High concentrations of antibiotics can exert strong selection pressures on the microbial community and promote the emergence and dissemination of antibiotic resistance genes (ARGs). The activated sludge reactors treating ampicillin, cephalexin and chloramphenicol production wastewater were established to investigate the responses of microbial community, ARGs and mobile genetic elements (MGEs) to antibiotics. Antibiotic selection pressures significantly declined the microbial diversity and changed microbial community structures. Based on metagenomic analysis, a total of 500 ARG subtypes affiliated with 18 ARG types were identified and 63 ARGs were shared by all samples. The substantial increase of ARG abundance and the shifts of ARG profiles were significantly correlated with antibiotic types and concentrations. The evident enrichment of non-corresponding ARG types suggested the strong co-selection effects of the target antibiotics. Additionally, metagenomic analysis revealed the occurrence of 104 MGEs belonging to various types and the five dominant MGEs were tnpA, intI1, tniA, tniB and IS91. The ARG-MGE co-occurrence associations implied the potential mobility of ARGs. Network analysis also demonstrated that five ARG types (aminoglycoside, beta-lactam, chloramphenicol, multidrug and tetracycline resistance genes) tended to co-occur internally and the obvious co-occurrence patterns among different ARG types indicated the potential for resistance co-selection. Moreover, 15 bacterial genera were speculated as the hosts of diverse ARGs. This study provides a comprehensive overview of the occurrence of ARGs and MGEs and is valuable for the risk assessment and management of antibiotic resistance.
Collapse
Affiliation(s)
- Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jie Feng
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Research Academy of Environmental Sciences, Shenzhen 518001, China
| | - Jin Huang
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaoyan Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
15
|
Niu J, Feng Y, Wang N, Liu S, Liang Y, Liu J, He W. Effects of high ammonia loading and in-situ short-cut nitrification in low carbon‑nitrogen ratio wastewater treatment by biocathode microbial electrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142641. [PMID: 33049541 DOI: 10.1016/j.scitotenv.2020.142641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The microbial electrochemical system (MES) has great advantages in wastewater treatment for rapid chemical oxygen demand (COD) removal and low sludge yield rate. Herein, biocathode MES was proposed to remove COD from high-ammonia wastewater with low carbon‑nitrogen ratio and regulate the nitrogen forms in effluent for ANAMMOX process. The biocathode was more sensitive to ammonia nitrogen (NH4+-N) than anode and determined the power generation of MES. With COD of 500-550 mg L-1 in influent, increasing NH4+-N from 50 to 150 mg L-1 improved maximum power output (Pmax) from 3.0 ± 0.2 to 3.4 ± 0.1 W m-3, which was then reduced with further increase of NH4+-N from 300 to 600 mg L-1. However, for the cathodic reductive current, the negative effects of ammonia only revealed with NH4+-N ≥ 450 mg L-1. The cathodic equilibrium potential drop determined the power degradation, because the increased reductive compounds (NH4+ and COD) in catholyte. The high NH4+-N reduced the abundance of denitrifiers, exoelectrogens and organic-degrading bacteria on electrodes, while that of nitrogen-fixing bacteria increased. External alkalinity addition achieved in-situ short-cut nitrification and nitrite accumulation. With comparable NH4+ and NO2-, limited NO3- and low COD, the biocathode MES effluent was then suitable for subsequence ANAMMOX process.
Collapse
Affiliation(s)
- Jiaojiao Niu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yujie Feng
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Naiyu Wang
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shujuan Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yuhai Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Ecology and Environment, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
16
|
Chan R, Chiemchaisri C, Chiemchaisri W. Effect of sludge recirculation on removal of antibiotics in two-stage membrane bioreactor (MBR) treating livestock wastewater. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1541-1553. [PMID: 33312660 PMCID: PMC7721752 DOI: 10.1007/s40201-020-00571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Two-stage MBR consisting of anaerobic and aerobic reactors was operated at total hydraulic retention time (HRT) of 48 h for the treatment of livestock wastewater containing antibiotics, i.e. amoxicillin (AMX), tiamulin (TIA), and chlortetracycline (CTC), under the (1st) absence and (2nd) presence of sludge recirculation between the reactors. During the operation with sludge recirculation, the removals of organic and nitrogen were enhanced. Meanwhile, the removals of TIA and CTC were found to decrease by 9% and 20% in the aerobic reactor but increased by 5% to 7% in the anaerobic reactor due to the relocation of biomass from the aerobic to the anaerobic reactor. A high degree of AMX biodegradation under both anaerobic and aerobic conditions and partial biodegradation of TIA and CTC under aerobic conditions were confirmed in batch experiments. Moreover, the effect of sludge recirculation on biomass and pollutant removal efficiencies in the 2-stage MBR was revealed using microbial community analyses. Membrane filtration also helped to retain the adsorbed antibiotics associated with small colloidal particles in the system.
Collapse
Affiliation(s)
- Rathborey Chan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900 Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900 Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
17
|
Zhang L, Fu G, Zhang Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community. BIORESOURCE TECHNOLOGY 2020; 313:123660. [PMID: 32562967 DOI: 10.1016/j.biortech.2020.123660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
The steady mixed biofilm electrode (MBE) was investigated for the removal of nitrogen from mustard tuber wastewater. Results showed that complete nitrogen removal occurred over a wide initial chemical oxygen demand (COD)/total nitrogen (TN) ratio ranging from 2.8 to 9.8 using MBE. MBE revealed broad-spectrum applicability for the treatment of high-salinity wastewater containing different forms of nitrogen. Bio-electrochemical process, in-situ heterotrophic nitrogen reduction, ammonia stripping, nitrogen assimilation, and endogenous denitrification coexisted for the removal of nitrogen. Batch activity tests and functional microorganism analysis confirmed that autotrophic/heterotrophic nitrification, anoxic/aerobic denitrification, and nitrogen bio-electrochemical reduction cooperated to achieve efficient nitrogen conversion. More importantly, the analysis of the preliminary energy balance demonstrated that MBE was self-sustaining. The long-term operation stability of MBE was of great importance for its practical application. The results provided herein offer new insights into bioelectrochemical nitrogen removal and resource treatment of high-salinity wastewater.
Collapse
Affiliation(s)
- Linfang Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guokai Fu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Zhi Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China
| |
Collapse
|
18
|
Huang JN, Wen B, Zhu JG, Zhang YS, Gao JZ, Chen ZZ. Exposure to microplastics impairs digestive performance, stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (Poecilia reticulata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:138929. [PMID: 32466972 DOI: 10.1016/j.scitotenv.2020.138929] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are widely distributing in aquatic environment. They are easily ingested by aquatic organisms and accumulate in digestive tract especially of intestine. To explore the potential effects of MPs on intestine, here we, using juvenile guppy (Poecilia reticulata) as experimental animal, investigated the response characteristics of digestion, immunity and gut microbiota. After exposure to 100 and 1000 μg/L concentrations of MPs (polystyrene; 32-40 μm diameters) for 28 days, we observed that MPs could exist in guppy gut and induce enlargement of goblet cells. Activities of digestive enzymes (trypsin, chymotrypsin, amylase and lipase) in guppy gut generally reduced. MPs stimulated the expression of immune cytokines (TNF-α, IFN-γ, TLR4 and IL-6). Through high throughput sequencing of 16S rRNA gene, decreases in diversity and evenness and changed composition of microbiota were found in guppy gut. PICRUSt analysis revealed that MPs might have effects on intestinal microbiota functions, such as inhibition of metabolism and repair pathway. Our findings suggested that MPs could retain in the gut of juvenile guppy, impair digestive performance, stimulate immune response and induce microbiota dysbiosis in guppy gut. The results obtained here provide new insights into the potential risks of MPs to aquatic animals.
Collapse
Affiliation(s)
- Jun-Nan Huang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Guo Zhu
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Shen Zhang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
19
|
Cultivation of Microalgae and Cyanobacteria: Effect of Operating Conditions on Growth and Biomass Composition. Molecules 2020; 25:molecules25122834. [PMID: 32575444 PMCID: PMC7356364 DOI: 10.3390/molecules25122834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/03/2023] Open
Abstract
The purpose of this work is to define optimal growth conditions to maximise biomass for batch culture of the cyanobacterium Arthrospira maxima and the microalgae Chlorella vulgaris, Isochrysis galbana and Nannochloropsis gaditana. Thus, we study the effect of three variables on cell growth: i.e., inoculum:culture medium volume ratio (5:45, 10:40, 15:35 and 20:30 mL:mL), light:dark photoperiod (8:16, 12:12 and 16:8 h) and type of culture medium, including both synthetic media (Guillard’s F/2 and Walne’s) and wastewaters. The results showed that the initial inoculum:culture medium volume ratio, within the range 5:45 to 20:30, did not affect the amount of biomass at the end of the growth (14 days), whereas high (18 h) or low (6 h) number of hours of daily light was important for cell growth. The contribution of nutrients from different culture media could increase the growth rate of the different species. A. maxima was favoured in seawater enriched with Guillard’s F/2 as well as C. vulgaris and N. gaditana, but in freshwater medium. I. galbana had the greatest growth in the marine environment enriched with Walne’s media. Nitrogen was the limiting nutrient for growth at the end of the exponential phase of growth for C. vulgaris and N. gaditana, while iron was for A. maxima and I. galbana. The growth in different synthetic culture media also determines the biochemical composition of each of the microalgae. All species demonstrated their capability to grow in effluents from a wastewater treatment plant and they efficiently consume nitrogen, especially the three microalga species.
Collapse
|
20
|
Lin TF, Jegatheesan V, Shu L, Rene ER. Challenges in Environmental Science/Engineering and Emerging Sustainable Practices for Future Water Conservation. CHEMOSPHERE 2020; 238:124591. [PMID: 31445329 DOI: 10.1016/j.chemosphere.2019.124591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
| | | | - Li Shu
- LJS Environment, Australia
| | | |
Collapse
|