1
|
Li LX, Wang L, Wang S, Zhang XN, Liu H, Zhang YJ, Wu CT, Zhang CL, Zeng T. Allyl methyl disulfide (AMDS) prevents N,N-dimethyl formamide-induced liver damage by suppressing oxidative stress and NLRP3 inflammasome activation. Food Chem Toxicol 2023; 182:114198. [PMID: 37995826 DOI: 10.1016/j.fct.2023.114198] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
N,N-dimethylformamide (DMF), a widely consumed industrial solvent with persistent characteristics, can induce occupational liver damage and pose threats to the general population due to the enormous DMF-containing industrial efflux and emission from indoor facilities. This study was performed to explore the roles of allyl methyl disulfide (AMDS) in liver damage induced by DMF and the underlying mechanisms. AMDS was found to effectively suppress the elevation in the liver weight/body weight ratio and serum aminotransferase activities, and reduce the mortality of mice induced by DMF. In addition, AMDS abrogated DMF-elicited increases in malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels and decreases in glutathione (GSH) levels in mouse livers. The increase in macrophage number, mRNA expression of M1 macrophage biomarkers, and protein expression of key components in the NF-κB pathway and NLRP3 inflammasome induced by DMF exposure were all suppressed by AMDS in mouse livers. Furthermore, AMDS inhibited DMF-induced cell damage and NF-κB activation in cocultured AML12 hepatocytes and J774A.1 macrophages. However, AMDS per se did not significantly affect the protein level and activity of CYP2E1. Collectively, these results demonstrate that AMDS effectively ameliorates DMF-induced acute liver damage possibly by suppressing oxidative stress and inactivating the NF-κB pathway and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Long-Xia Li
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuo Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yan-Jing Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chuan-Tao Wu
- The Animal Research Center, Shandong University, Jinan, Shandong, 250012, China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Zhang P, Xie C, Li Y, Sun B, Yao S, He J, Zhang K, Zhu S, Kong L. Effective reinforcement ozone oxidation degradation of N,N-dimethylformamide with cobalt doping micro electrolysis composite. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
3
|
Wang X, Guan F, Huang Z, He H, Wang L, Li K. Study on low temperature plasma combined with AC/Mn + TiO 2-Al 2O 3 catalytic treatment of sewage-containing polyacrylamide. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:879-891. [PMID: 36853768 DOI: 10.2166/wst.2023.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the introduction of tertiary oil recovery technology, polymer oil drive technology has effectively improved the recovery rate of crude oil, but the resulting oilfield wastewater-containing polyacrylamide (PAM) is viscous and complex in composition, which brings difficulties to wastewater treatment. The treatment of this kind of wastewater has become an urgent problem to be solved, and the removal of PAM is the key. In this paper, a dielectric barrier discharge (DBD) co-catalyst was used to treat PAM-containing solutions to investigate the effect of different catalytic reaction systems on the degradation of PAM. The morphological changes of the PAM solution before and after the reaction were also studied by the environmental electron microscope scanner (ESEM), and the information of the functional groups in the solution before and after the reaction was studied by infrared spectroscopy analysis of the PAM solution. The degradation rate rose by 26.3% in comparison to that without discharge when AC/Mn + TiO2 and Al2O3 were combined and catalyzed at a mass ratio of 2:1 and a discharge period of 300 min. The degradation rate rose by 19.3 and 6.8%, respectively, in comparison to AC/Mn + TiO2 and Al2O3-catalyzed alone. It demonstrates that this catalytic system has the optimum catalytic effect.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Fengwei Guan
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Zhigang Huang
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Hao He
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Lu Wang
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Kaifeng Li
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| |
Collapse
|
4
|
Kong Z, Hao T, Chen H, Xue Y, Li D, Pan Y, Li Y, Li YY, Huang Y. Anaerobic membrane bioreactor for carbon-neutral treatment of industrial wastewater containing N, N-dimethylformamide: Evaluation of electricity, bio-energy production and carbon emission. ENVIRONMENTAL RESEARCH 2023; 216:114615. [PMID: 36272592 DOI: 10.1016/j.envres.2022.114615] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
The feasibility of anaerobic membrane bioreactor (AnMBR) for the treatment of N, N-dimethylformamide (DMF)-containing wastewater was theoretically compared with the conventional activated sludge (CAS) process in this study. The electricity consumption and expenditure, bio-energy production and CO2 emission were investigated using the operational results of a lab-scale AnMBR operated in a long-term operation. The AnMBR was capable of producing bio-methane from wastewater and generated 3.45 kWh/m3 of electricity as recovered bio-energy while the CAS just generated 1.17 kWh/m3 of electricity from the post-treatment of excessive sludge disposal. The large quantity of bio-methane recovered by the AnMBR can also be sold as sustainable bioresource for the use of household natural gas with a theoretical profit gain of 29,821 US$/year, while that of the CAS was unprofitable. The AnMBR was also demonstrated to significantly reduce the carbon emission by obtaining a theoretical negative CO2 production of -2.34 kg CO2/m3 with the recycle of bio-energy while that for the CAS was 4.50 kg CO2/m3. The results of this study demonstrate that the AnMBR process has promising potential for the carbon-neutral treatment of high-strength DMF-containing wastewater in the future.
Collapse
Affiliation(s)
- Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan.
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410004, China
| | - Yi Xue
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi, 980-8579, Japan
| | - Yong Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
5
|
Yu J, Yan W, Zhu B, Xu Z, Hu S, Xi W, Lan Y, Han W, Cheng C. Degradation of carbamazepine by high-voltage direct current gas-liquid plasma with the addition of H 2O 2 and Fe 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77771-77787. [PMID: 35687287 DOI: 10.1007/s11356-022-21250-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Carbamazepine (CBZ) is a typical psychotropic pharmaceutical which is one of the most commonly detected persistent pharmaceuticals in the environment. The degradation of CBZ in the aqueous solution was studied by a direct current (DC) gas-liquid phase discharge plasma combined with different catalysts (H2O2 or Fe2+) in this study. The concentrations of reactive species (H2O2, O3, and NO3-) and •OH radical yield in the liquid were measured during the discharge process. The various parameters that affect the degradation of CBZ, such as discharge powers, initial concentrations, initial pH values, and addition of catalysts, were investigated. The energy efficiency was 25.2 mg·kW-1·h-1 at 35.7 W, and the discharge power at 35.7 W was selected to achieve the optimal balance on the degradation effect and energy efficiency. Both acidic and alkaline solution conditions were conducive to promoting the degradation of CBZ. Both H2O2 and Fe2+ at low concentration (10-100 mg/L of Fe2+, 0.05-2.0 mmol/L of H2O2) were observed contributing to the improvement of the CBZ degradation rate, while the promotional effect of CBZ degradation was weakened even inhibition would occur at high concentrations (100-200 mg/L of Fe2+, 2.0-5.0 mmol/L of H2O2). The degradation rate of CBZ was up to 99.1%, and the total organic carbon (TOC) removal efficiency of CBZ was up to 67.1% in the plasma/Fe2+ (100 mg/L) system at 48 min, which suggested that high degradation rate and mineralization efficiency on CBZ could be achieved by employing Fe2+ as a catalyst. Based on the intermediate products identified by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS), the possible degradation pathways were proposed. Finally, the growth inhibition assay with Escherichia coli (E. coli) showed that the toxicity of plasma/Fe2+-treated CBZ solution decreased and a relatively low solution toxicity could be achieved. Thus, the plasma/catalyst could be an effective technology for the degradation of pharmaceuticals in aqueous solutions.
Collapse
Affiliation(s)
- Jinming Yu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Weiwen Yan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Bin Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zimu Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Shuheng Hu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Wenhao Xi
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Yan Lan
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, People's Republic of China
| | - Wei Han
- Institute of Health and Medical Technology, Anhui Province Key Laboratory of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Cheng Cheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230031, People's Republic of China.
| |
Collapse
|
6
|
Chen Y, Wang M, Wang W, Zeng Y, Fan X, Tu M, Ma Y, Wei D. Metabolic Engineering for the Comprehensive Utilization of N, N-Dimethylformamide-Containing Wastewater. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13574-13582. [PMID: 36223298 DOI: 10.1021/acs.jafc.2c05240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
N, N-dimethylformamide is frequently present in industrial wastewater and is environmentally detrimental. The current study aims to assess the utilization and biodegradation of N, N-dimethylformamide-containing wastewater to lessen the associated environmental load. Results show that addition of wastewater containing N, N-dimethylformamide to Trichoderma reesei fermentation media enhances cellulase production and facilitates cellulose hydrolysis. However, N, N-dimethylformamide is a cellulase enhancer that is not degraded during cellulase production in T. reesei fermentation and is retained in the N, N-dimethylformamide-enhanced cellulase solution. Indeed, the cellulosic sugar solution generated via lignocellulose hydrolysis with N, N-dimethylformamide-enhanced cellulase retains N, N-dimethylformamide. We further identified three core enzyme modules─N, N-dimethylformamidase, dimethylamine dehydrogenase, and methylamine dehydrogenase enzyme─which were inserted into Escherichia coli to develop metabolically engineered strains. These strains degraded N, N-dimethylformamide and produced succinate using N, N-dimethylformamide-enhanced cellulosic sugar as the substrate. The platform described here can be applied to effectively convert waste into valuable bioproducts.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Jiangsu YIMING Biological Technology CO., LTD, 22 Wenzhou Road, Shuyang County, Suqian City, Jiangsu 223699, China
| | - Yi Zeng
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingjia Fan
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Maobing Tu
- Department of Chemical and environmental Engineering, University of Cincinnati, 2901 Woodside Dr, Cincinnati, Ohio 45221, United States
| | - Yushu Ma
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
7
|
Kong Z, Xue Y, Hao T, Zhang Y, Wu J, Chen H, Song L, Rong C, Li D, Pan Y, Li Y, Li YY. Carbon-neutral treatment of N, N-dimethylformamide-containing industrial wastewater by anaerobic membrane bioreactor (AnMBR): Bio-energy recovery and CO 2 emission reduction. BIORESOURCE TECHNOLOGY 2022; 358:127396. [PMID: 35640814 DOI: 10.1016/j.biortech.2022.127396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
High-strength industrial wastewater containing approximately 2000 mg/L of N, N-dimethylformamide (DMF) was treated by the anaerobic membrane bioreactor (AnMBR) during a long-term operation with the concept of carbon neutrality in this study. Bio-methane was recovered as bio-energy or bio-resource from DMF-containing wastewater along with the CO2 emission reduction. The results are clear evidence of the feasibility of carbon-neutral treatment of DMF-containing wastewater by the AnMBR. With an effective degradation under the organic loading rate of 6.53 COD kg/m3/d at the HRT of 12 h, the AnMBR completely covered the energy consumption during long-term operation by saving electricity of 4.16 kWh/m3 compared with the conventional activated sludge process. The CO2 emission of the AnMBR was just 1.06 kg/m3, remarkably reducing 1.45 kg/m3 of CO2. The treatment of DMF-containing wastewater by the AnMBR perfectly realized the goal of carbon neutrality, and was considered as an alternative to the conventional activated sludge process.
Collapse
Affiliation(s)
- Zhe Kong
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| | - Yi Xue
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiang'an Road, Xiang'an District, Xiamen, Fujian 361102, China
| | - Jiang Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Liuying Song
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dapeng Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yang Pan
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yong Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
8
|
Huang Y, Guo D, Chen Y, Xu Y, Chen H, Dong X, Li S. Catalytic degradation of dinotefuran by dielectric barrier discharge plasma combined with La-doping TiO 2. ENVIRONMENTAL TECHNOLOGY 2022; 43:2380-2390. [PMID: 33487132 DOI: 10.1080/09593330.2021.1880488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Degradation of neonicotinoid insecticide dinotefuran (DIN) in dielectric barrier discharge (DBD) non-thermal plasma combined with lanthanum-doped titanium dioxide (La-TiO2) system was investigated. A La-TiO2 catalyst was prepared by the sol-gel method and characterized by SEM, XRD, and DRS. The effects of various factors (initial concentration, initial pH, input power, and addition of metal ions) on the removal rate of DIN were evaluated. The results indicated that when the initial concentration, input power, initial pH, and Fe2+ catalyst ions were 100 mg/L, 150 W, 10.5 and 50 mg/L, respectively, the DIN degradation efficiency was improved to 99.0% by coupling 10 wt% La-TiO2 at 180 min. La-TiO2 showed excellent catalytic performance on DIN degradation in a DBD system. The removal rate decreased with the presence of H2O2 and a scavenger, manifesting that HO∙ plays an imperative role in the degradation process. Furthermore, intermediate products were analyzed by MS and the possible degradation pathway of DIN was proposed.
Collapse
Affiliation(s)
- Yixuan Huang
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Dan Guo
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Yongyang Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Yanjia Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Hao Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Xiaochun Dong
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
| | - Shanping Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, People's Republic of China
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Qingdao, People's Republic of China
| |
Collapse
|
9
|
Duan C, Tanaka M, Watanabe T. N, N-Dimethylformamide Decomposition by DC Water Plasma at Atmospheric Pressure. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021. [DOI: 10.1252/jcej.21we019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chengyuan Duan
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University
| | - Manabu Tanaka
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University
| | - Takayuki Watanabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University
| |
Collapse
|
10
|
Massima Mouele ES, Tijani JO, Badmus KO, Pereao O, Babajide O, Zhang C, Shao T, Sosnin E, Tarasenko V, Fatoba OO, Laatikainen K, Petrik LF. Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1683. [PMID: 33578670 PMCID: PMC7916394 DOI: 10.3390/ijerph18041683] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
Persistent pharmaceutical pollutants (PPPs) have been identified as potential endocrine disruptors that mimic growth hormones when consumed at nanogram per litre to microgram per litre concentrations. Their occurrence in potable water remains a great threat to human health. Different conventional technologies developed for their removal from wastewater have failed to achieve complete mineralisation. Advanced oxidation technologies such as dielectric barrier discharges (DBDs) based on free radical mechanisms have been identified to completely decompose PPPs. Due to the existence of pharmaceuticals as mixtures in wastewater and the recalcitrance of their degradation intermediate by-products, no single advanced oxidation technology has been able to eliminate pharmaceutical xenobiotics. This review paper provides an update on the sources, occurrence, and types of pharmaceuticals in wastewater by emphasising different DBD configurations previously and currently utilised for pharmaceuticals degradation under different experimental conditions. The performance of the DBD geometries was evaluated considering various factors including treatment time, initial concentration, half-life time, degradation efficiency and the energy yield (G50) required to degrade half of the pollutant concentration. The review showed that the efficacy of the DBD systems on the removal of pharmaceutical compounds depends not only on these parameters but also on the nature/type of the pollutant.
Collapse
Affiliation(s)
- Emile S. Massima Mouele
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Jimoh O. Tijani
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Chemistry, Federal University of Technology, PMB 65, P.O. Box 920 Minna, Niger State 920001, Nigeria
| | - Kassim O. Badmus
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omoniyi Pereao
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Omotola Babajide
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
- Department of Mechanical Engineering, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - Cheng Zhang
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Tao Shao
- Beijing International S&T Cooperation Base for Plasma Science, Energy Conversion, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China; (C.Z.); (T.S.)
| | - Eduard Sosnin
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Victor Tarasenko
- Institute of High Current Electronics, Russian Academy of Sciences, 634055 Tomsk, Russia; (E.S.); (V.T.)
| | - Ojo O. Fatoba
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| | - Katri Laatikainen
- Department of Separation Science, Lappeenranta-Lahti University of Technology LUT, P.O. Box 20, FI-53851 Lappeenranta, Finland;
| | - Leslie F. Petrik
- Environmental Nano Science Research Group, Department of Chemistry, University of the Western Cape, Bellville, Cape Town 7535, South Africa; (J.O.T.); (K.O.B.); (O.P.); (O.B.); (O.O.F.)
| |
Collapse
|
11
|
Gavahian M, Sarangapani C, Misra NN. Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies. Food Res Int 2021; 141:110138. [PMID: 33642005 DOI: 10.1016/j.foodres.2021.110138] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/27/2022]
Abstract
Pesticide and agrochemical residues in food and water are among hazardous chemicals that are associated with adverse health effects. Consequently, technologies for pesticide abatement in food and water remain in focus. Cold plasma is an emerging decontamination technology, that is being increasingly explored for the abatement of agrochemical and pesticide residue in food and water. In some cases, rapid and complete degradation of pesticide residues has come to light. Such promising results encourage exploring scale-up and commercialization. To achieve this, unraveling mechanisms involved in plasma decontamination and the nature of degradation products is needed. The present review identifies the mechanisms involved in plasma- assisted removal of pesticide residues from food and water, draws parallels with mechanism of ozone and ultraviolet technologies, investigates the chemistry of the intermediates and degradates, and identifies some future research needs. The review recognizes that mechanisms involved in plasma processes have overlapping similarities to those identified for ozone and ultraviolet light, involving oxidation by hydroxyl radical and photo-oxidation. The toxicity of intermediates and degradates in plasma processing have not received much attention. The safety aspects of end products form plasma led degradation of pesticides should be considered for practical exploitation. Identification of intermediates and degradation products, recognition of most potent plasma species, understanding the influence of co-existing entities, the energy efficiency of plasma reactors, and the process economics deserve research focus.
Collapse
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| | - Chaitanya Sarangapani
- School of Food Science and Environmental health, Technological University Dublin, Dublin, Ireland
| | - N N Misra
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
12
|
Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts 2020. [DOI: 10.3390/catal10121438] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Non-thermal plasma is one of the most promising technologies used for the degradation of hazardous pollutants in wastewater. Recent studies evidenced that various operating parameters influence the yield of the Non-Thermal Plasma (NTP)-based processes. In particular, the presence of a catalyst, suitably placed in the NTP reactor, induces a significant increase in process performance with respect to NTP alone. For this purpose, several researchers have studied the ability of NTP coupled to catalysts for the removal of different kind of pollutants in aqueous solution. It is clear that it is still complicated to define an optimal condition that can be suitable for all types of contaminants as well as for the various types of catalysts used in this context. However, it was highlighted that the operational parameters play a fundamental role. However, it is often difficult to understand the effect that plasma can induce on the catalyst and on the production of the oxidizing species most responsible for the degradation of contaminants. For this reason, the aim of this review is to summarize catalytic formulations coupled with non-thermal plasma technology for water pollutants removal. In particular, the reactor configuration to be adopted when NTP was coupled with a catalyst was presented, as well as the position of the catalyst in the reactor and the role of the main oxidizing species. Furthermore, in this review, a comparison in terms of degradation and mineralization efficiency was made for the different cases studied.
Collapse
|
13
|
Ott LC, Appleton HJ, Shi H, Keener K, Mellata M. High voltage atmospheric cold plasma treatment inactivates Aspergillus flavus spores and deoxynivalenol toxin. Food Microbiol 2020; 95:103669. [PMID: 33397632 DOI: 10.1016/j.fm.2020.103669] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 10/23/2022]
Abstract
Fungal contamination is a concern for the food industry. Fungal spores resist food sterilization treatments and produce mycotoxins that are toxic for animals and humans. Technologies that deactivate spores and toxins without impacting food quality are desirable. This study demonstrates the efficiency of a high voltage atmospheric cold plasma (HVACP) technology using air to generate reactive oxygen (ROS) and nitrogen (RNS) species for the degradation of Aspergillus flavus cultures and the deoxynivalenol (DON) mycotoxin. Optical emission and absorption spectroscopy demonstrate ionization of hydroxyl groups, atomic oxygen and nitrogen, and confirm production of ROS and RNS, e.g. O3, NO2, NO3, N2O4, and N2O5. Fungal cultures show a depletion in pigmentation and an ~50% spore inactivation after 1-min treatments. Treated spores show surface ablation and membrane degradation by scanning electron microscopy. Twenty-minute direct HVACP treatments of 100 μg of DON in one mL aqueous suspensions resulted in a greater than 99% reduction in DON structure and rescued over 80% of Caco-2 cell viability; however, the same treatment on 100 μg of powdered DON toxin only showed a 33% reduction in DON and only rescued 15% of cell viability. In summary, HVACP air treatment can inactivate both fungal spores and toxins in minutes.
Collapse
Affiliation(s)
- Logan C Ott
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Holly J Appleton
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Hu Shi
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Kevin Keener
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Melha Mellata
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA.
| |
Collapse
|
14
|
Qian C, Dai J, Tian Y, Duan Y, Li Y. Efficient degradation of Fipronil in water by microwave-induced argon plasma: Mechanism and degradation pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138487. [PMID: 32302848 DOI: 10.1016/j.scitotenv.2020.138487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Fipronil and its metabolites are potentially harmful to the ecological environment and have chronic neurotoxic effects, which makes it to be classified as class C carcinogens. Fipronil has been banned from agricultural use in China since 2009, but its residue remains in the environment. Therefore, an efficient and economical method is urgently needed to degrade fipronil residues in the environment. Herein, the degradation of fipronil in water solution using argon microwave-induced plasma (MIP) system was studied and a plausible reaction pathway was proposed in combination with Density Functional Theory (DFT) calculations. The degradation of fipronil by MIP system was optimized in terms of input power, plasma-sample distance, initial concentration and gas flow rate. After short time MIP treatment with an input power of 150 W, as high as 85.62% degradation efficiency was achieved for the fipronil at concentration of 20 mg·L--1 under the optimized conditions, and the corresponding energy efficiency was 1334.8 mg·kwh-1. Optical emission spectrometry (OES) was employed to characterize the distribution and intensity of OH, H and O species which play key roles in the degradation of fipronil by plasma, and it revealed that the degradation reaction mainly occurs at gas-liquid interface where the highest intensity of OH, H and O species was observed. High resolution mass spectrometric analysis in combination quantum chemical calculations indicate that a wide diversity of reaction processes occurred for fipronil degradation under MIP treatment, involving oxidation or reduction, nitro reduction, oxidative dichlorination, reductive dichlorination, hydration, dehydration and thiourea to urea. The possible degradation mechanism and pathways were proposed based on the degrading species identified by high resolution Mass Spectrometry (HRMS) and the thermodynamic profiles.
Collapse
Affiliation(s)
- Cheng Qian
- Research Center of Analytical Instrumentation, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China.
| | - Yinjun Li
- Research Center of Analytical Instrumentation, Northwest University, Xi'an, Shaanxi 710069, China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|