1
|
Gutiérrez-Muñoz P, Pérez-Fernández B, Saavedra C, Covelo P, Méndez-Fernández P, López A, Viñas L, Pierce GJ. Monitoring levels of polychlorinated biphenyls (PCBs) in three cetacean species stranded in Galicia (Spain), NE Atlantic. MARINE POLLUTION BULLETIN 2025; 213:117625. [PMID: 39954592 DOI: 10.1016/j.marpolbul.2025.117625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
Despite increasing regulations on their production and use, organic pollutants, such as polychlorinated biphenyls (PCBs), continue to pose a threat to marine life. Odontocete cetaceans are highly susceptible to the accumulation and biomagnification of PCBs due to their role as predators and long life expectancy. Therefore, assessing the levels of PCBs in cetaceans is important to evaluate their health status at the individual and population levels, as well as to provide an indicator of ecosystem health. In the present study, concentrations of PCBs were analysed in the blubber of the three most frequently stranded odontocete species in NW Spain (NE Atlantic): common dolphin (Delphinus delphis) (n = 42), bottlenose dolphin (Tursiops truncatus) (n = 17) and harbour porpoise (Phocoena phocoena) (n = 19). Individual concentrations ranged from 0.32 to 160.74 μg/g lipid weight (l.w., Σ14PCBs), with the highest levels observed, by far, in bottlenose dolphins (the median concentration was three times higher than that of other species). Many observed values exceed the agreed threshold value for these species (17 μg/g l.w., when expressed as the Aroclor 1254 equivalent concentrations). This suggests that a high percentage of the individuals analysed are at risk from PCBs despite an apparent global decrease in environmental levels. The three species analysed are representative of a key area of the NE Atlantic and represent different trophic and habitat niches. Regular monitoring of pollutant levels in cetacean species is necessary for compliance with legislative requirements and to allow the assessment of these populations and their ecosystems.
Collapse
Affiliation(s)
- Paula Gutiérrez-Muñoz
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Rúa Subida a Radio Faro 50, 36390 Vigo, Spain; Instituto de Investigaciones Marinas (IIM-CSIC), Rúa Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Begoña Pérez-Fernández
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Rúa Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Camilo Saavedra
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Rúa Subida a Radio Faro 50, 36390 Vigo, Spain.
| | - Pablo Covelo
- Coordinadora para o Estudo dos Mamíferos Mariños (CEMMA), Rúa do Ceán, 2, 36350 Nigrán, Spain
| | - Paula Méndez-Fernández
- Observatoire Pelagis, UAR 3462 - La Rochelle Université - CNRS, 5 Allées de L'océan, 17000 La Rochelle, France
| | - Alfredo López
- Coordinadora para o Estudo dos Mamíferos Mariños (CEMMA), Rúa do Ceán, 2, 36350 Nigrán, Spain; Departamento de Biología & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Lucía Viñas
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Rúa Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Graham J Pierce
- Instituto de Investigaciones Marinas (IIM-CSIC), Rúa Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
2
|
Pescatore T, Rauseo J, Spataro F, Calace N, Patrolecco L. Persistent organic pollutants (POPs) in marine sediments of the Arctic fjord Kongsfjorden, Svalbard Islands. MARINE POLLUTION BULLETIN 2025; 211:117407. [PMID: 39674037 DOI: 10.1016/j.marpolbul.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
New data on the occurrence of POPs, including polychlorinated biphenyls (PCBs) and legacy pesticides (LPs), along with current-use pesticides (CUPs) in the surface marine sediments of Kongsfjorden over five years (2018-2022) are presented. LPs examined were p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-l,l-dichloro-2,2-bis(chlorophenyl)ethylene (DDE), and hexachlorocyclohexane (HCH), while CUPs included chlorpyrifos (CPF), dacthal (DAC), and endosulfan (ENDO). LPs (0.12-0.59 ng/g) were in higher amounts than CUPs (0.01-0.15 ng/g). The first data on CPF (0.003-0.07 ng/g) and DAC (0.001-0.06 ng/g) in Arctic marine sediments were obtained. Σ34PCBs (0.25-0.62 ng/g) were found with a dominance of lower molecular weight congeners, probably transported via atmospheric currents. A general increasing trend in concentrations of target compounds was observed over the study period. Overall, higher concentrations of these compounds were found near the tidal glaciers, suggesting that glacier meltwater plays a role in releasing contaminants. However, the potential influence of oceanic currents on their transport cannot be ruled out.
Collapse
Affiliation(s)
- Tanita Pescatore
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Francesca Spataro
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Nicoletta Calace
- Italian Institute for Environmental Protection Research (ISPRA), Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences, National Research Council (ISP-CNR), Strada Provinciale 35d, km 0.700, 00010 Montelibretti, Rome, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
3
|
Mok S, Radhakrishnan A, Nguyen TTT, Park J, Trukhin AM, Lee M, Moon HB. Target, suspect, and non-target analysis of halogenated organic pollutants in spotted seals (Phoca largha) from Peter the Great Bay, East Sea/Sea of Japan. MARINE POLLUTION BULLETIN 2025; 210:117336. [PMID: 39608088 DOI: 10.1016/j.marpolbul.2024.117336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
Target, suspect, and non-target analyses were conducted to investigate the accumulation status of halogenated organic pollutants (HOPs) in spotted seals (Phoca largha Pallas, 1811) from Peter the Great Bay, East Sea/Sea of Japan. Despite long-standing regulations, polychlorinated biphenyls (PCBs) and organochlorine pesticides were highly accumulated, likely due to placental and lactational transfer. Hexabromocyclododecanes were the predominant brominated flame retardants, with their levels increasing with age. Suspect and non-target analyses identified 35 non-target PCBs not routinely monitored, suggesting conventional methods may underestimate PCB concentrations. Regression analysis showed significant correlations between the concentrations of major PCBs (CBs 138 and 153) and the sum of target and non-target PCBs. The study found that 95 % of the seals exceeded threshold levels for PCBs, posing potential health risks. These findings highlight the need for integrated monitoring, combining target and non-target analyses, to better assess and manage the risks of HOPs to marine mammals.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Aiswarya Radhakrishnan
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Thi Thu Trang Nguyen
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Junseong Park
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Alexey M Trukhin
- V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 41 Baltiyskaya Str., Vladivostok 690043, Russia
| | - Moonjin Lee
- Maritime Safety and Environmental Research Division, Korea Research Institute of Ships and Ocean Engineering, Daejeon 34103, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
4
|
Phan K, Otim O. Aroclor speciation by unsupervised exploratory analysis of congener proportions in multivariate space: A southern California bight sediment and fish study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178080. [PMID: 39700990 DOI: 10.1016/j.scitotenv.2024.178080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/23/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Polychlorinated biphenyl (PCB) congeners, sold commercially as different mixtures under the trade name Aroclor in the USA, pose ecological and public health hazards. In the environment, they are monitored as Aroclors for potential source tracking and more accurately as congeners to understand the extent of PCB contamination in total. Because of the subjectivity with which Aroclors are currently identified in samples, striving towards clarity is a focus for analytical chemists. In the current study, the ' Beer-Lambert law' relationship between the analytical response of PCB congeners and their corresponding concentrations is proposed as an exploitable avenue for identifying Aroclors in environmental samples with certainty. For demonstration, direct and unsupervised analysis of peak area-based (not concentration-based) proportions of carefully selected PCB congeners (PCB-8, 18, 28, 44, 52, 66, 87, 101, 105, 110, 118, 128, 138, 153, 170, 180, 183, 187, 195 and 206) in samples, alongside similar proportions in Aroclor 1221, 1248, 1232, 1242, 1254, 1016 and 1260 in a multivariate space identified Aroclor 1254 and likely Aroclor 1260 unambiguously as contaminating PCBs in 29 sediments and fish tissues collected from the Los Angeles/Long Beach harbors and Santa Monica Bay (California, USA). The proposed method eliminates the need to eyeball chromatograms for similarities and removes the expensive and cumbersome step of generating several concentration calibration curves for Aroclor speciation. The method also standardizes congener selection and opens the door towards tracking sources of Aroclors 1254 and 1260 in the southern California bight.
Collapse
Affiliation(s)
- Khoi Phan
- Environmental Monitoring Division, City of Los Angeles, 12000 Vista Del Mar, Playa Del Rey, CA 90293, USA
| | - Ochan Otim
- Environmental Monitoring Division, City of Los Angeles, 12000 Vista Del Mar, Playa Del Rey, CA 90293, USA; Department of Health Sciences and Sciences, University of California - Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
5
|
Dong J, Zhao X, Dai R, Guo R, Liu C, Cui X, Liu Y, Wang H, Zheng B. Spatial patterns, source apportionment, and risk assessment of polychlorinated biphenyls (PCBs) in the surface sediments of eastern China lakes along a latitudinal gradient: Insights guided by full-congener analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136187. [PMID: 39427353 DOI: 10.1016/j.jhazmat.2024.136187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Understanding the occurrence, sources, and ecological risks of polychlorinated biphenyls (PCBs), which are universal persistent organic pollutants, is critical for improving the sustainability and ecological safety of lake systems. Herein, to determine PCB contamination levels and formulate control strategies in lake sediments, 210 sediment samples were collected from 21 lakes along a latitudinal gradient (18-45°N, ∼3000 km) across eastern China and were analyzed for all 209 PCB congeners. The results showed that the total PCB concentration varied greatly from 0.26 to 163.82 ng/g dry weight and exhibited a latitudinal trend of central > north/south. Spatial variations were affected mainly by the organic carbon fraction and local population density. Most lakes had similar PCB profiles, with lower chlorinated PCBs dominating. Notably, non-Aroclor PCB 11 was the most abundant congener. Moreover, unintentionally produced PCBs (UP-PCBs) accounted for ∼31 % of all PCBs. These findings highlight that the significance of UP-PCBs has been overlooked in past studies and that full-congener analysis is necessary for future monitoring. According to the ecological risk assessment of PCBs, zero to moderate risk existed in lake sediments. Therefore, effective strategies are needed to mitigate the impact of PCBs (especially UP-PCBs) from multiple sources on lakes.
Collapse
Affiliation(s)
- Jing Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Xingru Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| | - Ran Dai
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Rui Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Chengyou Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Xiaoai Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yaqing Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hui Wang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Binghui Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing 100012, China.
| |
Collapse
|
6
|
Ulanova E, Martí Ibáñez R, Domínguez-García P, Díaz-Ferrero J, Gomez-Canela C, Ortiz Almirall X. Impact of legacy and unintentionally produced polychlorinated biphenyls (PCBs) in effluents from two wastewater treatment plants in rivers near Barcelona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175095. [PMID: 39074743 DOI: 10.1016/j.scitotenv.2024.175095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a family of 209 congeners listed as Persistent Organic Pollutants in the Stockholm Convention. Although there has been a lot of focus on those congeners present in the Aroclor or Clophen technical mixtures commercialized in the past (legacy PCBs), other industrial processes such as paint and pigment production can generate other congeners as byproducts (Unintentionally Produced PCBs or UP-PCBs). The present study focuses on the analysis of 72 PCB congeners (including 42 UP-PCBs) in the two major rivers surrounding the city of Barcelona -Llobregat and Besós rivers-, and their levels in two wastewater treatment plants during the production of effluents and reclaimed water. It was observed that WWTP can efficiently remove PCBs from untreated water during sludge production where concentrations are six orders of magnitude higher than in water (in the ng g-1 and pg L-1 ranges, respectively). Although PCB levels in the effluent and reclaimed water replenishing the rivers are not negligible, these do not significantly increase the concentrations already found in the studied rivers, and in most cases PCB concentrations in river water are reduced after merging with the reclaimed water due to dilution effect. The presence of UP-PCB-11 (not present in the Aroclor technical mixtures) in the analyzed water and sludge samples is significant (ranging from 22 to 25 % of the total PCB amount in the Besós river), being often one of the most abundant PCB congeners.
Collapse
Affiliation(s)
- Elena Ulanova
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Ramon Martí Ibáñez
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Pol Domínguez-García
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Díaz-Ferrero
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Cristian Gomez-Canela
- Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Xavier Ortiz Almirall
- Environmental Laboratory, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain; Analytical and Applied Chemistry Department, IQS - Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
7
|
Hammel SC, Schlünssen V, Hope D, Dereviankin M, Sandau CD, Hougaard KS, Meyer HW, Kines P, Jensen KA, Frederiksen M. Lower chlorinated PCBs accumulate in demolition workers while working on a contaminated worksite. ENVIRONMENT INTERNATIONAL 2024; 193:109076. [PMID: 39542766 DOI: 10.1016/j.envint.2024.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Several buildings in a Danish social housing estate exceeded indoor air guidance values for polychlorinated biphenyls (PCBs), leading to their demolition. Here, we conducted a biomonitoring study among the workers on-site (n = 24) to evaluate their exposure to all 209 PCBs across the two-year demolition. We compared their PCB serum concentrations and accumulation to those of demolition workers at other worksites (n = 21) and office workers (n = 17). Demolition workers were provided with personal protective equipment according to risk assessments for PCB-related work. Serum PCBs were measured from baseline and up to two annual follow-up visits using gas chromatography high-resolution mass spectrometry. Forty-six peaks representing 58 PCBs were detected in > 60 % of serum samples; eight congeners were found in every sample. PCB-153 was the most abundant congener (median = 22.1 ng/g lipid). After adjusting for age and smoking status, demolition workers after one year on the contaminated site experienced more than a four-fold increase in all lower chlorinated PCBs compared to office workers at baseline, with increases most prominent for tri- and tetra-CBs (10β = 6.2 and 9.2, p < 0.01). Nine PCBs were significantly elevated from baseline to year 1 in only contaminated-site demolition workers, with the largest increase observed for PCB-66/80. For higher chlorinated PCBs, levels remained consistent or decreased slightly over the three samples from these workers. Those who worked in active demolition for at least 4 years at baseline experienced a 40 % increase (95 % CI: 10 %, 90 %) in the WHO-12 PCB sum. Age significantly predicted increases in PCBs, which tracked closely with logKow values. Our study showed that despite safety measures, demolition workers who worked on a PCB-contaminated site experienced increased and accumulating internal exposure to lower chlorinated PCBs compared to general demolition and office workers. Consequently, workers' safety should be carefully considered to reduce exposures among this high risk group.
Collapse
Affiliation(s)
- Stephanie C Hammel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Vivi Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, 8000 Aarhus, Denmark
| | - David Hope
- Pacific Rim Laboratories Inc., Surrey, BC, Canada
| | | | - Courtney D Sandau
- Chemistry Matters Inc., Calgary, Canada; Mount Royal University, Department of Earth and Environmental Sciences, Calgary, Canada
| | - Karin Sørig Hougaard
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark; Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Harald W Meyer
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Pete Kines
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Keld Alstrup Jensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Marie Frederiksen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
8
|
Shahbazian M, Zamani A, Mehdinia A, Khosravi Y, Mahdavi V. Polychlorinated biphenyls (PCBs) in the Persian Gulf and Gulf of Oman: baseline report on occurrence, distribution, and ecological risk assessment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1003. [PMID: 39356347 DOI: 10.1007/s10661-024-13099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
In the present study, 18 polychlorinated biphenyl (PCB) compounds were measured in marine sediments collected from 49 offshore stations in the Persian Gulf and the Gulf of Oman in 2019. After the last oceanographic cruise in 2006, no study has been performed on the offshore sediments of this region, and this is the first study on the PCBs in this area. The total amount of PCB compounds in the sediment samples ranged from 74.38 ng kg-1 (near Abu Musa Island) to 1212.98 ng kg-1 (near Siri and Kish Island). The maximum and minimum values of the individual detected PCB compounds were 175.88 ng kg-1 (PCB52) and 2.09 ng kg-1 (PCB156), respectively. The levels of total PCBs detected in sediments were lower than the Canadian interim sediment quality guideline value of 21500 ng kg-1 for marine sediments. The sedimentary mass inventories for Σ18PCBs were 0.6 and 0.2 mt for the Persian Gulf and Gulf of Oman, respectively.
Collapse
Affiliation(s)
- Maryam Shahbazian
- Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Abbasali Zamani
- Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran.
| | - Younes Khosravi
- Department of Environmental Science, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Vahideh Mahdavi
- Iranian Research Institute of Plant Protection (IRIPP), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
9
|
Palmer N, Reichelt-Brushett A, Hall J, Cagnazzi D, Rose K, March D. Contaminant assessment of stranded and deceased beaked whales (Ziphiidae) on the New South Wales coast of Australia. MARINE POLLUTION BULLETIN 2024; 204:116520. [PMID: 38815472 DOI: 10.1016/j.marpolbul.2024.116520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Metal and organic pollutants are prominent marine contaminants that disperse widely throughout the environment. Some contaminants biomagnify, leaving long-lived apex predators such as cetaceans at risk of toxicity. Various tissues collected post-mortem from 16 Ziphiidae individuals that stranded on the New South Wales (NSW) coast, Australia, over ∼15 years were investigated for 16 metals/metalloids and 33 organic contaminants. Polychlorinated biphenyls (PCBs) and Dichlorodiphenyltrichloroethanes (DDTs) were commonly detected in blubber and liver tissues. Mercury, cadmium and silver exceeded reported toxicity thresholds in several individuals. The liver tissue of a Mesoplodon layardii specimen had the highest mercury (386 mg/kg dry weight). Liver tissue of a Mesoplodon grayi specimen had the highest silver concentration (19.7 mg/kg dry weight), and the highest cadmium concentration was in Ziphius cavirostris kidney (478 mg/kg dry weight). This study provides important new information for rare Ziphiidae species globally.
Collapse
Affiliation(s)
- Natalie Palmer
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW 2480, Australia
| | - Amanda Reichelt-Brushett
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW 2480, Australia.
| | - Jane Hall
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD 4222, Australia; Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Rd, Mosman, NSW 2088, Australia
| | - Daniele Cagnazzi
- Faculty of Science and Engineering, Southern Cross University, Military Road, East Lismore, NSW 2480, Australia
| | - Karrie Rose
- Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Bradleys Head Rd, Mosman, NSW 2088, Australia
| | - Duane March
- NSW National Parks and Wildlife Service, 4/32 Edgar St, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|
10
|
Johnson K, Xu J, Yerkeson A, Lu M. The catalytic hydro-dechlorination of 2, 4, 4' trichlorobiphenyl at mild temperatures and atmospheric pressure. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2024; 74:457-463. [PMID: 38753760 DOI: 10.1080/10962247.2024.2353643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
Polychlorinated biphenyls (PCBs), including all 209 congeners, are designated as persistent organic pollutants (POPs) due to their high toxicity and bioaccumulation in human bodies and the ecosystem. The need for PCB remediation still remains long after their production ban. In this study, a catalytic hydro-dechlorination (HDC) method was employed to dechlorinate 2,4,4'-trichlorobiphenyl (PCB 28), a congener found ubiquitously in multiple environmental media. The HDC of PCB 28 was experimentally studied at mild temperatures viz. ~20, 50, and ~77°C and atmospheric pressure. Et3N (triethylamine) was added as a co-catalyst. The dechlorination rates increased with temperature as well as Et3N dosage, and the HDC pathway was hypothesized based on the product and intermediates observed. The less chlorinated intermediates suggested that the position of the chlorine strongly impacted HDC rates, and the preference of HDC at para positions can be orders of magnitudes higher than the ortho. The activation energy was estimated in the range of 12.4-13.9 kJ/mole, indicating a diffusion-controlled HDC system.Implications: The remediation need for polychlorinated biphenyls (PCBs) still remains long after their production ban around the world. The development of low-cost methods is highly desirable, especially for developing countries, in response to the Stockholm Convention. In this study, the dechorination of a ubiquitously present PCB congener was studied using a catalytic hydro-dechlorination (HDC) method in low temperatures up to ~77°C and was able to achieve near 100% dechlorination in 6 hr. Results indicated that the HDC process can be performed under mild temperatures and atmospheric conditions and can be a potential solution to real world PCB contamination issues.
Collapse
Affiliation(s)
- Kevin Johnson
- Department of Chemical and Environmental Engineering, University of Cincinnati (UC), Cincinnati, OH, USA
| | - Juan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati (UC), Cincinnati, OH, USA
| | - Alyssa Yerkeson
- Department of Chemical and Environmental Engineering, University of Cincinnati (UC), Cincinnati, OH, USA
| | - Mingming Lu
- Department of Chemical and Environmental Engineering, University of Cincinnati (UC), Cincinnati, OH, USA
| |
Collapse
|
11
|
Megson D, Idowu IG, Sandau CD. Is current generation of polychlorinated biphenyls exceeding peak production of the 1970s? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171436. [PMID: 38447728 DOI: 10.1016/j.scitotenv.2024.171436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Polychlorinated biphenyls (PCBs) are man-made chemicals that were once widely produced as commercial mixtures for various industrial applications. PCBs were later recognized as environmental pollutants and health hazards, leading to their global phase-out and strict regulations on their production, use, and disposal. Most investigations on PCBs focus on measuring the specific PCBs present in commercial mixtures or marker compounds representing those mixtures. However, there are new sources of PCBs that are gaining more attention. These 'by-product PCBs' are inadvertently produced in certain chemical and product formulations. Our estimates show that U.S. legislation currently permits the generation of more by-product PCBs (~100 million lb. (~45,000 Tonnes) per year) than during peak commercial production of the 1970s (85 million lb. (~39,000 Tonnes) per year). These PCBs are currently going un-detected in most investigations. Therefore, they may be a posing a growing, unmonitored environmental and human health risk. Most people assume PCBs to be legacy pollutants from historically formulated commercial mixtures. However, our research suggests that due to the emergence of by-product PCBs they may need to be reconsidered as an emerging pollutant of concern.
Collapse
Affiliation(s)
- David Megson
- Chemistry Matters Inc., Calgary, Canada; Manchester Metropolitan University, Manchester, UK.
| | | | - Courtney D Sandau
- Chemistry Matters Inc., Calgary, Canada; Mount Royal University, Calgary, Canada
| |
Collapse
|
12
|
Costopoulou D, Kedikoglou K, Vafeiadi M, Roumeliotaki T, Margetaki K, Stephanou EG, Myridakis A, Leondiadis L. Systematic investigation of organochlorine pesticides and polychlorinated biphenyls blood levels in Greek children from the Rhea birth cohort suggests historical exposure to DDT and through diet to DDE. ENVIRONMENT INTERNATIONAL 2024; 187:108686. [PMID: 38669722 DOI: 10.1016/j.envint.2024.108686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
The blood levels of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have been thoroughly investigated in Greek children from the Rhea birth cohort study. This investigation aimed to assess exposure levels, explore their possible relationship with children's age and sex, and indicate potential sources of exposure. Exposure patterns and common sources of PCBs and OCPs were analyzed using bivariate and multivariate statistics. A total of 947 blood samples from study participants were analyzed for OCP and PCB exposure, with 375 samples collected at 4 years old, 239 at 6.5 years old, and 333 at 11 years old. Elevated levels of DDE were observed in 6.5-year-old children compared to corresponding levels in other European countries. Higher levels of DDE were found in 4-year-old children, with the lowest concentrations in the 11-year-old group. The DDT/DDE ratio was consistently less than 1 among all the examined subjects. These results indicate exposure to DDT and DDE both in utero and through breastfeeding and dietary intake. For the entire cohort population, the highest concentration was determined for PCB 28, followed by PCBs 138, 153, and 180. The sum of the six indicator PCBs implied low exposure levels for the majority of the cohort population. Spearman correlations revealed strong associations between PCBs and OCPs, while principal component analysis identified two different groupings of exposure. DDE exhibited a correlation with a series of PCBs (153, 156, 163, 180), indicating a combined OCP-PCB source, and an anticorrelation with others (52, 28, 101), implying a separate and competing source.
Collapse
Affiliation(s)
- Danae Costopoulou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece.
| | - Kleopatra Kedikoglou
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| | - Marina Vafeiadi
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Theano Roumeliotaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Katerina Margetaki
- Department of Social Medicine, Faculty of Medicine, University of Crete, Voutes University Campus, 70013 Heraklion, Greece
| | - Euripides G Stephanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013 Heraklion, Greece.
| | - Antonis Myridakis
- Centre for Pollution Research & Policy, Environmental Sciences, Brunel University London, UB8 3PH, United Kingdom
| | - Leondios Leondiadis
- Mass Spectrometry and Dioxin Analysis Laboratory, INRASTES, NCSR "Demokritos", Neapoleos 27, 15310 Athens, Greece
| |
Collapse
|
13
|
Hammel SC, Frederiksen M. Quantifying 209 Polychlorinated Biphenyl Congeners in Silicone Wristbands to Evaluate Differences in Exposure among Demolition Workers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6499-6508. [PMID: 38572580 PMCID: PMC11025118 DOI: 10.1021/acs.est.3c10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/22/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
A social housing estate in Denmark was designated for demolition due to exceedance of guidance values for polychlorinated biphenyls (PCBs) in indoor air. Here, we deployed precleaned silicone wristbands (n = 46) among demolition workers of these contaminated buildings during single workdays while conducting various work tasks. We established a method to analyze all 209 PCBs in wristbands to identify prominent congeners of exposure and evaluate differences between tasks. Wristbands were extracted using microwave-assisted extraction and then concentrated for gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. Twenty-nine chromatographic peaks representing 37 congeners were detected in every wristband, and tetra-CBs were the dominant homologue group. PCB-66, -44, and -70 were the most abundant congeners measured in worker wristbands, none of which are included within the typical seven indicator or WHO 12 PCBs. Workers who cut PCB-containing sealants had wristbands with the highest PCB concentrations (geometric mean ∑209PCBs = 1963 ng/g wristband), which were followed by those handling concrete elements on the building roof. Additionally, wristbands captured a broader range of PCBs than has been previously measured in air and serum samples. Taken together, our results highlight the importance of total congener analysis in assessing current PCB exposure in demolition work and the utility of wristbands for assessing these exposures.
Collapse
Affiliation(s)
- Stephanie C. Hammel
- National Research Centre
for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Marie Frederiksen
- National Research Centre
for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
14
|
Zhang YJ, Sun J, Chen XJ, Cheng R, Liu ZT, Cao L, Feng YL. The residues and health risk assessment of polychlorinated biphenyls (PCBs) in Pheretima (an earthworm-derived traditional medicine) from southeastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17275-17288. [PMID: 38340303 DOI: 10.1007/s11356-024-32230-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
Minimal research exists on polychlorinated biphenyl (PCB) exposure from traditional Chinese medicines (TCMs), despite their significant contributions to domestic and international health protection. This study is the first to investigate the levels, profiles, and health risks of PCB residue in Pheretima, a typical TCM produced from earthworm. Seventy-seven Pheretima samples from different regions of China were analyzed for 45 PCB congeners. PCBs were found in all samples exhibiting species-dependent discrepancies. ∑45PCBs was ranging from 0.532 to 25.2 µg/kg (mean 4.46 µg/kg), with CB-11 being the most abundant congener contributing 71.8% ± 10.8% to ∑45PCBs, followed by CB-47, which were all non-Aroclor congeners called unintentionally produced PCBs (UP-PCBs). The average estimated daily intake of ∑45PCBs, ∑7ID-PCBs (indicative polychlorinated biphenyls), and CB-11 were 0.71, 0.04, and 0.51 ng/kg bw/d, respectively. The ∑HQ of PCBs in Pheretima samples was 2.97 × 10-4-2.46 × 10-2 (mean 2.77 × 10-3, 95th 4.21 × 10-3), while the ∑RQ ranged from 1.19 × 10-8 to 2.88 × 10-6 (mean 4.87 × 10-7, 95th 2.31 × 10-6). These findings indicate that Pheretima ingestion does not pose significant non-carcinogenic risks. However, certain individual samples exhibit an acceptable level of potential risks, particularly when considering that PCBs are recognized as endocrine disruptors and classified as probable carcinogens. These results contribute to the safety evaluation of traditional medicines and suggest the potential use of Pheretima as a bioindicator for PCB pollution. It is advisable to monitor UP-PCBs as indicator congeners and gather additional toxicological data.
Collapse
Affiliation(s)
- Yun-Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Engineering Technology Research Center of Modernized Pharmaceutical Analysis, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, People's Republic of China
| | - Jing Sun
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, People's Republic of China.
| | - Xiao-Jiang Chen
- Jiangsu Environmental Engineering Technology Co. Ltd., Nanjing, 210019, People's Republic of China
| | - Rui Cheng
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Zhi-Tong Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Ling Cao
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, People's Republic of China
| | - You-Long Feng
- Jiangsu Institute for Food and Drug Control, Nanjing, 210019, People's Republic of China
| |
Collapse
|
15
|
Hjazi A, Hsu CY, Al-Attar WM, Almajidi YQ, Hussien BM, Alzahrani AA, Kareem AK, Abdulhussien Alazbjee AA, Meng X. The association of exposure to polychlorinated biphenyls with lipid profile and liver enzymes in umbilical cord blood samples. CHEMOSPHERE 2024; 350:141096. [PMID: 38176591 DOI: 10.1016/j.chemosphere.2023.141096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 12/30/2023] [Indexed: 01/06/2024]
Abstract
Evidence on prenatal exposure to polychlorinated biphenyls (PCBs) and its effects on newborns and potential biological mechanisms is not well defined yet. Therefore, this study aimed to examine whether PCBs are associated with lipid profile and non-invasive markers of hepatocyte injuries in samples of blood obtained from the umbilical cord. This study included 450 mothers-newborn pairs. Umbilical levels of PCBs were measured using Gas Chromatography/Mass Spectrophotometry (GC/MS). Lipid profile including low-density lipoprotein (LDL-C), total cholesterol (TC), triglycerides (TG), and high-density lipoprotein (HDL-C), as well as liver enzymes i.e., alanine amino transferase (ALT), aspartate amino transferase (AST), γ-glutamyl-transferase (GGT) and alkaline phosphatase (ALP) were determined from umbilical cord blood samples. Quantile g-computation analysis was applied to evaluate the collective influence of PCBs on both lipid profiles and liver enzymes, along with the impact of lipid profiles on liver enzymes. Exposure to the mixture of PCBs was significantly associated with increases in ALP, AST, ALT, and GGT levels in cord blood samples, with increments of 90.38 U/L (95%CI: 65.08, 115.70, p < 0.01), 11.88 U/L (95%CI: 9.03, 14.74, p < 0.01), 2.19 U/L (95%CI:1.43, 2.94, p < 0.01), and 50.67 U/L (95%CI: 36.32, 65.03, p < 0.01), respectively. Additionally, combined PCBs exposure was correlated with significant increases in umbilical TG, TC, and LDL-C levels, with values of 3.97 mg/dL (95%CI: 0.86, 7.09, p = 0.01), 6.30 mg/dL (95%CI: 2.98, 9.61, p < 0.01), and 4.63 mg/dL (95%CI: 2.04, 7.23, p < 0.01) respectively. Exposure to the mixture of lipids was linked to elevated levels of AST and GGT in umbilical cord blood samples. Furthermore, a noteworthy mediating role of TC and LDL-C was observed in the association between total PCBs exposure and umbilical cord blood liver enzyme levels. Overall our findings suggested that higher levels of umbilical cord blood PCBs and lipid profile could affect liver function in newborns.
Collapse
Affiliation(s)
- Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Yasir Qasim Almajidi
- Lecturer Dr and Dean Assistant of Baghdad College of Medical Sciences-department of Pharmacy (pharmaceutics), Baghdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technology Department, College of Medical Technology, the Islamic University of Babylon, Babylon, Iraq
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | | | - Xuan Meng
- Hepatobiliary Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Hepatobiliary Surgery Department, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, Hebei, 065001, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
16
|
Ángel-Moreno Briones Á, Ramírez-Álvarez N, Hernández-Guzmán FA, Galván-Magaña F, Marmolejo-Rodríguez AJ, Sánchez-González A, Baró-Camarasa I, González-Armas R. Levels and species-specific organochlorine accumulation in three shark species from the western Gulf of California with different life history traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168468. [PMID: 37951268 DOI: 10.1016/j.scitotenv.2023.168468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/28/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Organochlorine compounds (OCs), such as organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), remain ubiquitous in marine ecosystems despite their prohibition or restriction, posing a risk to marine wildlife and humans. Their accumulation in liver tissue and potential toxicity in three exploited shark species (the scalloped hammerhead, Sphyrna lewini; the Pacific sharpnose shark, Rhizoprionodon longurio; and the Pacific angel shark, Squatina californica) with different physiological and ecological features from the western Gulf of California (GC) were investigated. Forty of the 47 OCs analyzed were identified, evidencing a greater agricultural than industrial influence considering the high DDTs/PCBs ratios. The DDT group was the main contributor to ∑OCs in the three species, while hexa- and hepta-CBs dominated the PCB profiles. S. lewini (juveniles) and R. longurio (juveniles and adults) had similar and significantly (p < 0.05) higher ∑OCP concentrations than S. californica (juveniles and adults), which is attributed to their migration to other polluted regions of the gulf. The three species' ∑PCB levels (lipid weight) were comparable and considered low in comparison to those documented in prior studies conducted worldwide. No intraspecific differences were observed when comparing by sex, but OC concentrations were higher in larger individuals. S. lewini and R. longurio showed different OC bioaccumulation trends against size, while no relationship between size and ∑OC concentrations was observed in S. californica. All shark species' toxic equivalents (TEQs) were calculated from dioxin-like PCB concentrations and were far below the established TEQ fish thresholds. However, future research is needed regarding the possible PCB and OCP effects in elasmobranchs. This study provides the basis for monitoring organic contaminants in predatory sharks from the western GC. It also highlights the importance of further research on unintentionally produced organochlorine environmental levels and sources.
Collapse
Affiliation(s)
- Ángela Ángel-Moreno Briones
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico.
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana no 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Félix Augusto Hernández-Guzmán
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana no 3917, Ensenada, Baja California C. P. 22860, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Alberto Sánchez-González
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. La Paz, Baja California Sur C. P. 23096, Mexico
| |
Collapse
|
17
|
Subramani S, Bagde A, Balke A, Chakrabarti T, Bafana A. Strategy for Remediation of Polychlorinated Biphenyls-Contaminated Soil Through Redox Management Based on Electronegativity of the Contaminants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:22. [PMID: 38151599 DOI: 10.1007/s00128-023-03847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Literature review reveals that Persistent Organic Pollutants (POPs), such as polychlorinated biphenyls (PCBs), are electron deficient compounds due to the presence of highly electronegative groups. Hence, they are more amenable to anaerobic biodegradation rather than oxidative metabolism. However, the studies on PCBs bioremediation are more inclined towards aerobic treatment. Besides, the past studies are mainly centered on screening and application of PCB-degrading microorganisms. In our opinion the degradative capacity is already present in the native microflora, and choice of electron donor is of paramount importance for faster reductive metabolism of PCBs. In this study, the use of methanol as electron donor with cow dung as the general microbial inoculum resulted in high specific rate of degradation (0.0542-0.0637 /day) for high-chlorinated biphenyls. The % removal of PCBs ranged between 67.7 and 71.7%. It may be the first study on the application of methanol as a cheap electron donor for PCBs biodegradation without bioaugmentation with specifically selected microorganisms.
Collapse
Affiliation(s)
- S Subramani
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Road, Nagpur, 440020, India
| | - Ankita Bagde
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Road, Nagpur, 440020, India
| | - Aniket Balke
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Road, Nagpur, 440020, India
| | - Tapan Chakrabarti
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Road, Nagpur, 440020, India
| | - Amit Bafana
- CSIR-NEERI (National Environmental Engineering Research Institute), Nehru Road, Nagpur, 440020, India.
| |
Collapse
|
18
|
Wang H, Bullert AJ, Li X, Stevens H, Klingelhutz AJ, Ankrum JA, Adamcakova-Dodd A, Thorne PS, Lehmler HJ. Use of a polymeric implant system to assess the neurotoxicity of subacute exposure to 2,2',5,5'-tetrachlorobiphenyl-4-ol, a human metabolite of PCB 52, in male adolescent rats. Toxicology 2023; 500:153677. [PMID: 37995827 PMCID: PMC10757425 DOI: 10.1016/j.tox.2023.153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) that ubiquitously exist in the environment. PCB exposure has been linked to cancer and multi-system toxicity, including endocrine disruption, immune inhibition, and reproductive and neurotoxicity. 2,2',5,5'-Tetrachlorobiphenyl (PCB 52) is one of the most frequently detected congeners in the environment and human blood. The hydroxylated metabolites of PCB 52 may also be neurotoxic, especially for children whose brains are still developing. However, it is challenging to discern the contribution of these metabolites to PCB neurotoxicity because the metabolism of PCB is species-dependent. In this study, we evaluated the subacute neurotoxicity of a human-relevant metabolite, 2,2',5,5'-tetrachlorobiphenyl-4-ol (4-52), on male adolescent Sprague Dawley rats, via a novel polymeric implant drug delivery system grafted subcutaneously, at total loading concentrations ranging from 0%, 1%, 5%, and 10% of the implant (w/w) for 28 days. Y-maze, hole board test, open field test, and elevated plus maze were performed on exposure days 24-28 to assess their locomotor activity, and exploratory and anxiety-like behavior. 4-52 and other possible hydroxylated metabolites in serum and vital tissues were quantified using gas chromatography with tandem mass spectrometry (GC-MS/MS). Our results demonstrate the sustained release of 4-52 from the polymeric implants into the systemic circulation in serum and tissues. Dihydroxylated and dechlorinated metabolites were detected in serum and tissues, depending on the dose and tissue type. No statistically significant changes were observed in the neurobehavioral tasks across all exposure groups. The results demonstrate that subcutaneous polymeric implants provide a straightforward method to expose rats to phenolic PCB metabolites to study neurotoxic outcomes, e.g., in memory, anxiety, and exploratory behaviors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Hanna Stevens
- Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Department of Psychiatry, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | | | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, the University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Neuroscience, the University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Human Toxicology, the University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
19
|
Frossard V, Vagnon C, Cottin N, Pin M, Santoul F, Naffrechoux E. The biological invasion of an apex predator (Silurus glanis) amplifies PCB transfer in a large lake food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166037. [PMID: 37544449 DOI: 10.1016/j.scitotenv.2023.166037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/08/2023]
Abstract
Invasive species can affect food web structure possibly modifying the transfer of pollutants in ecosystems but this facet of biological invasion remains largely unexplored. We examined how trophic and ontogenetic characteristics of the invasive European catfish could differ from its native counterpart, the Northern pike, possibly resulting in the amplification of PCB transfer to the higher trophic levels in a large lake food web. The PCB contents of catfish and pike were on average low (Ʃ7 PCBi 42.4 ± 38.6 ng g-1 ww and 37.9 ± 49.4 ng g-1 ww respectively) and dominated by PCB153 (~35 % of the PCB contamination). Only the largest pike (126 cm) slightly exceeded the European sanitary threshold of 125 ng g-1 ww Ʃ6 PCBi-NDL. Both species increased in trophic position with body size while catfish had clearly higher littoral reliance than pike indicating they exploited complementary trophic niches. PCB biomagnification was identified only for catfish (PCB153, Ʃ7 PCBi) leading to trophic magnification factor of ~5. PCB ontogenetic bioaccumulation was pervasive for catfish (PCB101, PCB118, PCB153, PCB138 and Ʃ7 PCBi) and identified for pike only regarding PCB101. The derived size accumulation factors (~1.02) indicated a size-doubling PCB contamination of ~40 cm for catfish. This finding suggested that catfish would exceed the European sanitary threshold at body size larger than 168 cm possibly constraining their commercial exploitation. Our results highlighted that the invasive catfish was a littoral-oriented apex predator occupying an alternative trophic niche as compared to pike thereby modifying the lake food web structure that resulted in an enhancement of PCB transfer to higher trophic levels. The biomagnification and ontogenetic bioaccumulation of catfish underlined the impact of this biological invasion on the fate of PCB in the ecosystem. Finally, the remarkable inter-individual PCB contamination suggested variable inter-individual PCB exposure likely associated to localized hotspots of PCB contamination in the lake.
Collapse
Affiliation(s)
- Victor Frossard
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France.
| | - Chloé Vagnon
- Université Savoie Mont Blanc, INRAE, CARRTEL, 74200 Thonon-les-Bains, France
| | - Nathalie Cottin
- Université Savoie Mont Blanc, CNRS, EDYTEM, 73370 Le Bourget du Lac, France
| | - Mathieu Pin
- Université Savoie Mont Blanc, CNRS, EDYTEM, 73370 Le Bourget du Lac, France
| | - Frédéric Santoul
- Université Toulouse 3 Paul Sabatier, EDB, 31000 Toulouse, France
| | | |
Collapse
|
20
|
Narduzzi L, Hernández-Mesa M, Vincent P, Guitton Y, García-Campaña AM, Le Bizec B, Dervilly G. Deeper insights into the effects of low dietary levels of polychlorinated biphenyls on pig metabolism using gas chromatography-high resolution mass spectrometry metabolomics. CHEMOSPHERE 2023; 341:140048. [PMID: 37660801 DOI: 10.1016/j.chemosphere.2023.140048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a class of contaminants of great concern, linked to the development of many chronic diseases. Adverse effects of PCBs have been documented in humans after accidental and massive exposure. However, little is known about the effect of chronic exposure to low-dose PCB mixtures, and studies regarding scattered lifetime exposures to non-dioxin-like (NDL)-PCBs are especially missing. In this work, serum samples from pigs chronically exposed through their diet during 22 days to Aroclor 1260 (i.e. a commercially available mixture of NDL-PCBs) underwent a metabolomics analysis using gas chromatography-high resolution mass spectrometry (GC-HRMS), with the objective to investigate the effect of exposure to low doses of NDL-PCBs (few ng/kg body weight (b.w.) per day). The study showed that the serum profiles of 84 metabolites are significantly altered by the administration of Aroclor 1260, of which 40 could be identified at level 1. The aggregate interpretation of the results of this study, together with the outcome of a previous one involving LC-HRMS profiling, provided a substantial and concise overview of the effect of low dose exposure to NDL-PCBs, reflecting the hepatotoxic and neurotoxic effects already reported in literature at higher and longer exposures. These results are intended to contribute to the debate on the current toxicological reference values for these substances.
Collapse
Affiliation(s)
- Luca Narduzzi
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain
| | - Maykel Hernández-Mesa
- Oniris, INRAE, LABERCA, Nantes, 44300, France; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain.
| | | | | | - Ana M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada, E-18071, Spain
| | | | | |
Collapse
|
21
|
Hoffman SS, Liang D, Hood RB, Tan Y, Terrell ML, Marder ME, Barton H, Pearson MA, Walker DI, Barr DB, Jones DP, Marcus M. Assessing Metabolic Differences Associated with Exposure to Polybrominated Biphenyl and Polychlorinated Biphenyls in the Michigan PBB Registry. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107005. [PMID: 37815925 PMCID: PMC10564108 DOI: 10.1289/ehp12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Polybrominated biphenyls (PBB) and polychlorinated biphenyls (PCB) are persistent organic pollutants with potential endocrine-disrupting effects linked to adverse health outcomes. OBJECTIVES In this study, we utilize high-resolution metabolomics (HRM) to identify internal exposure and biological responses underlying PCB and multigenerational PBB exposure for participants enrolled in the Michigan PBB Registry. METHODS HRM profiling was conducted on plasma samples collected from 2013 to 2014 from a subset of participants enrolled in the Michigan PBB Registry, including 369 directly exposed individuals (F0) who were alive when PBB mixtures were accidentally introduced into the food chain and 129 participants exposed to PBB in utero or through breastfeeding, if applicable (F1). Metabolome-wide association studies were performed for PBB-153 separately for each generation and Σ PCB (PCB-118, PCB-138, PCB-153, and PCB-180) in the two generations combined, as both had direct PCB exposure. Metabolite and metabolic pathway alterations were evaluated following a well-established untargeted HRM workflow. RESULTS Mean levels were 1.75 ng / mL [standard deviation (SD): 13.9] for PBB-153 and 1.04 ng / mL (SD: 0.788) for Σ PCB . Sixty-two and 26 metabolic features were significantly associated with PBB-153 in F0 and F1 [false discovery rate (FDR) p < 0.2 ], respectively. There were 2,861 features associated with Σ PCB (FDR p < 0.2 ). Metabolic pathway enrichment analysis using a bioinformatics tool revealed perturbations associated with Σ PCB in numerous oxidative stress and inflammation pathways (e.g., carnitine shuttle, glycosphingolipid, and vitamin B9 metabolism). Metabolic perturbations associated with PBB-153 in F0 were related to oxidative stress (e.g., pentose phosphate and vitamin C metabolism) and in F1 were related to energy production (e.g., pyrimidine, amino sugars, and lysine metabolism). Using authentic chemical standards, we confirmed the chemical identity of 29 metabolites associated with Σ PCB levels (level 1 evidence). CONCLUSIONS Our results demonstrate that serum PBB-153 is associated with alterations in inflammation and oxidative stress-related pathways, which differed when stratified by generation. We also found that Σ PCB was associated with the downregulation of important neurotransmitters, serotonin, and 4-aminobutanoate. These findings provide novel insights for future investigations of molecular mechanisms underlying PBB and PCB exposure on health. https://doi.org/10.1289/EHP12657.
Collapse
Affiliation(s)
- Susan S. Hoffman
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Donghai Liang
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Robert B. Hood
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | | | - M. Elizabeth Marder
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
| | - Melanie A. Pearson
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Douglas I. Walker
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| | - Dean P. Jones
- School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University, Atlanta, Georgia, USA
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Brennan E, Butler AE, Drage DS, Sathyapalan T, Atkin SL. Serum polychlorinated biphenyl levels and circulating miRNAs in non-obese women with and without polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1233484. [PMID: 37790603 PMCID: PMC10544902 DOI: 10.3389/fendo.2023.1233484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/24/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Polychlorinated biphenyls (PCBs), organic lipophilic pollutants that accumulate through diet and increase with age, have been associated with polycystic ovary syndrome (PCOS) and shown to affect microRNA (miRNA) expression. This work aimed to determine if PCBs were associated with circulating miRNAs and whether there were any correlations with serum PCB/miRNA levels and hormonal changes. Methods 29 non-obese PCOS and 29 healthy control women, with similar age and body mass index (BMI), had their serum miRNAs measured together with 7 indicator PCBs (PCB28, PCB52, PCB101, PCB118, PCB138, PCB153, PCB180) using high resolution gas chromatography coupled with high resolution mass spectrometry. Results In the combined study cohort, four miRNAs (hsa-miR-139-5p, hsa-miR-424-5p, hsa-miR-195-5p, hsa-miR-335-5p) correlated with PCBs, but none correlated with metabolic parameters. hsa-miR-335-5p correlated with FSH. When stratified, 25 miRNAs correlated with PCBs in controls compared to only one (hsa-miR-193a-5p) in PCOS; none of these miRNAs correlated with the metabolic parameters of BMI, insulin resistance, or inflammation (C-reactive protein, CRP). However, of these 25 miRNAs in controls, hsa-miR-26a-5p, hsa-miR-193a-5p, hsa-miR-2110 and hsa-miR-195-5p positively correlated with luteinizing hormone (LH), hsa-miR-99b-5p and hsa-miR-146b-5p correlated with estradiol, hsa-miR-193a-5p correlated with progesterone, hsa-miR-195-5p correlated with follicle stimulating hormone (FSH), and hsa-miR-139-5p and hsa-miR-146b-5p negatively correlated with anti-müllerian hormone (AMH) (all p<0.05). hsa-miR-193a-5p in PCOS cases correlated with estradiol. Conclusion In this cohort of women, with no difference in age and BMI, and with similar PCB levels, the miRNAs correlating to PCBs associated with menstrual cycle factors in healthy menstruating controls versus the anovulatory PCOS subjects. The PCB-associated miRNAs did not correlate with non-reproductive hormonal and metabolic parameters. This suggests that PCB effects on miRNAs may result in changes to the hypothalamo-ovarian axis that may thus affect fertility.
Collapse
Affiliation(s)
- Edwina Brennan
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| | - Alexandra E. Butler
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| | - Daniel S. Drage
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Stephen L. Atkin
- School of Medicine, Royal College of Surgeons in Ireland-Medical University of Bahrain, Busaiteen, Bahrain
| |
Collapse
|
23
|
Baqar M, Naseem S, Tabinda AB, Yao Y, Shahzad M, Mahmood A, Yasar A, Zhao S, Zhang G, Sun H. Distribution, bioaccumulation, and health risk assessment of organochlorines across the riverine ecosystem of Punjab Province, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:98377-98388. [PMID: 37608167 DOI: 10.1007/s11356-023-28778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 07/09/2023] [Indexed: 08/24/2023]
Abstract
This study was designed to assess the distribution of organochlorines (OCs) in fish species, their spatio-temporal variations, bioaccumulation potential, and associated human health risks via dietary intake. The levels of twenty-three organochlorine pesticides (OCPs) and thirty-five polychlorinated biphenyls (PCBs) were analyzed in six fish species collected from the riverine ecosystem of Punjab Province, Pakistan. The results indicated that the mean levels of Σ23OCPs were 74.1 ng/g ww and 184 ng/g ww, and for Σ35PCBs the levels were 38.8 ng/g ww and 74.8 ng/g ww in herbivorous and carnivorous fish species, respectively. The most abundant contaminants in all fish species were DDTs (65%) and HCHs (14%) among OCPs and heavier PCB congeners (62%) among PCBs. As for dioxin-like PCBs, the WHO toxic equivalency values (ng TEQ/g ww) were in the range of 0.21 (Cyprinus Carpio) to 2.38 (Rita Rita), exceeding the maximum allowable limit of 0.004 ng TEQ/g, ww by the European Commission. Spatio-temporal analysis indicated relatively higher OC levels in winter season with elevated concentrations in fish samples from industrial zone. The bioconcentration factor (L/kg) values ranged from 723 to 2773 for PCBs and 315 to 923 for OCPs in all fish species, with higher levels were reported in carnivorous species. The human health risk assessment at both 50th and 95th percentiles revealed the absence of any significant non-carcinogenic risk as calculated HR was less than 1. However, the critical carcinogenic risk was found to be associated for most of the contaminants, signifying the dietary exposure to OCPs and PCBs might pose the public health concern.
Collapse
Affiliation(s)
- Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Samra Naseem
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Muhammad Shahzad
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, 51310, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
24
|
Falahudin D, Herandarudewi SMC, Hukom FD, Arifin Z, Wulandari I, Sudaryanto A, Hoang AQ, Watanabe I, Takahashi S. The first full-congener analysis of 209 polychlorinated biphenyls (PCBs) in the blubber of short-finned pilot whales (Globicephala macrorhynchus) stranded along the coast of Savu Island, Indonesia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163008. [PMID: 36966839 DOI: 10.1016/j.scitotenv.2023.163008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/17/2023]
Abstract
Short-finned pilot whales (SFPW) are a group of cetaceans found globally in tropical and temperate seas and are commonly stranded in the group, but the reason behind their stranding is still unknown. No detailed information on the contamination status and bioaccumulation of halogenated organic compounds, including polychlorinated biphenyls (PCBs), in the SFPW from Indonesian waters has been reported. Therefore, we analyzed all 209 PCB congeners in the blubber of 20 SFPW specimens stranded along the coast of Savu Island, East Nusa Tenggara, Indonesia, in October 2012 to explain the status of contamination, congener profiles, potential risk of PCBs to cetaceans, and the determination of unintentionally produced PCBs (u-PCBs) in the blubber of SFPW. Concentrations of Σ209PCBs, Σ7in-PCBs, Σ12dl-PCBs, and Σ21u-PCBs were between 48 and 490 (mean:240 ± 140), 22-230 (110 ± 60), 2.6-38 (17 ± 10), and 1.0-13 (6.3 ± 3.7) ng g-1 lipid weight (lw), respectively. Congener-specific profiles of PCBs among sex and estimated age groups were observed; relatively high proportions of tri-to penta-CBs in juveniles and highly chlorinated recalcitrant congeners in structure-activity groups (SAGs) in sub-adult females were noted. The estimated toxic equivalency (TEQs) value for dl-PCBs ranged from 2.2 to 60 TEQWHO pg/g lw, with juveniles containing high TEQ values than sub-adults and adults. Although the TEQs and concentrations of PCBs in SFPW stranded along Indonesian coasts were lower than those reported for similar whale species from other North Pacific regions, further research is needed to assess the long-term impact of halogenated organic pollutants on their survival and health.
Collapse
Affiliation(s)
- Dede Falahudin
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Sekar M C Herandarudewi
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Frensly Demianus Hukom
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Zainal Arifin
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Ita Wulandari
- Research Center for Oceanography, National Research and Innovation Agency, Pasir Putih 1, Ancol Timur, Jakarta 14430, Indonesia
| | - Agus Sudaryanto
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Building 820 KST BJ. Habibie, Serpong 15314, Banten, Indonesia
| | - Anh Quoc Hoang
- Faculty of Chemistry, University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi 11000, Viet Nam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| |
Collapse
|
25
|
Megson D, Tiktak GP, Shideler S, Dereviankin M, Harbicht L, Sandau CD. Source apportionment of polychlorinated biphenyls (PCBs) using different receptor models: A case study on sediment from the Portland Harbor Superfund Site (PHSS), Oregon, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162231. [PMID: 36796695 DOI: 10.1016/j.scitotenv.2023.162231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Multivariate modelling techniques are used by a wide variety of investigations in environmental chemistry. It is surprisingly rare for studies to show a detailed understanding of uncertainties created by modelling or how uncertainties in chemical analysis impact model outputs. It is common to use untrained multivariate models for receptor modelling. These models produce a slightly different output each time they are run. The fact that a single model can provide different results is rarely acknowledged. In this manuscript, we attempt to address this by investigating differences that can be generated using four different receptor models (NMF, ALS, PMF & PVA) to perform source apportionment of polychlorinated biphenyls (PCBs) in surface sediments from Portland Harbor. Results showed that models generally had a strong agreement and identified the same main signatures that represented commercial PCB mixtures, however, subtle differences were identified by; different models, same models but with a different number of end members (EM), and the same model with the same number of end members. As well as identifying different Aroclor-like signatures, the relative proportion of these sources also varied. Depending on which method is selected it may have a significant impact on conclusions of a scientific report or litigation case and ultimately, allocation on who is responsible for paying for remediation. Therefore, care must be taken to understand these uncertainties to select a method that produces consistent results with end members that can be chemically explained. We also investigated a novel approach to use our multivariate models to identify inadvertent sources of PCBs. By using a residual plot produced from one of our models (NMF) we were able to suggest the presence of approximately 30 different potentially inadvertently produced PCBs which account for 6.6 % of the total PCBs in Portland Harbor sediments.
Collapse
Affiliation(s)
- David Megson
- Manchester Metropolitan University, Manchester, UK; Chemistry Matters Inc., Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
26
|
Williams RS, Brownlow A, Baillie A, Barber JL, Barnett J, Davison NJ, Deaville R, Ten Doeschate M, Penrose R, Perkins M, Williams R, Jepson PD, Lyashevska O, Murphy S. Evaluation of a marine mammal status and trends contaminants indicator for European waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161301. [PMID: 36592909 DOI: 10.1016/j.scitotenv.2022.161301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Marine mammals are vulnerable to the bioaccumulation, biomagnification and lactational transfer of specific types of pollutants, such as industrial polychlorinated biphenyls (PCBs), due to their long-life spans, feeding at a high trophic level and unique fat stores that can serve as depots for these lipophilic contaminants. Currently, European countries are developing indicators for monitoring pollutants in the marine environment and assessing the state of biodiversity, requirements under both Regional Seas Conventions and European legislation. As sentinel species for marine ecosystem and human health, marine mammals can be employed to assess bioaccumulated contaminants otherwise below current analytical detection limits in water and lower trophic level marine biota. To aid the development of Regional Seas marine mammal contaminants indicators, as well as Member States obligations under descriptor 8 of the EU Marine Strategy Framework Directive, the current study aims to further develop appropriate methodological standards using data collected by the established UK marine mammal pollutant monitoring programme (1990 to 2017) to assess the trends and status of PCBs in harbour porpoises. Within this case study, temporal trends of PCB blubber concentration in juvenile harbour porpoises were analysed using multiple linear regression models and toxicity thresholds for the onset of physiological (reproductive and immunological) endpoints were applied to all sex-maturity groups. Mean PCB blubber concentrations were observed to decline in all harbour porpoise Assessment Units and OSPAR Assessment Areas in UK waters. However, a high proportion of animals were exposed to concentrations deemed to be a toxicological threat, though the relative proportion declined in most Assessment Units/Areas over the last 10 years of the assessment. Recommendations were made for improving the quality of the assessment going forward, including detailing monitoring requirements for the successful implementation of such an indicator.
Collapse
Affiliation(s)
- Rosie S Williams
- Institute of Zoology Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew Baillie
- The Natural History Museum, Cromwell Road, SW7 5BD, London, UK
| | - Jonathan L Barber
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, UK
| | - James Barnett
- Cornwall Marine Pathology Team, Fishers Well, Higher Brill, Constantine, Falmouth TR11 5QG, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Robert Deaville
- Institute of Zoology Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Mariel Ten Doeschate
- Scottish Marine Animal Stranding Scheme, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rod Penrose
- Marine Environmental Monitoring, Penwalk, Llechryd, Cardigan SA43 2PS, Ceredigion, UK
| | - Matthew Perkins
- Institute of Zoology Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | | | - Paul D Jepson
- Institute of Zoology Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Olga Lyashevska
- Marine and Freshwater Research Centre, Department of Natural Resources & the Environment, School of Science and Computing, Atlantic Technical University, ATU Galway city, Ireland
| | - Sinéad Murphy
- Marine and Freshwater Research Centre, Department of Natural Resources & the Environment, School of Science and Computing, Atlantic Technical University, ATU Galway city, Ireland.
| |
Collapse
|
27
|
Dreyer A, Minkos A. Polychlorinated biphenyls (PCB) and polychlorinated dibenzo-para-dioxins and dibenzofurans (PCDD/F) in ambient air and deposition in the German background. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120511. [PMID: 36349639 DOI: 10.1016/j.envpol.2022.120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/06/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
PCDD/Fs (17 congeners and Σ tetra -to octachloro homologues) and 209 PCBs were investigated in monthly samples of ambient air (gas + particle phase) and atmospheric deposition at two background monitoring sites in Germany in 2018/19. In atmospheric deposition samples, PCDD/F congeners as well as certain PCBs were frequently below the method quantification limits whereas values for PCDD/F homologue groups could be quantified more often. Annual deposition averages for individual PCDD/Fs were between <0.1 μg/m2d and 6.7 μg/m2d. Averages for Σ TeCDD/F to OCDD/F homologue totals in deposition were about 11 pg/m2d and 19 pg/m2d. Total PCB deposition rates were about 1900 pg/m2d and 1550 pg/m2d. PCDD/F + PCB-deposition rates were below 1 pg WHO2005-TEQ/m2d on average. In ambient air, both substance groups were frequently observed. Annual concentration averages for individual PCDD/F were between 0.1 fg/m³ and 50 fg/m³. Average values for Σ TeCDD/F to OCDD/F homologue totals in ambient air were 283 fg/m³ and 162 fg/m³. Total PCB concentrations were about 50 pg/m³ at both sites. PCDD/F + PCB-TEQ values were lower than 5 fg WHO2005-TEQ/m³ on average. Besides the frequently studied dioxin-like PCBs and six indicator PCBs, the analysis of the 209 PCBs (166 separated PCB-peaks) enabled the identification and evaluation of additional PCBs that might be of environmental concern. Of 166 PCBs or PCB-coelutions, up to 144 were quantified in air samples and up to 94 in atmospheric deposition samples. In ambient air, some of these PCBs were observed at levels similar to or exceeding those of the six indicator PCBs. Important additional PCBs in ambient air were PCB 5 + 8, PCB 11, PCB 17, PCB 18, PCB 20 + 33, PCB 31, PCB 43 + 49, PCB 44, PCB 47 + 48 + 65 + 75, PCB 93 + 95 + 98 + 102, PCB 139 + 149, and PCB 151. The presence of these PCBs in atmospheric samples implies that by analysing only selected PCBs potentially important contaminants are overlooked.
Collapse
|
28
|
Hållén J, Malmaeus JM, Johansson N, Karlsson OM. Using a dynamic mass balance model to predict fate and transport of PCBs in a polluted boreal lake in Sweden. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158522. [PMID: 36063918 DOI: 10.1016/j.scitotenv.2022.158522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In 2013, a screening survey including fish (European perch, Perca fluviatilis) from 20 locations in the Stockholm region of Sweden indicated exceptionally high levels of PCBs (>450 ng ΣPCB7/g ww) in Lake Oxundasjön. An extensive sampling program was launched to define the magnitude and area of impact of PCBs. Moreover, a dynamic mass balance model approach was applied to identify and quantify key transport processes and predict the long-term turnover of PCBs given various remediation scenarios. Based on the dating of sediment profiles, primary emissions of PCBs to Lake Oxundasjön have likely occurred from the end of the 1940s until 1980, reaching the lake via one of its tributaries. Presently, the main source of PCBs is diffusion from the lake sediments. From the lake outlet, >400 g ΣPCB7/yr are transported to Lake Mälaren (the third largest lake in Sweden), supplying drinking water for parts of the Stockholm area. Remediation actions are necessary to reduce the PCB levels in fish below today's marketing limits and environmental quality standards. With natural recovery, our results indicate that the PCB levels in non-migratory fish from Lake Oxundasjön will be elevated for decades to come. The mass of PCBs stored in the lake sediments was estimated, and to our knowledge, Lake Oxundasjön is the most heavily PCB contaminated lake in Sweden. The system constitutes a unique opportunity to test and develop a mathematical mass balance model for PCBs, with substantial data acquired from different aquatic matrices. The model presented in the paper is applicable for risk assessments of PCBs, and the results contribute to the general understanding of the transport and turnover dynamics of PCBs in aquatic ecosystems.
Collapse
Affiliation(s)
- J Hållén
- IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31 Stockholm, Sweden.
| | - J M Malmaeus
- IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31 Stockholm, Sweden
| | - N Johansson
- Melica Biologkonsult, Vinkelv. 19, SE-194 44 Upplands Väsby, Sweden
| | - O M Karlsson
- IVL Swedish Environmental Research Institute, P.O. Box 210 60, SE-100 31 Stockholm, Sweden
| |
Collapse
|
29
|
Hannah TJ, Megson D, Sandau CD. A review of the mechanisms of by-product PCB formation in pigments, dyes and paints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158529. [PMID: 36063921 DOI: 10.1016/j.scitotenv.2022.158529] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
There has been an increased awareness of paints and pigments as a source of by-product PCBs in the environment. The majority of existing work has focused only on reporting the presence of the main PCBs in different products with a specific focus on the most PCB congeners, PCB11 and PCB209. This gives the impression that only a handful of PCBs are found in paints. However, this is not the case. PCB profiles in paints and pigments can be just as complex as commercial technical mixtures. This review identified the presence of 149 different PCBs in paint samples. For reference, only 141 different PCBs have been reported in all of the 5 main commercial Aroclor formulations (A1016, A1242, A1248, A1254 (early & late) and A1260). The total PCB concentrations in some paint samples can be substantial, with concentrations as high as 919 mg kg-1 reported in azo pigments. When trying to identify sources of PCBs in the environment, pigments, dyes and paints are often overlooked. In this manuscript, we have compiled congener profiles from 140 different samples from the available scientific literature and presented this in the supplementary information as valuable resource for others to use in source identification applications. We have also proposed detailed mechanisms for the formation of PCBs in pigments, dyes and paints. In many cases, the PCB congeners predicted by these mechanisms provide an excellent match for what has been observed in the scientific literature. We have also identified several additional classes of pigments that are expected to contain PCBs but have yet to be verified by experimental data.
Collapse
Affiliation(s)
| | - David Megson
- Chemistry Matters, Calgary, AB, Canada; Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK.
| | | |
Collapse
|
30
|
Weitekamp CA, Shaffer RM, Chiang C, Lehmann GM, Christensen K. An evidence map of polychlorinated biphenyl exposure and health outcome studies among residents of the Akwesasne Mohawk Nation. CHEMOSPHERE 2022; 306:135454. [PMID: 35764106 PMCID: PMC9444975 DOI: 10.1016/j.chemosphere.2022.135454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 05/19/2023]
Abstract
From the 1950s to the 1970s, three Superfund sites discharged polychlorinated biphenyl (PCB)-contaminated waste upstream of the Mohawk Nation at Akwesasne, resulting in PCB contamination of groundwater, soil, and sediment in the surrounding area. Given the persistence of PCBs in the environment and in human tissues, there are continued concerns regarding PCB exposures and the potential for adverse health effects in the community. We developed an evidence map of PCB research at Akwesasne in order to characterize the available data and to highlight potential research needs. Human health and exposure biomarker studies were identified from a literature search based on population, exposure, comparator, and outcome (PECO) criteria. Data extracted from references that met the inclusion criteria after full-text review included study characteristics (e.g., sample size, study design, sampling years), details on PCB measurements (e.g., analytical method, number of congeners analyzed, method detection limits), and results (e.g., PCB levels and summary of study conclusions). We identified 33 studies, conducted between 1986 and 2013, that examined PCB exposure characteristics and health effects in residents of the Akwesasne Mohawk Nation. Organizing this literature into an evidence map including information on study cohort, congener groupings, exposure biomarker characteristics, and health effects allowed us to identify research gaps and to suggest future research priorities for the community. We identified current PCB exposure levels and PCB source characterization as major uncertainties, both of which could be addressed by new studies of PCB concentrations in environmental media.
Collapse
Affiliation(s)
- Chelsea A Weitekamp
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Rachel M Shaffer
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Washington, DC, USA
| | - Catheryne Chiang
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Geniece M Lehmann
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA.
| | - Krista Christensen
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. EPA, Washington, DC, USA
| |
Collapse
|
31
|
Method development and application to sediments for multi-residue analysis of organic contaminants using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 2022; 414:5845-5855. [DOI: 10.1007/s00216-022-04148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
|
32
|
Avila BS, Ramírez C, Téllez-Avila E, Combariza D. Occupational exposure to polychlorinated biphenyls (PCBs) in workers at companies in the Colombian electricity sector. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:941-951. [PMID: 32795198 DOI: 10.1080/09603123.2020.1806213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) comprise a family of 209 congeners that have low electrical conductivity and high thermal resistance due to their physicochemical properties and are thus widely used as dielectric oils, among other applications. Although PCBs are no longer used in dielectric oils in Colombia as of several years ago, electric transformers in Colombia might still contain PCBs, and workers might carry PCBs due to exposure from when they were still used in dielectric fluid. Thus, occupational exposure in Colombia to PCBs was evaluated by determining their concentrations in the blood plasma samples of 115 workers in the electricity sector . The sum of the six PCB indicators was between <LOD and 16.09 µg L-1 (median: <0.10 µg L-1, 95th percentile: 1.30 µg L-1), and the total concentration of PCBs calculated as PCB 138 + 153 + 180 × 1.7 was between <LOD and 3210.17 ng g-1 lipids (median: <7.30 ng g-1 , 95th percentile: 392.79 ng g-1). . One worker dedicated to transformer and capacitor maintenance activities presented a PCB value higher than the biological tolerance level of 15 µg L-1. The findings of the present investigation revealed that workers in the electricity sector face chronic occupational exposure to PCBs; Finally, the results can help to improve health policies related to these contaminants in the country.
Collapse
Affiliation(s)
- Boris Santiago Avila
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| | - Carolina Ramírez
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| | - Eliana Téllez-Avila
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| | - David Combariza
- National Institute of Health, Environmental and Laboral Health Group, Bogota D.C, Colombia
| |
Collapse
|
33
|
Assessment of PCBs in Surface Waters at Ultratrace Levels: Traditional Approaches and Biomonitoring (Lake Baikal, Russia). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This article presents the results of the assessment of PCB concentrations in surface waters at ultratrace level of concentrations. The assessment of PCB concentrations is based on data from monitoring PCBs in Baikal water within the conventional approach as well as from biomonitoring of PCBs using Baikal omul, Coregonus migratorius, Georgi, 1775 (C. migratorius), as a bioindicator. The time cycle of the monitoring covered the period from 2014 to 2021. The concentrations of PCBs in the water were estimated from the concentrations of seven indicator congeners: 28, 52, 101, 118, 138, 153, and 180, and from congeners of dioxin-like (dl) PCBs in the tissues of C. migratorius. The average value and the statistically significant range of the detected total concentrations (Ʃ7PCBs) in Baikal water were 0.30 and 0.26–0.34 ng/L, respectively. In the tissues of C. migratorius, the average value and the range of Ʃ7PCB concentrations were 5.6 and 4.9–6.3 ng/g (ww), respectively, and for dl-PCBs, 1.5 and 1.3–1.7 ng/g (ww), respectively. The total toxicity equivalent of the detected dl-PCBs was in the WHO-TEQ (2005) range from 0.03 to 0.06 pg/g (ww). The concentrations of Ʃ7PCBs in Baikal water and dl-PCBs in the tissues of C. migratorius corresponded to the concentration levels in the European alpine lakes and the tissues of S. trutta fish inhabiting these lakes.
Collapse
|
34
|
Megson D, Brown T, Jones GR, Robson M, Johnson GW, Tiktak GP, Sandau CD, Reiner EJ. Polychlorinated biphenyl (PCB) concentrations and profiles in marine mammals from the North Atlantic Ocean. CHEMOSPHERE 2022; 288:132639. [PMID: 34687677 DOI: 10.1016/j.chemosphere.2021.132639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) can provide crucial information into the bioaccumulation and biomagnification of POPs in marine mammals. Muscle tissue samples were obtained for detailed PCB congener specific analysis of all 209 PCBs in 11 species of marine mammals stranded across the coast of the UK between 2010 and 2013. At least 145 PCB congeners were found in each individual. The highest concentrations of PCBs were recorded in a killer whale (318 mg/kg lipid) and the highest toxic equivalent in a Risso's dolphin (1687 pg/g TEQ2005 wet). Concentrations of PCBs in the majority of samples exceeded toxic thresholds (9 mg/kg lipid) for marine mammals, highlighting the health risk they face from PCB exposure. Many PCB profiles did not fit typical 'Aroclor' signatures, but instead indicated patterns of congeners that are resistant to biotransformation and elimination. However, this study identified a novel PCB signature in a sei whale that has not yet been previously observed in marine mammals. The whale had a PCB profile that included lighter and inadvertent PCB congeners such as PCB 11, suggesting that the main source of exposure was through atmospheric deposition, rather than terrestrial discharges. Seven subsamples were chosen for chiral analysis of PCB 95, 136 and 149. The enantiomer fractions (EFs) of C-PCBs 95 and 149 were non racemic suggesting there may be enantiomer selective metabolism in marine mammals. Although there has been a shift in the literature towards emerging pollutants, this study acts as a stark reminder that PCBs continue to pose a significant risk to wildlife.
Collapse
Affiliation(s)
- David Megson
- Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK; Chemistry Matters, Calgary, AB, Canada.
| | - Thomas Brown
- Scottish Association for Marine Science (SAMS), Oban, Scotland, UK
| | | | - Mathew Robson
- Ontario Ministry of the Environment, Conservation and Parks. 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| | | | - Guuske P Tiktak
- Manchester Metropolitan University, Ecology & Environment Research Centre, Department of Natural Science, Manchester, UK
| | | | - Eric J Reiner
- Ontario Ministry of the Environment, Conservation and Parks. 125 Resources Road, Toronto, ON, M9P 3V6, Canada
| |
Collapse
|
35
|
Kustova OV, Stepanov AS, Gorshkov AG. Determination of Indicator Congeners of Polychlorinated Biphenyls in Water at Ultratrace Levels by Gas Chromatography–Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s106193482111006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Weitekamp CA, Phillips LJ, Carlson LM, DeLuca NM, Cohen Hubal EA, Lehmann GM. A state-of-the-science review of polychlorinated biphenyl exposures at background levels: relative contributions of exposure routes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 776:145912. [PMID: 36590071 PMCID: PMC9802026 DOI: 10.1016/j.scitotenv.2021.145912] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Exposure to polychlorinated biphenyls (PCBs) can occur through multiple routes and sources, including dietary intake, inhalation, dermal contact, and ingestion of dust and soils. Dietary exposure to PCBs is often considered the primary exposure route for the general population; however, recent studies suggest an increasing contribution from indoor inhalation exposure. Here, we aim to estimate the relative contribution of different PCB exposure pathways for the general population, as well as for select age groups. We conducted a targeted literature review of PCB concentrations in environmental media, including indoor and outdoor air, indoor dust, and soils, as well as of total dietary intake. Using the average concentrations from the studies identified, we estimated PCB exposure through different routes for the general population. In addition, we assessed exposure via environmental media for select age groups. We identified a total of 70 studies, 64 that provided background PCB concentrations for one or more of the environmental media of interest and 6 studies that provided estimates of dietary intake. Using estimates from studies conducted worldwide, for the general population, dietary intake of PCBs was the major exposure pathway. In general, our review identifies important limitations in the data available to assess population exposures, highlighting the need for more current and population-based estimates of PCB exposure, particularly for indoor air and dietary intake.
Collapse
Affiliation(s)
| | - Linda J. Phillips
- Office of Research and Development, U.S. EPA, Washington, DC, USA; Retired
| | - Laura M. Carlson
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Nicole M. DeLuca
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| | - Elaine A. Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
- Address post-publication correspondence: Elaine A. Cohen Hubal, , 109 TW Alexander Dr., Durham, NC 27711
| | - Geniece M. Lehmann
- Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Enhanced plant-microbe remediation of PCBs in soil using enzyme modification technique combined with molecular docking and molecular dynamics. Biochem J 2021; 478:1921-1941. [PMID: 33900386 DOI: 10.1042/bcj20210104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022]
Abstract
The study on the enhanced mechanisms of the enzymes involved in plant absorption, plant degradation, and microbial mineralization in the remediation of soils contaminated with polychlorinated biphenyls (PCBs) is of great significance for the application of plant-microbe combined remediation technique in PCB-contaminated soils. The present study first used a combination of molecular docking and molecular dynamics methods to calculate the effects of the plant absorption enzyme, plant degradation enzyme, and microbial mineralization enzyme on the PCBs in the soil environment. A multifunctional plant degradation enzyme was constructed with three functional roles of absorption, degradation, and mineralization using amino acid sequence recombination and site-directed mutagenesis to modify the template of plant degradation enzyme. Finally, using the Taguchi experimental design-assisted molecular dynamics simulation method, the suitable external environmental conditions of plant-microbe combined remediation of the PCB-contaminated soil were determined. In total, six multifunctional plant degradation enzymes were designed, which exhibited a significantly improved efficiency of PCB degradation. In comparison to the complex of plant absorption enzyme, plant degradation enzyme, and microorganism mineralization enzyme (6QIM-3GZX-1B85), the six multifunctional plant degradation enzymes exhibited significantly higher efficiency (2.10-2.38 times) in degrading the PCBs, with a maximum of 2.69 times under suitable external environmental conditions.
Collapse
|
38
|
Holland EB, Pessah IN. Non-dioxin-like polychlorinated biphenyl neurotoxic equivalents found in environmental and human samples. Regul Toxicol Pharmacol 2021; 120:104842. [PMID: 33346014 PMCID: PMC8366267 DOI: 10.1016/j.yrtph.2020.104842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/01/2022]
Abstract
Non-dioxin like polychlorinated biphenyls (NDL PCB) are recognized neurotoxicants with implications on altered neurodevelopment and neurodegeneration in exposed organisms. NDL PCB neurotoxic relative potency schemes have been developed for a single mechanism, namely activity toward the ryanodine receptor (RyR), or combined mechanisms including, but not limited to, alterations of RyR and dopaminergic pathways. We compared the applicability of the two neurotoxic equivalency (NEQ) schemes and applied each scheme to PCB mixtures found in environmental and human serum samples. A multiple mechanistic NEQ predicts higher neurotoxic exposure concentrations as compared to a scheme based on the RyR alone. Predictions based on PCB ortho categorization, versus homologue categorization, lead to a higher prediction of neurotoxic exposure concentrations, especially for the mMOA. The application of the NEQ schemes to PCB concentration data suggests that PCBs found in fish from US lakes represent a considerable NEQ exposure to fish consuming individuals, that indoor air of schools contained high NEQ concentrations representing an exposure concern when inhaled by children, and that levels already detected in the serum of adults and children may contribute to neurotoxicity. With further validation and in vivo exposure data the NEQ scheme would help provide a more inclusive measure of risk presented by PCB mixtures.
Collapse
Affiliation(s)
- E B Holland
- Department of Biological Sciences, California State University of Long Beach, Long Beach, CA, USA.
| | - I N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
39
|
Tiktak GP, Butcher D, Lawrence PJ, Norrey J, Bradley L, Shaw K, Preziosi R, Megson D. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. MARINE POLLUTION BULLETIN 2020; 160:111701. [PMID: 33181965 DOI: 10.1016/j.marpolbul.2020.111701] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
This review represents a comprehensive analysis on pollutants in elasmobranchs including meta-analysis on the most studied pollutants: mercury, cadmium, PCBs and DDTs, in muscle and liver tissue. Elasmobranchs are particularly vulnerable to pollutant exposure which may pose a risk to the organism as well as humans that consume elasmobranch products. The highest concentrations of pollutants were found in sharks occupying top trophic levels (Carcharhiniformes and Lamniformes). A human health risk assessment identified that children and adults consuming shark once a week are exposed to over three times more mercury than is recommended by the US EPA. This poses a risk to local fishing communities and international consumers of shark-based products, as well as those subject to the widespread mislabelling of elasmobranch products. Wider screening studies are recommended to determine the risk to elasmobranchs from emerging pollutants and more robust studies are recommended to assess the risks to human health.
Collapse
Affiliation(s)
- Guuske P Tiktak
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Demi Butcher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Peter J Lawrence
- Bangor University, School of Ocean Sciences, Askew St, Menai Bridge, Wales LL59 5AB, UK
| | - John Norrey
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lee Bradley
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kirsty Shaw
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Richard Preziosi
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - David Megson
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
40
|
Mbusnum KG, Malleret L, Deschamps P, Khabouchi I, Asia L, Lebarillier S, Menot G, Onguene R, Doumenq P. Persistent organic pollutants in sediments of the Wouri Estuary Mangrove, Cameroon: Levels, patterns and ecotoxicological significance. MARINE POLLUTION BULLETIN 2020; 160:111542. [PMID: 33181915 DOI: 10.1016/j.marpolbul.2020.111542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The anthropogenic impact in the Wouri Estuary Mangrove located in the rapidly developing urban area of Douala, Cameroon, Africa, was studied. A set of 45 Persistent Organic Pollutant were analysed in surficial mangrove sediments at 21 stations. Chlorinated Pesticides (CLPs), Polychlorinated Biphenyls (PCBs) and Polycyclic Aromatic Hydrocarbons (PAHs) have concentrations ranging from 2.2 - 27.4, and 83 - 544 ng/g, respectively. The most abundant CLPs were endosulfan, alachlor, heptachlor, lindane (γ-HCH) and DDT, which metabolites pattern revealed recent use. Selected PAHs diagnostic ratios show pyrolytic input predominantly. The sum of 7 carcinogenic PAHs (ΣC-PAHs) represented 30 to 50% of Total PAHs (TPAHs). According to effect-based sediment quality guidelines, the studied POPs levels imply low to moderate predictive biological toxicity. This study contributes to depict how far water resources are shifting within what is now termed the Anthropocene due to increasing local pressures in developing countries or African countries.
Collapse
Affiliation(s)
- Kevin G Mbusnum
- Aix Marseille Université, CNRS, LCE, France; LMI DYCOFAC (IRD, Université de Yaoundé 1, IRGM), IRD, Yaoundé, Cameroon
| | | | - Pierre Deschamps
- Aix Marseille Université, CNRS, IRD, Collège de France, CEREGE, France; LMI DYCOFAC (IRD, Université de Yaoundé 1, IRGM), IRD, Yaoundé, Cameroon
| | | | | | | | - Guillemette Menot
- Université de Lyon, Ens de Lyon, CNRS, LGL-TPE, France; LMI DYCOFAC (IRD, Université de Yaoundé 1, IRGM), IRD, Yaoundé, Cameroon
| | | | | |
Collapse
|
41
|
Qiu Z, Xiao J, Zheng S, Huang W, Du T, Au WW, Wu K. Associations between functional polychlorinated biphenyls in adipose tissues and prognostic biomarkers of breast cancer patients. ENVIRONMENTAL RESEARCH 2020; 185:109441. [PMID: 32247153 DOI: 10.1016/j.envres.2020.109441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exposure to polychlorinated biphenyls (PCBs) has been shown to influence expression of some biomarkers that are predictive/prognostic for breast cancer. Therefore, our study was conducted to further investigating associations of different functional PCBs in adipose tissue with breast cancer prognostic biomarkers. METHODS Two hundred and five breast cancer patients were recruited in Shantou, China. Breast adipose tissues were collected during their resection surgery and levels of 7 PCB congeners were analyzed by gas chromatography-mass spectrometry (GC-MS). The PCB congeners were divided into 4 groups according to structure-activity. Socio-demographic, clinical and pathological information were obtained from questionnaire and digital medical records. Odds ratios (ORs) for associations between prognostic biomarkers and PCB levels (tertile 3 [T3], tertile 2 [T2] vs. tertile 1) were estimated from logistic regression models. RESULTS Most PCB congeners were detectable, with a highest level (22.06 ng/g lipid) of PCB153. As for estrogenic PCBs, increased PCB52 exposure was positively associated with PR expression (ORT2 = 2.36, Ptrend = 0.054), but higher PCB101 level was negatively associated with HER-2 (ORT3 = 0.24, Ptrend = 0.029) and tumor size (OR = 0.43). Limited dioxin-like PCB138 exposure was positively associated with ER (ORT2 = 3.23, ORT3 = 3.77, Ptrend = 0.047) but negatively with Top-IIα expression (ORT2 = 0.35, ORT3 = 0.28, Ptrend = 0.080). Higher PCB153 (CYP inducer) level was negatively associated with ER (ORT2 = 0.32, ORT3 = 0.19, Ptrend = 0.038) but positively with Ki-67 expression (ORT2 = 1.43, ORT3 = 3.60, Ptrend = 0.055). Higher neurotoxic PCB28 was positively associated with HER-2 (ORT3 = 5.43, Ptrend = 0.006) and tumor size (OR = 2.37). Moreover, total PCBs exposure was positively associated with VEGF-C (ORT2 = 76.91, ORT3 = 97.96, Ptrend = 0.041) and tumor metastasis (OR = 2.25). CONCLUSIONS Different functional PCB congeners have different associations (both positive and negative) with breast cancer prognostic biomarkers, as well as tumor classification stage. Therefore, the development and aggressiveness of breast cancer may depend upon exposure to specific structure-activity of PCBs.
Collapse
Affiliation(s)
- Zhaolong Qiu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Jiefeng Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - Taifeng Du
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong Province, China.
| |
Collapse
|
42
|
Stoll GC, da Silva Carreira R, Massone CG. Polychlorinated biphenyls (PCBs) in water: method development and application to river samples from a populated tropical urban area. Anal Bioanal Chem 2020; 412:2477-2486. [PMID: 32030496 DOI: 10.1007/s00216-020-02468-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
Abstract
A method for the determination of polychlorinated biphenyls (PCBs) in water from urban rivers was implemented and validated. Extractions of dissolved and particulate PCBs were performed using solid-phase extraction and a pressurized solvent extraction system, respectively, and the analytes were identified and quantified by gas chromatography with tandem mass spectrometry in selected reaction monitoring mode with no further purification. The method was successfully developed for the determination of 41 PCBs with two precursor-product confirmations for each analyte. Low method detection limits (0.06-0.50 ng L-1) and good precision (≤ 20%; n = 8) were obtained, as well a linear response of the calibration curve ranging from 1.0 to 50 ng L-1. Method performance for real samples was tested with water collected weekly in triplicate during April 2018 from a eutrophic river in the city of Rio de Janeiro. The total (dissolved + particulate) PCB concentrations ranged from 2.17 to 5.29 ng L-1, above the threshold for river water quality standards in Brazil. Graphical abstract.
Collapse
Affiliation(s)
- Gabriela Costa Stoll
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil.,Mineral Analysis Laboratory, Companhia de Pesquisa de Recursos Minerais (CPRM), Rio de Janeiro, 22290-240, Brazil
| | - Renato da Silva Carreira
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil
| | - Carlos German Massone
- Chemistry Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil.
| |
Collapse
|