1
|
Pandey B, Pandey AK, Bhardwaj L, Dubey SK. Biodegradation of acetaminophen: Current knowledge and future directions with mechanistic insights from omics. CHEMOSPHERE 2025; 372:144096. [PMID: 39818083 DOI: 10.1016/j.chemosphere.2025.144096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
Acetaminophen (APAP), one of the most frequently used antipyretic and analgesic medications, has recently grown into a persistent organic contaminant of emerging concern due to its over-the-counter and widespread use. The excessive accumulation of APAP and its derivatives in various environmental matrices is threatening human health and the ecosystem. The complexity of APAP and its intermediates augments the need for adequate innovative and sustainable strategies for the remediation of contaminated environments. Bioremediation serves as an efficient, eco-friendly, cost-effective, and sustainable approach to mitigate the toxic impacts of APAP. The present review provides comprehensive insights into the ecotoxicity of APAP, its complex biodegradation pathways, and the various factors influencing biodegradation. The omics approaches viz., genomics/metagenomics, transcriptomics/metatranscriptomics, proteomics, and metabolomics have emerged as powerful tools for understanding the diverse APAP-degraders, degradation-associated genes, enzymatic pathways, and metabolites. The outcomes revealed amidases, deaminases, oxygenases, and dioxygenases as the lead enzymes mediating degradation via 4-aminophenol, hydroquinone, hydroxyquinol, 3-hydroxy-cis, cis-muconate, etc. as the major intermediates. Overall, a holistic approach with the amalgamation of omics aspects would accelerate the bioaugmentation processes and play a significant role in formulating strategies for remediating and reducing the heavy loads of acetaminophen from the environmental matrices.
Collapse
Affiliation(s)
- Bhavana Pandey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Laliteshwari Bhardwaj
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
2
|
Soria-Camargo C, Can-Ubando LC, Manzanares-Leal GL, Sánchez-Reyes A, Dávila-Ramos S, Batista-García RA, Ramírez-Durán N. Tolerance to NSAIDs in Actinobacteria From a Mexican Volcano Crater: Genomics and Bioremediation Potential. J Basic Microbiol 2025:e2400772. [PMID: 39887459 DOI: 10.1002/jobm.202400772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 01/11/2025] [Indexed: 02/01/2025]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are emerging contaminants that pose significant health and environmental risks due to their persistence, including their presence in drinking water. Bioremediation, particularly through microorganisms such as actinobacteria, offers a sustainable approach to mitigate these pollutants. Actinobacteria from poly-extreme environments exhibit unique genetic and metabolic adaptations, enabling resistance to and degradation of various contaminants. This study aimed to evaluate the tolerance of actinobacteria to NSAIDs and conduct a genomic analysis of a selected strain. Actinobacteria were isolated from the crater of the Chichonal volcano [Chiapas, Mexico), resulting in 16 isolates. Among these, Micrococcus luteus P8SUE1, Micrococcus yunnanensis P9AGU1, and Kocuria rhizophila P1AGU3 demonstrated tolerance to diclofenac, ibuprofen, and paracetamol at concentrations of 1 ppm, 10 ppm, and 100 ppm, respectively. Whole-genome sequencing of M. yunnanensis P9AGU1 identified genes linked to the degradation of aromatic compounds and adaptations to extreme environmental conditions, highlighting its potential for bioremediation applications.
Collapse
Affiliation(s)
- Claudia Soria-Camargo
- Laboratorio de Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Lorna Catalina Can-Ubando
- Laboratorio de Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Gauddy Lizeth Manzanares-Leal
- Laboratorio de Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Ayixon Sánchez-Reyes
- Investigador Por México, Conahcyt-Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigaciones en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain
| | - Ninfa Ramírez-Durán
- Laboratorio de Microbiología Médica y Ambiental, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| |
Collapse
|
3
|
Pandey B, Dubey SK. Delineating acetaminophen biodegradation kinetics and metabolomics using bacterial community. Biodegradation 2024; 35:951-967. [PMID: 39001976 DOI: 10.1007/s10532-024-10090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Acetaminophen [N-(4-hydroxyphenyl) acetamide, APAP] is an extensively and frequently consumed over-the-counter analgesic and antiphlogistic medication. It is being regarded as an emerging pollutant due to its continuous increment in the environment instigating inimical impacts on humans and the ecosystem. Considering its wide prevalence in the environment, there is an immense need of appropriate methods for the removal of APAP. The present study indulged screening and isolation of APAP degrading bacterial strains from pharmaceuticals-contaminated sites, followed by their molecular characterization via 16S rRNA sequencing. The phylogenetic analyses assigned the isolates to the genera Pseudomonas, Bacillus, Paracoccus, Agrobacterium, Brucella, Escherichia, and Enterobacter based on genetic relatedness. The efficacy of these strains in batch cultures tested through High-performance Liquid Chromatography (HPLC) revealed Paracoccus sp. and Enterobacter sp. as the most promising bacterial isolates degrading up to 88.96 and 85.92%, respectively of 300 mg L-1 of APAP within 8 days of incubation. Michaelis-Menten kinetics model parameters also elucidated the high degradation potential of these isolates. The major metabolites identified through FTIR and GC-MS analyses were 4-aminophenol, hydroquinone, and 3-hydroxy-2,4-hexadienedioic. Therefore, the outcomes of this comprehensive investigation will be of paramount significance in formulating strategies for the bioremediation of acetaminophen-contaminated sites through a natural augmentation process via native bacterial strains.
Collapse
Affiliation(s)
- Bhavana Pandey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
4
|
Wang J, Hui X, Liu H, Dai X. Classification, characteristics, harmless treatment and safety assessment of antibiotic pharmaceutical wastewater (APWW): A comprehensive review. CHEMOSPHERE 2024; 366:143504. [PMID: 39389375 DOI: 10.1016/j.chemosphere.2024.143504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
The issues related to the spread of antibiotics and antibiotic resistance genes (ARGs) have garnered significant attention from researchers and governments. The production of antibiotics can lead to the emission of high-concentration pharmaceutical wastewater, which contains antibiotic residues and various other pollutants. This review compiles the classification and characteristics of antibiotic pharmaceutical wastewater (APWW), offers an overview of the development, advantages, and disadvantages of diverse harmless treatment processes, and presents a strategy for selecting appropriate treatment approaches. Biological treatment remains the predominant approach for treating APWW. In addition, several alternative methods can be employed to address the challenges associated with APWW treatment. On the other hand, the present safety assessment of the effluent resulting from APWW treatment is inadequate, necessitating more comprehensive research in this domain. It is recommended that researches in this area consider the issue of toxicity and antibiotic resistance as well. The PNECR model (similar to ecotoxicological PNECs but used to specifically refer to endpoints related to antimicrobial resistance) (Murray et al., 2024) is an emerging tool used for evaluating the antimicrobial resistance (AMR) issue. This model is, characterized by its simplicity and effectiveness, is a promising tool for assessing the safety of treated APWW.
Collapse
Affiliation(s)
- Jiawen Wang
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xuesong Hui
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
5
|
de Souza Aguiar LM, de Moraes Alves MM, Sobrinho Júnior EPC, Paiva PMG, de Amorim Carvalho FA, de Albuquerque LP, de Siqueira Patriota LL, Napoleão TH. Microgramma vacciniifolia Frond Lectin: In Vitro Anti-leishmanial Activity and Immunomodulatory Effects Against Internalized Amastigote Forms of Leishmania amazonensis. Acta Parasitol 2023; 68:869-879. [PMID: 37874484 DOI: 10.1007/s11686-023-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/22/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE The treatment of leishmaniasis, an anthropozoonosis caused by Leishmania protozoa, is limited by factors, such as adverse effects, toxicity, and excessive cost, which has highlighted the importance of novel drugs. In this context, natural products have been considered as sources of antileishmanial agents. This study investigated the leishmanicidal activity of Microgramma vacciniifolia frond lectin (MvFL) on promastigotes and amastigotes of Leishmania amazonensis. METHODS The effects of MvFL on promastigote proliferation and macrophage infection by amastigotes were evaluated and mean inhibitory concentrations (IC50) were calculated. As a safety assessment, the hemolytic capacity of MvFL (6.25-200 µg/mL) against mouse and human erythrocytes was determined. Additionally, the ability of MvFL (6.25-100 µg/mL) to modulate lysosomal and phagocytic activities and the nitric oxide (NO) production by murine peritoneal macrophages was also investigated. RESULTS After 24 h, MvFL inhibited the proliferation of L. amazonensis promastigotes, with an IC50 of 88 µg/mL; however, hemolytic activity was not observed. MvFL also reduced macrophage infection by amastigotes with an IC50 of 52 µg/mL. Furthermore, treatment with MvFL reduced the number of amastigotes internalized by infected murine peritoneal macrophages by up to 68.9% within 48 h. At a concentration of 25 µg/mL, MvFL stimulated lysosomal activity of macrophages within 72 h, but did not alter phagocytic activity or induce NO production at any of the tested concentrations. CONCLUSION MvFL exerts antileishmanial activity and further studies are needed to assess its therapeutic potential in in vivo experimental models of leishmaniasis.
Collapse
Affiliation(s)
| | - Michel Muálem de Moraes Alves
- Núcleo de Pesquisas em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Teresina, Piauí, Brazil
- Departamento de Morfofisiologia Veterinária, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando Aécio de Amorim Carvalho
- Núcleo de Pesquisas em Plantas Medicinais-NPPM, Universidade Federal do Piauí, Teresina, Piauí, Brazil
- Departamento de Bioquímica e Farmacologia, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | | | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
6
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
7
|
Zhang Y, Jiang Y, Zhan Y, Wang H, Qin T, Lu Z. First case report of human infection with Micrococcus yunnanensis identified by 16S rRNA gene sequencing: A case report. Medicine (Baltimore) 2022; 101:e32108. [PMID: 36482621 PMCID: PMC9726359 DOI: 10.1097/md.0000000000032108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Micrococcus yunnanensis (M. yunnanensis) is an endophytic actinomycete that was originally isolated from the roots of Polyspora axillaris in 2009, and no human infections caused by this organism have yet been reported. We report the first case of community-acquired pneumonia caused by M. yunnanensis and propose that M. yunnanensis should be considered as an emerging pathogen in medical practice. A 30-year-old woman was admitted to our hospital with fever, paroxysmal dry cough with sputum, and pharyngalgia. Laboratory tests revealed an increase in several inflammatory indicators, and a computerized tomography scan of the chest showed scattered infection foci in both lungs. Bronchoalveolar lavage fluid was collected via bronchoscopy for microbial culture and pathological examination. METHODS The isolate from bronchoalveolar lavage fluid was identified as M. yunnanensis by 16S rRNA gene sequencing. The patient was diagnosed with community-acquired pneumonia based on the diagnostic criteria. RESULTS The patient was treated with intravenous amoxicillin/clavulanate potassium, levofloxacin hydrochloride tablets, and compound methoxyphenamine capsules on the day after admission. After 3 days of treatment, the patient's physiological conditions and inflammatory indicators normalized, and 6-month follow-up showed no abnormalities. CONCLUSION Although the pathogenicity of M. yunnanensis is unclear, the present case indicates an emerging pathogen in medical practice. MALDI-TOF MS has a limited ability to identify novel or rare pathogenic species, and 16S rRNA gene sequencing is of great value in some circumstance.
Collapse
Affiliation(s)
- Yingmiao Zhang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jiang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Zhan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wang
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- * Correspondence: Tian Qin, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China; Zhongxin Lu, Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (e-mail: ; )
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * Correspondence: Tian Qin, State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China; Zhongxin Lu, Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (e-mail: ; )
| |
Collapse
|
8
|
Dar MA, Chanwala J, Meena PR, Singh AP, Kaushik G. Biodegradation of malathion by Micrococcus sp. strain MAGK3: kinetics and degradation fragments. Arch Microbiol 2022; 204:482. [PMID: 35834020 DOI: 10.1007/s00203-022-03106-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022]
Abstract
Malathion is widely used as an agricultural insecticide, but its toxic nature makes it a serious environmental contaminant. To screen indigenous bacteria for malathion degradation, a strain MAGK3 capable of utilizing malathion as its sole carbon and energy source was isolated from Pennisetum glaucum agricultural soil. Based on morphological and biochemical characteristics and 16S rDNA sequence analysis, strain MAGK3 was identified as Micrococcus aloeverae. The strain was cultured in the presence of malathion under aerobic and energy-restricting conditions, and it grew well in MSM containing malathion (1000 µl/L), showing the highest specific growth rate at 500 µl/L. Reverse-phase UHPLC-DAD analysis indicated that 100%, 90.48%, 84.27%, 75.46%, 66.65%, and 31.96% of malathion were degraded within 15 days in liquid culture augmented with 50, 100, 200, 300, 500, and 1000 µl/L concentrations of commercial malathion, respectively. Confirmation of malathion degradation to malathion mono, diacids, and phosphorus moiety was performed by Q-TOF-MS analysis, and a pathway of biodegradation was proposed. The influence of co-substrates was also examined to optimize biodegradation further. Kinetic studies based on different models were conducted, and the results demonstrated good conformity with the first-order model. Malathion degradation process by Micrococcus aloeverae was characterized by R2 of 0.95, and the initial concentration was reduced by 50% i.e. (DT50) in 8.11 d at an initial concentration of 500 µl/L. This establishes the Micrococcus sp. as a potent candidate for active bioremediation of malathion in liquid cultures as it can withstand high malathion load and can possibly impact the development strategies of bioremediation for its elimination.
Collapse
Affiliation(s)
- Mohd Ashraf Dar
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Jeky Chanwala
- Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
| | - Prem Raj Meena
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Arvind Pratap Singh
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Garima Kaushik
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
9
|
Dar MA, Kaushik G. Optimization of process parameters for biodegradation of malathion by Micrococcus aloeverae MAGK3 using Taguchi methodology and metabolic pathway analysis. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Optimizing the malathion degrading potential of a newly isolated Bacillus sp. AGM5 based on Taguchi design of experiment and elucidation of degradation pathway. Biodegradation 2022; 33:419-439. [PMID: 35575957 DOI: 10.1007/s10532-022-09986-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Malathion, a pesticide used to control pests in crops, vegetables, fruits, and livestock. Its widespread and indiscriminate usage has ensued in different ecological issues, thus, it's vital to remediate this insecticide. Malathion degrading bacterium Bacillus sp. AGM5, isolated from pesticide contaminated agricultural field was cultured in presence of different malathion concentrations under aerobic and energy restrictive conditions and was found effective at malathion degradation. Recovered malathion was extracted based on QuEChERS approach and then analyzed by UHPLC. About 39.5% of malathion biodegradation was observed at 300 µlL-1 after 96 h of incubation with the tested bacteria which increased to 58.5% and 72.5% after 240, and 360 h of incubation, respectively. To further enhance malathion biodegradation, the effects of co-substrates, pH, temperature, initial malathion concentration, agitation (rpm), and inoculum size were evaluated using Taguchi methodology. Taguchi DOE's ability to predict the optimal response was established experimentally via optimised levels of these factors (glucose-0.1%, yeast extract-0.1%, inoculum size-2% wv-1, malathion concentration 300 µlL-1, rpm-150, pH-7, temperature 40 °C), whereby biodegradation rate was enhanced to 95.49% after 38 h. Confirmation of malathion biodegradation was performed by UHPLC, Q-TOF-MS, GC-MS analysis and a possible degradation pathway was proposed for malathion biodegradation. First order kinetic model was appropriate to describe malathion biodegradation. The Taguchi DOE proved to be viable tool for optimizing culture conditions and analysing the interactions between process parameters in order to attain the best feasible combination for maximum malathion degradation. These results could influence the development of a bioremediation strategy.
Collapse
|
11
|
Stando K, Kasprzyk P, Felis E, Bajkacz S. Heterogeneous Photocatalysis of Metronidazole in Aquatic Samples. Molecules 2021; 26:molecules26247612. [PMID: 34946687 PMCID: PMC8708392 DOI: 10.3390/molecules26247612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
Metronidazole (MET) is a commonly detected contaminant in the environment. The compound is classified as poorly biodegradable and highly soluble in water. Heterogeneous photocatalysis is the most promoted water purification method due to the possibility of using sunlight and small amounts of a catalyst needed for the process. The aim of this study was to select conditions for photocatalytic removal of metronidazole from aquatic samples. The effect of catalyst type, mass, and irradiance intensity on the efficiency of metronidazole removal was determined. For this purpose, TiO2, ZnO, ZrO2, WO3, PbS, and their mixtures in a mass ratio of 1:1 were used. In this study, the transformation products formed were identified, and the mineralization degree of compound was determined. The efficiency of metronidazole removal depending on the type of catalyst was in the range of 50-95%. The highest MET conversion (95%) combined with a high degree of mineralization (70.3%) was obtained by using a mixture of 12.5 g TiO2-P25 + PbS (1:1; v/v) and running the process for 60 min at an irradiance of 1000 W m-2. Four MET degradation products were identified by untargeted analysis, formed by the rearrangement of the metronidazole and the C-C bond breaking.
Collapse
Affiliation(s)
- Klaudia Stando
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; (P.K.); (S.B.)
- Correspondence:
| | - Patrycja Kasprzyk
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; (P.K.); (S.B.)
| | - Ewa Felis
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6 Str., 44-100 Gliwice, Poland; (P.K.); (S.B.)
- Centre for Biotechnology, Silesian University of Technology, B. Krzywoustego 8 Str., 44-100 Gliwice, Poland;
| |
Collapse
|
12
|
Chandra Pragada S, Thalla AK. Polymer-based immobilized Fe 2O 3-TiO 2/PVP catalyst preparation method and the degradation of triclosan in treated greywater effluent by solar photocatalysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113305. [PMID: 34328863 DOI: 10.1016/j.jenvman.2021.113305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 05/20/2023]
Abstract
The present study involves a novel protocol to develop a ternary composite catalyst for an effective post-treatment technique for greywater. The ternary film of Fe2O3-TiO2/polyvinyl pyrrolidine (PVP) is coated on a glass tube using spray coating with annealing at 320 °C. The structure, thermal, microstructure, and surface properties of the coated film are characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Thermo Gravimetric Analysis (TGA). The scratch hardness of photocatalysts at different Fe2O3/TiO2 compositions is investigated based on the width measurement of scratch using FESEM analysis. Results show that at an optimum coating of 5% of Fe2O3/TiO2 composition catalytic film, the maximum scratch hardness (7.984 GPa) is obtained. Also, the photocatalyst has the highest cohesive bond strength and wearing resistance. The degradation of triclosan (TCS) in treated greywater, discharged from the anaerobic-aerobic treatment system, is investigated at a lab-scale using a solar photocatalytic reactor. The response surface analysis has been performed from the different sets of experimental trials for various optimal parameters. It is observed that the TCS degradation efficiency of 83.27% has resulted under optimum conditions.
Collapse
Affiliation(s)
- Sarath Chandra Pragada
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| | - Arun Kumar Thalla
- Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, 575025, India.
| |
Collapse
|
13
|
Kosman J, Monteiro JFHL, Lenart VM, Weinert PL, Tiburtius ERL. UV-Vis LED-assisted photo-Fenton process for mineralization of losartan and hydrochlorothiazide: optimization using desirability function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24046-24056. [PMID: 33420690 DOI: 10.1007/s11356-020-12011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
This study presents the results obtained for the optimization of the mineralization of losartan (LOS) and hydrochlorothiazide (HCTZ) using the photo-Fenton process with a UV-Vis LED. Experimental design optimization employing a Doehlert matrix and a global desirability function enabled simultaneous evaluation of multiple responses, with factor fitting providing the best conditions that maximized the mineralization efficiency: Fe2+ at 10 mg L-1 and H2O2 at 100 mg L-1. High rates of mineralization of LOS and HCTZ were obtained, with dissolved organic carbon (DOC); removal of almost 75% after 90 min was observed for both pharmaceuticals. The kinetic model showed that the mineralization followed two regimes in the first minutes, with a fast progression followed by slower activity. The energy consumption calculated for mineralization of LOS and HCTZ at a concentration of 20 mg L-1 using the UV-Vis LED-assisted photo-Fenton process, at 60 min, was 130 kWh m-3. The desirability function provides a useful tool for finding optimal experimental conditions for the treatment of effluents with different characteristics. The UV-Vis LED was shown to be a good light source in the photo-Fenton process.
Collapse
Affiliation(s)
- Joslaine Kosman
- Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR, 84030-900, Brazil
| | | | - Vinícius Mariani Lenart
- Universidade Tecnológica Federal do Paraná, Av. Monteiro Lobato s/n, Km 04, Ponta Grossa, PR, 84016-210, Brazil
| | - Patrícia Los Weinert
- Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR, 84030-900, Brazil
| | - Elaine Regina Lopes Tiburtius
- Universidade Estadual de Ponta Grossa, Av. General Carlos Cavalcanti, 4748, Uvaranas, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
14
|
Aguilar-Romero I, De la Torre-Zúñiga J, Quesada JM, Haïdour A, O'Connell G, McAmmond BM, Van Hamme JD, Romero E, Wittich RM, van Dillewijn P. Effluent decontamination by the ibuprofen-mineralizing strain, Sphingopyxis granuli RW412: Metabolic processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:116536. [PMID: 33529903 DOI: 10.1016/j.envpol.2021.116536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Jesús De la Torre-Zúñiga
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - José Miguel Quesada
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Ali Haïdour
- Unidad de Resonancia Magnética Nuclear, Centro de Instrumentación Científica, Universidad de Granada, Paseo Juan Osorio S/n, 18071, Granada, Spain
| | - Garret O'Connell
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Breanne M McAmmond
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Jonathan D Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, V2C 0C8, Canada
| | - Esperanza Romero
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Regina-Michaela Wittich
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain
| | - Pieter van Dillewijn
- Dept. of Environmental Protection, Estación Experimental Del Zaidín - CSIC, Calle Professor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
15
|
Wang J, Li S, Zhu Y, Guo J, Liu J, He B. Targeted eco-pharmacovigilance as an optimized management strategy for adverse effects of pharmaceuticals in the environment. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103565. [PMID: 33321209 DOI: 10.1016/j.etap.2020.103565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 05/21/2023]
Abstract
From a perspective of drug administration, eco-pharmacovigilance (EPV) has been proposed as a new approach to prevent the environmental risks posed by pharmaceutical emerging contaminants. However, it is impracticable to practice unitary and rigor EPV process for all the pharmaceutical substances with complex and diversified chemical, biological or toxicological properties. We proposed the "targeted EPV" that is the science and activities associated with the targeted detection, evaluation, understanding, and prevention of adverse effects of high-priority hazardous pharmaceuticals in the environment, especially focusing on the control of main anthropogenic sources of pharmaceutical emission among key stakeholders in high-risk areas could be used as an optimized management strategy for pharmaceutical pollution. "Targeted EPV" implementation should focus on the targeted monitoring of the occurrence of high-priority pharmaceuticals in environmental samples, the targeted reporting of over-standard discharge, the targeted management for main emission sources, the targeted legislation and researches on high-priority pharmaceutical pollutants, as well as the targeted educational strategies for specific key populations.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shulan Li
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yujie Zhu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jie Guo
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Juan Liu
- Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Bingshu He
- Hubei Province Women and Children Hospital, Wuhan, China.
| |
Collapse
|