1
|
Li X, Li Y, Yang S. Enhanced mineralization of nitrophenols by a novel C@ZVAl-PS based sequential reduction-oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175288. [PMID: 39111419 DOI: 10.1016/j.scitotenv.2024.175288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Widely employed nitrophenols (NPs) are refractory and antioxidant due to their strong electron-withdrawing group (-NO2). Actually, NPs are readily reduced to aminophenols (APs). However, APs remain toxic and necessitate further treatment. Herein, we utilized a novel sequential reduction-oxidation system of carbon-modified zero-valent aluminum (C@ZVAl) combined with persulfate (PS) for the thorough removal of both NPs and APs. The results demonstrated that p-nitrophenol (PNP, up to 1000 mg/L) exhibited complete reduction to p-aminophenol (PAP), and then over 98.0 % of PAP could be effectively oxidized, in the meantime the removal rate of chemical oxygen demand (COD) was as high as 95.9 %. Based on the SEM and XPS characterizations, we found that C@ZVAl has exceptionally high reactivity that generates massive electrons and reduces PNP to PAP through accelerated electron transfer. In the subsequent oxidation step, PS can be rapidly activated by C@ZVAl to generate SO4- radicals for PAP oxidization. Meanwhile, the mineralization of COD proceeds. The temporal binding of reduction and oxidation can be regulated by varying the PS dosing time. Namely, the appropriate delay in PS dosing facilitates sufficient reduction to provide enough reactants for oxidation, favoring the mineralization of PNP and COD. More crucially, dinitrodiazophenol (DDNP) in an actual explosive wastewater without any pretreatment can be effectively mineralized by this sequential reduction-oxidation system, affirming the excellent performance of this process in practical applications. In conclusion, the C@ZVAl-PS based sequential reduction-oxidation looks very promising for enhanced mineralization of nitro-substituted organic contaminants.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Song T, Gao Y, Wei H, Zhao Y, Li S, Jiang Y. The utilization of microwaves in revitalizing peroxymonosulfate for tetracycline decomposition: optimization via response surface methodology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2986-2995. [PMID: 38096083 PMCID: wst_2023_375 DOI: 10.2166/wst.2023.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Antibiotic contamination in water has received significant attention in recent years for the reason that the residuals of antibiotics can promote the progression of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs). It is difficult to treat antibiotics using conventional biological treatment methods. In order to investigate an efficient new method of treating antibiotics in water, in this study, microwave (MW) was employed in revitalizing peroxymonosulfate (PMS) to treat typical antibiotic tetracycline (TC). The Box-Behnken design (BBD) was applied to organize the experimental schemes. The response surface methodology (RSM) optimization was run to derive the best experimental conditions and validated using actual data. Moreover, the main mechanisms of PMS activation via MW were resolved. The results demonstrated that the relationship between TC removal rate and influencing factors was consistent with a quadratic model, where the P-value was less than 0.05, and the model was considered significant. The optimal condition resulting from the model optimization were power = 800 W, [PMS] = 0.4 mM, and pH = 6.0. Under such conditions, the actual removal of TC was 99.3%, very close to the predicted value of 99%. The quenching experiment confirmed that SO4•- and •OH were jointly responsible for TC removal.
Collapse
Affiliation(s)
- Tiehong Song
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China E-mail: ;
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China
| | - Hongyan Wei
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Yu Zhao
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Shujie Li
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Yi Jiang
- Key Lab of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
3
|
Li Y, Bao X, Yang S, Li Q, Fan D, Wang H, Zhao D. Application potential of zero-valent aluminum in nitrophenols wastewater decontamination: Enhanced reactivity, electron selectivity and anti-passivation capability. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131313. [PMID: 36996543 DOI: 10.1016/j.jhazmat.2023.131313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/12/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Nitrophenols (NPs) are highly toxic and easy to accumulate to high concentrations (> 500 mg/L) in real wastewater. The nitro group contained in NPs is an electron-absorbing group that is easy to reduce and difficult to oxidize, so there is an urgent need to develop reduction removal technology. Zero-valent aluminum (ZVAl) is an excellent electron donor that can reductively transform various refractory pollutants. However, ZVAl is prone to rapid deactivation due to non-selective reactions with water, ions, etc. To overcome this critical limitation, we prepared a new type of carbon nanotubes (CNTs) modified microscale ZVAl, CNTs@mZVAl, through a facile mechanochemical ball milling method. CNTs@mZVAl had outstanding high reactivity in degrading p-nitrophenol even 1000 mg/L and showed up to 95.50% electron utilization efficiency. Moreover, CNTs@mZVAl was highly resistant to the passivation by dissolved oxygen, ions and natural organic matters coexisting in water matrix, and remained highly reactive after aging in the air for 10 days. Furthermore, CNTs@mZVAl could effectively remove dinitrodiazophenol from real explosive wastewater. The excellent performance of CNTs@mZVAl is due to the combination of selective adsorption of NPs and CNTs-mediated e-transfer. CNTs@mZVAl looks promising for the efficient and selective degradation of NPs, with broader prospects for real wastewater treatment.
Collapse
Affiliation(s)
- Yang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaojuan Bao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Qianfeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Danyang Fan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hanchen Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
4
|
Bai X, Yang G. Treatment of refractory organics in biologically treated landfill leachate by a zero valent iron enhanced Peroxone process: Degradation efficiency and mechanism study. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:594-607. [PMID: 36169147 DOI: 10.1177/0734242x221126390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A zero valent iron (ZVI) enhanced Peroxone process (ZVI/Peroxone) was used to treat biologically treated landfill leachate (BTL). The treatment efficiency of the ZVI/Peroxone process was compared to single (ZVI, O3 and H2O2) and dual (ZVI/H2O2, Fe0/O3 and Peroxone) processes. The results showed that ZVI can greatly enhance the treatment capability of the Peroxone process, and the color number (CN), absorbance at 254 nm (UV254), and total organic carbon (TOC) removal efficiencies were 98.82, 84.30 and 66.38%, respectively. In the ZVI/Peroxone process, higher O3 and ZVI dosages improved organics removal, and H2O2 could promote organics removal within a certain dosage range. However, too much H2O2 decreased treatment efficiency. The best treatment performance by the ZVI/Peroxone process was obtained under acidic conditions. The three-dimensional excitation and emission matrix analysis showed that BTL mainly contained two fluorescent substances, which were fulvic-like substances in the ultraviolet region (Ex/Em = 235-255 nm/410-450 nm) and fulvic-like substances in the visible light region (Ex/Em = 310-360 nm/370-450 nm). Fluorescent substances could be substantially degraded by the ZVI/Peroxone process during the early stages of the reaction. An analysis of ZVI morphology and element valency changes showed that the micro Fe0 particles used in this study remained highly reactive during the process. The ZVI enhanced the homogenous Fenton, heterogeneous Fenton, and coagulation-flocculation effects during the Peroxone process.
Collapse
Affiliation(s)
- Xue Bai
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
- Southwest Municipal Engineering Design & Research Institute of China, Chengdu, China
| | - Guangxu Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Chen X, Mu S, Luo Y. Degradation of petroleum pollutants in oil-based drilling cuttings using an Fe 2+-based Fenton-like advanced oxidation processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37669-37678. [PMID: 36574125 DOI: 10.1007/s11356-022-24925-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
Oil-based drilling cuttings (OBDC) contain a large amount of total petroleum hydrocarbon (TPH) pollutants, which are hazardous to the environment. In this study, Fe2+-activating hydrogen peroxide (Fe2+/H2O2), peroxymonosulfate (Fe2+/PMS), and peroxydisulfate (Fe2+/PDS) advanced oxidation processes (AOPs) were used to treat OBDC due to the difference in the degradation capacity of TPH caused by the type of free radical generated and effective activation conditions observed for the different oxidants studied. The results showed that the oxidant concentration, Fe2+ dosage, and reaction time in the three AOPs were greatly positively correlated with the TPH removal rate in a certain range. The initial pH value had a significant effect on the Fe2+/H2O2 process, and its TPH removal rate was negatively correlated in the pH range from 3 to 11. However, the Fe2+/PMS and Fe2+/PDS processes only displayed lower TPH removal rates under neutral conditions and tolerated a wider range of pH conditions. The optimal TPH removal rates observed for the Fe2+/H2O2, Fe2+/PMS, and Fe2+/PDS processes were 45.04%, 42.75%, and 44.95%, respectively. Fourier transform infrared spectrometer and gas chromatography-mass spectrometer analysis showed that the alkanes in OBDC could be effectively removed using the three processes studied, and their degradation ability toward straight-chain alkanes was in the order of Fe2+/PMS > Fe2+/PDS > Fe2+/H2O2, among which Fe2+/PMS exhibited the optimal removal effect for aromatic hydrocarbons. Scanning electron microscope, energy dispersive spectroscopy, and X-ray diffraction results showed no significant changes in the elemental and mineral composition of OBDC before and after treatment. Therefore, this study provided a theoretical reference for the effective degradation of TPH pollutants in OBDC.
Collapse
Affiliation(s)
- Xinglong Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shiqi Mu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuanfeng Luo
- Department of Ecology and Environment of Sichuan Province, Sichuan Academy of Environmental Policy and Planning, Chengdu, 610093, China.
| |
Collapse
|
6
|
Zhu S, Jiang R, Qin L, Huang D, Yao C, Xu J, Wang Z. Integrated strategies for robust growth of Chlorella vulgaris on undiluted dairy farm liquid digestate and pollutant removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158518. [PMID: 36063926 DOI: 10.1016/j.scitotenv.2022.158518] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Undiluted dairy farm liquid digestate contains high levels of organic matters, chromaticity and total ammonia nitrogen (TAN), resulting in inhibition to microalgal growth. In this study, a novel cascade pretreatment with ozonation and ammonia stripping (O + S) was employed to remove these inhibitors, and was compared with single pretreatment approach. The optimum parameters for ozonation and ammonia stripping were obtained and the mechanisms of inhibition elimination were investigated. The results show that ozonation contributed to the degradation of non-fluorescent chromophoric organics through the direct molecular ozone attack, which mitigated the inhibition of chromaticity to microalgae, while ammonia stripping relieved the inhibition of high TAN to microalgae. After cascade pretreatment, TAN, total nitrogen (TN), COD and chromaticity were reduced by 80.2 %, 75.4 %, 20.6 % and 75.8 % respectively. When C. vulgaris was cultured on different pretreated digestate, it was found that cascade pretreatment was beneficial for retaining high PSII activity and synergistically improved microalgal growth. The highest biomass increment and productivity achieved 5.40 g L-1 and 900 mg L-1 d-1 respectively in the integration system of cascade pretreatment with microalgae cultivation (O + S + M). After O + S + M treatment, the removal efficiencies of TAN, TN, COD and total phosphorus (TP) were 100 %, 92.8 %, 46.7 % and 99.6 %, respectively. This work provided a promising strategy (O + S + M) for sustainable liquid digestate treatment, along with nutrient recovery and value-added biomass production.
Collapse
Affiliation(s)
- Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| | - Renyuan Jiang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Lei Qin
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Dalong Huang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Chongzhi Yao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Jin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
7
|
Effective removal of furfural by ultraviolet activated persulfate, peroxide, and percarbonate oxidation: Focus on influencing factors, kinetics, and water matrix effect. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Lin Y, Hou A, Li H, Shi C, Chen L, Yuan B, Liu Y, Wang Y, Liu X. Synergistic and efficient degradation of acid red 73 by using UV, H2O2, and PDS under neutral conditions: water matrix effects and transformation pathways. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wang L, Fei Y, Gong C, Shan Y, Zhang Z, Zhang F, Cheng H. Comparative study of UV/H 2O 2 and UV/PMS processes for treating pulp and paper wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2032-2044. [PMID: 36315094 DOI: 10.2166/wst.2022.326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pulp and paper wastewater (PPWW) contains numerous refractory and harmful contaminants that require advanced treatment to meet the discharge criteria. This study compared the efficacy of two PPWW treatments: ultraviolet/peroxymonosulfate (UV/PMS) and ultraviolet/H2O2 (UV/H2O2) working under similar circumstances. The initial pH value, oxidant dosage, UV radiation intensity, and pseudo-first-order constant kobs were systematically studied in both systems. Optimally, the UV/PMS process produced an effluent of higher quality than the UV/H2O2, as measured by the removal efficiencies of chemical oxygen demand (COD) in 60 min, which were 48.2 and 64.3% for the respective UV/H2O2 and UV/PMS processes and corresponding kobs values of 0.0102 and 0.0159 min-1, respectively. Radical scavenging experiments demonstrated that •OH was the primary reactive oxygen species in UV/H2O2 process, and •OH and SO4-• in the UV/PMS process. Moreover, ultraviolet-visible spectroscopy and gas chromatography coupled mass spectroscopy analyses showed that deep treatment of petroleum hydrocarbons with carbon chain lengths greater than 18 and macromolecular semi-volatile organic compounds in paper wastewater is difficult, whereas the UV/PMS process can significantly improve the removal of amides, esters, phenols, and other aromatic compounds.
Collapse
Affiliation(s)
- Liangliang Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing 100095, China E-mail:
| | - Yuchao Fei
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing 100095, China E-mail:
| | - Chenhao Gong
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing 100095, China E-mail:
| | - Yue Shan
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing 100095, China E-mail:
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, No.1 Gao Li Zhang Road, Beijing 100095, China E-mail:
| | | | | |
Collapse
|
10
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
11
|
Liu ZQ, Yang SQ, Lai HH, Fan CJ, Cui YH. Treatment of contaminants by a cathode/Fe III/peroxydisulfate process: Formation of suspended solid organic-polymers. WATER RESEARCH 2022; 221:118769. [PMID: 35752098 DOI: 10.1016/j.watres.2022.118769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Treatment of highly contaminated wastewaters containing refractory or toxic organic contaminants (e.g. industrial wastewaters) is becoming a global challenge. Most technologies focus on efficient degradation of organic contaminants. Here we improve the cathode/FeIII/peroxydisulfate (PDS) technology by turning down the current density and develop an innovative mechanism for organic contaminants abatement, namely polymerization rather than degradation, which allows simultaneous contaminants removal and resource recovery from wastewater. This polymerization leads to organic-particles (suspended solid organic-polymers) formation in bulk solution, which is demonstrated by eight kinds of representative organic contaminants. Taking phenol as a representative, 83% of PDS is saved compared to degradation process, with 87.2% of DOC removal. The formed suspended solid organic-polymers occupy 59.2% of COD of the original organics in solution, and can be easily separated from aqueous solution by sedimentation or filtration. The separated organic-polymers are a series of polymers coupled by phenolic monomers, as confirmed by FTIR and ESI-MS analyzes. The energy contained in the recovered organic polymers (4.76 × 10-5 kWh for 100 mL of 1 mM phenol solution in this study) can fully compensate the consumed electrical energy (2.8 × 10-5 kWh) in the treatment process. A representative polymerization model for this process is established, in which the SO4•- and HO• generated from PDS activation initiate the polymerization and improve the polymerization degree by the production of oligomer intermediates. A practical coking wastewater treatment is carried out to verify the research results and get positive feedback, with 56.0% of DOC abatement and the suspended solid organic-polymers accounts for 42.5% of the total COD in the raw wastewater. The energy consumption (47 kWh/kg COD, including electricity and PDS cost) is lower than the values in previous reports. This study provides a novel method for industrial wastewater treatment based on polymerization mechanism, which is expected to recover resources while removing pollutants with low consumption.
Collapse
Affiliation(s)
- Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Hui-Hui Lai
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Cong-Jian Fan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China.
| |
Collapse
|
12
|
Zheng LL, Zhang J, Liu XZ, Tian L, Xiong ZS, Xiong X, Chen P, Wu DS, Zou JP. Degradation of pesticide wastewater with simultaneous resource recovery via ozonation coupled with anaerobic biochemical technology. CHEMOSPHERE 2022; 300:134520. [PMID: 35398067 DOI: 10.1016/j.chemosphere.2022.134520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The effective treatment of pesticide wastewater with high organic content, complex composition and high-toxicity has attracted enormous attention of researchers. This work proposes a new idea for removing the pesticide wastewater with simultaneous resource recovery, which is different from the traditional view of mineralization of pesticide wastewater via composite technology. This novel strategy involved a sequential three-step treatment: (a) acidic Ozonation process, to remove the venomous aromatic heterocyclic compounds; (b) hydrolysis and ozonation in alkaline conditions, enhancing the biodegradability of pesticide wastewater, mainly due to the dehalogenation, elimination of C=C bonds and production of low molecular-weight carboxylate anions; (c) the final step is anaerobic biological reactions. Based on the characterizations, this two-stage acidic-alkaline ozonation can efficiently degraded the virulence of pesticide wastewater and enhance its biodegradability from 0.08 to 0.32. The final anaerobic biochemical treatment can stably remove the residuals and convert the low molecular-weight organics into CH4, achieving the resource recovery. This work explored the pH-dependent of ozonized degradation of pesticide wastewater and gives a new perspective of wastewater treatment.
Collapse
Affiliation(s)
- Ling-Ling Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Jun Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao-Zhen Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China.
| | - Lei Tian
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhen-Sheng Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xin Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Peng Chen
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Dai-She Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China
| | - Jian-Ping Zou
- Key Laboratory of Poyang Lake Environment and Resource Utilization of Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang, 330031, PR China; Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
13
|
Bose S, Kumar M. Microwave-assisted persulfate/peroxymonosulfate process for environmental remediation. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Xia H, Li C, Yang G, Shi Z, Jin C, He W, Xu J, Li G. A review of microwave-assisted advanced oxidation processes for wastewater treatment. CHEMOSPHERE 2022; 287:131981. [PMID: 34826886 DOI: 10.1016/j.chemosphere.2021.131981] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Microwave (MW) technology has gained increasing interest in wastewater treatment due to its unique properties, such as fast and uniform heating, hot spots effect, and non-thermal effect. MW enhances the production of active radicals (e.g., OH, SO4-), which exerts a stronger integrated treatment effect in combination with advanced oxidation processes. Over the years, microwave-assisted advanced oxidation processes (MW-AOPs) have developed rapidly to degrade pollutants as innovative treatment approaches. This paper provides a detailed classification and a comprehensive review of MW-AOPs. The latest applications of MW in different advanced oxidation systems (oxidation systems, catalytic oxidation systems, and photochemical, electrochemical and sonochemical systems) are reviewed. The reaction parameters and performance of MW-AOPs in wastewater treatment are discussed, and the enhancement of pollutant degradation by MW is highlighted. In addition, the operating costs of MW-AOPs are evaluated. Some recommendations on MW-AOPs are made for future research. This review provides meaningful information on the potential development and evolution of MW-AOPs.
Collapse
Affiliation(s)
- Huiling Xia
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Chengwei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Guoying Yang
- Suzhou Pioneer Environmental Technology Co.,Ltd. (Singapore), Room 1905, Hengtong Finance, 7070 East Taihu Avenue, Wujiang District, Suzhou, China
| | - Zhiang Shi
- Suzhou Pioneer Environmental Technology Co.,Ltd. (Singapore), Room 1905, Hengtong Finance, 7070 East Taihu Avenue, Wujiang District, Suzhou, China
| | - Chenxi Jin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Wenzhi He
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| | - Jingcheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China
| | - Guangming Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, PR China.
| |
Collapse
|
15
|
Degradation of Neonicotinoids and Caffeine from Surface Water by Photolysis. Molecules 2021; 26:molecules26237277. [PMID: 34885852 PMCID: PMC8659205 DOI: 10.3390/molecules26237277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 01/06/2023] Open
Abstract
Along with rapid social development, the use of insecticides and caffeine-containing products increases, a trend that is also reflected in the composition of surface waters. This study is focused on the phototreatment of a surface water containing three neonicotinoids (imidacloprid, thiamethoxam, and clothianidin) and caffeine. Firstly, the radiation absorption of the target pollutants and the effect of the water matrix components were evaluated. It was observed that the maximum absorption peaks appear at wavelengths ranging from 246 to 274 nm, and that the water matrix did not affect the efficiency of the removal of the target pollutants. It was found that the insecticides were efficiently removed after a very short exposure to UV irradiation, while the addition of hydrogen peroxide was needed for an efficient caffeine depletion. The electrical energy per order was estimated, being the lowest energy required (9.5 kWh m−3 order−1) for the depletion of thiamethoxan by indirect photolysis, and a concentration of hydrogen peroxide of 5 mg dm−3. Finally, a preliminary evaluation on the formation of by-products reveals that these compounds play a key role in the evolution of the ecotoxicity of the samples, and that the application of direct photolysis reduces the concentration of these intermediates.
Collapse
|
16
|
Mehralipour J, Kermani M. Optimization of photo-electro/Persulfate/nZVI process on 2-4 Dichlorophenoxyacetic acid degradation via central composite design: a novel combination of advanced oxidation process. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:941-957. [PMID: 34150284 PMCID: PMC8172659 DOI: 10.1007/s40201-021-00661-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
2-4 Dichlorophenoxy acetic acid is most publicly applied from chlorinated phenoxy acids herbicides. In this research, central composite design for optimization of photo-Elecro/persulfate/nZVI process to degradation and mineralization of this herbicide in aqueous solution to environment protection was applied. The initial pH (2-4), persulfate anion concentration (0.25-0.5 mg/L), direct electrical (0.5-1 A), herbicide concentration (50-100 mg/l), nZVI dose (0.05-1 mg/L), and reaction time (50-100 mg/l) are independent variables optimized. Also, the synergist effect, COD and TOC removal, the effect of radical scavengers, and by-products were investigated. The fitting of the model, suggested a quadratic model (R2 = 0.9926). F-value and P value of ANOVA were 719.81 and 0.0001 respectivelty. After optimizing the PEP/nZVI process, the proposed optimal conditions was pH = 3.4, persulfate concentration equal to 0.49 mg/l, in 1 A direct current, nZVI dose equal to 0.1 mg/l, in 50.05 mg/l herbicide concentration as an initial concentration, in 80 min reaction time. The theoretical and actual removal was evaluated 91.99% and 92%, respectively. In the optimum condition, 45.4% synergist effect indicated. 78.3% and 66.5% of initial COD and TOC were decreased. 39.02% of Cl ion was released form 2,4-D structure. The presence of radical scavengers have an adverse impact on the performance of process. The highest amount of radical scavenging was in methanol, tert-butyl alcohol and bicarbonate ions at concentrations at 50 mM/l. The kinetic data was fitted via pseudo-first-order reaction (R2 = 0.99).The direct and indirect oxidation process lead to formation of several organic by-products which were confirmed by GC-MS analysis.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Microwave irradiation activated persulfate and hydrogen peroxide for the treatment of mature landfill leachate effluent from a membrane bioreactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117111] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|