1
|
Ma Z, Feng H, Yang C, Ma X, Li P, Feng Z, Zhang Y, Zhao L, Zhou J, Xu X, Zhu H, Wei F. Integrated microbiology and metabolomics analysis reveal responses of cotton rhizosphere microbiome and metabolite spectrum to conventional seed coating agents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122058. [PMID: 37330187 DOI: 10.1016/j.envpol.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Fludioxonil (FL) and metalaxyl-M·fludioxonil·azoxystrobin (MFA) are conventional seed coating agents for controlling cotton seedling diseases. However, their effects on seed endophytic and rhizosphere microecology are still poorly understood. This study aimed to assess the effects of FL and MFA on cotton seed endophytes, rhizosphere soil enzymatic activities, microbiome and metabolites. Both seed coating agents significantly changed seed endophytic bacterial and fungal communities. Growing coated seeds in the soils originating from the Alar (AL) and Shihezi (SH) region inhibited soil catalase activity and decreased both bacterial and fungal biomass. Seed coating agents increased rhizosphere bacterial alpha diversity for the first 21 days but decreased fungal alpha diversity after day 21 in the AL soil. Seed coating reduced the abundance of a number of beneficial microorganisms but enriched some potential pollutant-degrading microorganisms. Seed coating agents may have affected the complexity of the co-occurrence network of the microbiome in the AL soil, reducing connectivity, opposite to what was observed in the SH soil. MFA had more pronounced effects on soil metabolic activities than FL. Furthermore, there were strong links between soil microbial communities, metabolites and enzymatic activities. These findings provide valuable information for future research and development on application of seed coatings for disease management.
Collapse
Affiliation(s)
- Zheng Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Chuanzhen Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaojie Ma
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Peng Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zili Feng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Jinglong Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Xiangming Xu
- NIAB, East Malling, West Malling, ME19 6BJ, Kent, UK
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| | - Feng Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou, 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China.
| |
Collapse
|
2
|
Gureeva MV, Gureev AP. Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. Int J Mol Sci 2023; 24:ijms24119122. [PMID: 37298073 DOI: 10.3390/ijms24119122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Agricultural plants are continuously exposed to environmental stressors, which can lead to a significant reduction in yield and even the death of plants. One of the ways to mitigate stress impacts is the inoculation of plant growth-promoting rhizobacteria (PGPR), including bacteria from the genus Azospirillum, into the rhizosphere of plants. Different representatives of this genus have different sensitivities or resistances to osmotic stress, pesticides, heavy metals, hydrocarbons, and perchlorate and also have the ability to mitigate the consequences of such stresses for plants. Bacteria from the genus Azospirillum contribute to the bioremediation of polluted soils and induce systemic resistance and have a positive effect on plants under stress by synthesizing siderophores and polysaccharides and modulating the levels of phytohormones, osmolytes, and volatile organic compounds in plants, as well as altering the efficiency of photosynthesis and the antioxidant defense system. In this review, we focus on molecular genetic features that provide bacterial resistance to various stress factors as well as on Azospirillum-related pathways for increasing plant resistance to unfavorable anthropogenic and natural factors.
Collapse
Affiliation(s)
- Maria V Gureeva
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Artem P Gureev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
3
|
Liu H, Liu M, Chen K, Shan M, Li Y. Fertilization can modify the enantioselective persistence of penthiopyrad in relation to the co-influence on soil ecological health. ENVIRONMENTAL RESEARCH 2023; 224:115514. [PMID: 36801231 DOI: 10.1016/j.envres.2023.115514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Penthiopyrad is a widely used chiral fungicide for controlling rust and Rhizoctonia diseases. Development of optically pure monomers is an important strategy to realize amount reduction and increment effects of penthiopyrad, wherein, fertilizers as the co-exiting nutrient supplement may alter the enantioselective residues of penthiopyrad in soil. In our study, influences of urea, phosphate, potash, NPK compound, organic granular, vermicompost and soya bean cake fertilizers on enantioselective persistence of penthiopyrad were fully evaluated. This study demonstrated that R-(-)-penthiopyrad dissipated faster than S-(+)-penthiopyrad during 120 days. High pH, available nitrogen, invertase activities and reduced available phosphorus, dehydrogenase, urease, catalase activities were situated to benefit removing the concentrations of penthiopyrad and weakening enantioselectivity in soil. With respect to the impact of different fertilizers on soil ecological indicators, vermicompost contributed to enhanced pH. Urea and compound fertilizer played an absolute advantage in promoting available nitrogen. All fertilizers didn't go against available phosphorus. Dehydrogenase responded negatively to phosphate, potash and organic fertilizers. Urea increased invertase, besides, it and compound fertilizer both diminished urease activity. The catalase activity was not activated by organic fertilizer. Based on all the findings, soil application of urea and phosphate fertilizers was recommended and considered as a better option to exhibit high efficiency for the dissipation of penthiopyrad. The combined environmental safety estimation can effectively guide the treatment of fertilization soils in line with the nutrition requirements and pollution regulation from penthiopyrad.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongye Li
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
4
|
Pagliarini E, Gaggìa F, Quartieri M, Toselli M, Di Gioia D. Yield and Nutraceutical Value of Lettuce and Basil Improved by a Microbial Inoculum in Greenhouse Experiments. PLANTS (BASEL, SWITZERLAND) 2023; 12:1700. [PMID: 37111923 PMCID: PMC10145599 DOI: 10.3390/plants12081700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
Members of Bacillus spp. have been widely used to enrich the soil/root interface to provide plant growth promoting activities. A new isolate, namely to Bacillus sp. VWC18, has been tested under greenhouse conditions in lettuce (Lactuca sativa L.) pots at different concentrations (103, 105, 107, and 109 CFU·mL-1) and application time (single inoculum at transplant and multiple inoculum every ten days) to evaluate the best application dose and frequency. Analysis of foliar yield, main nutrients, and minerals evidenced a significant response for all applications. The lowest (103 CFU·mL-1) and the highest doses (109 CFU·mL-1), applied every ten days until harvest, had the greatest efficacy; the nutrient yield (N, K, P, Na, Ca, Fe, Mg, Mn, Cu, and B) increased more than twice. A new randomized block design with three replicates was then performed in lettuce and basil (Ocinum basilicum L.), with the two best performing concentrations applied every ten days. In addition to previous analysis, root weight, chlorophyll, and carotenoids were also examined. Both experiments confirmed the previous results: inoculation of the substrate with Bacillus sp. VWC18 promoted plant growth, chlorophyll, and mineral uptake in both crop species. Root weight duplicated or triplicated compared to control plants, and chlorophyll concentration reached even higher values. Both parameters had a dose-dependent increase.
Collapse
|
5
|
Yadav R, Khare P. Dissipation kinetics of chlorpyrifos and 3,5,6 trichloro-2-pyridinol under vegetation of different aromatic grasses: Linkage with enzyme kinetics and microbial community of soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130960. [PMID: 36860046 DOI: 10.1016/j.jhazmat.2023.130960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The dissipation of chlorpyrifos (CP) and its hydrolytic metabolite 3,5,6-trichloro-2-pyridinol (TCP) in the soil is crucial for safe agriculture. However, there is still lacking relevant information about its dissipation under different vegetation for remediation purposes. In the present study, evaluation of dissipation of CP and TCP in non-planted and planted soil with different cultivars of three types of aromatic grass viz Cymbopogon martinii (Roxb. Wats), Cymbopogon flexuosus, and Chrysopogon zizaniodes (L.) Nash was examined in light of soil enzyme kinetics, microbial communities, and root exudation. Results revealed that the dissipation of CP was well-fitted into a single first-order exponential model (SFO). A significant reduction in the half-life (DT50) of CP was observed in planted soil (30-63 days) than in non-planted soil (95 days). The presence of TCP in all soil samples was observed. The three types of the inhibitory effect of CP i.e. linear mixed inhibition (increase in enzyme-substrate affinity (Km) and decrease in enzyme pool (Vmax), un-competitive inhibition (decrease in Km and Vmax), and simple competitive inhibition were observed on soil enzymes involved in mineralization of carbon, nitrogen, phosphorus, and sulfur. The improvement in the enzyme pool (Vmax) was observed in planted soil. Streptomyces, Clostridium, Kaistobacter, Planctomyces, and Bacillus were the dominant genera in CP stress soil. CP contamination in soil demonstrated a reduction of richness in microbial diversity and enhancement of functional gene family related to cellular process, metabolism, genetic, and environmental information processing. Among all the cultivars, C. flexuosus cultivars demonstrated a higher dissipation rate of CP along with more root exudation.
Collapse
Affiliation(s)
- Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Xiao Z, Hou K, Zhou T, Zhang J, Li B, Du Z, Sun S, Zhu L. Effects of the fungicide trifloxystrobin on the structure and function of soil bacterial community. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104104. [PMID: 36893889 DOI: 10.1016/j.etap.2023.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Trifloxystrobin has been widely applied to prevent fungal diseases because of its high efficiency and desirable safety characteristics. In the present study, the effects of trifloxystrobin on soil microorganisms were integrally investigated. The results showed that trifloxystrobin inhibited urease activity, promoted dehydrogenase activity. Downregulated expressions of the nitrifying gene (amoA), denitrifying genes (nirK and nirS), and carbon fixation gene (cbbL) were also observed. Soil bacterial community structure analysis showed that trifloxystrobin changed the abundance of bacteria genera related to nitrogen and carbon cycle in soil. Through the comprehensive analysis of soil enzymes, functional gene abundance, and soil bacterial community structure, we concluded that trifloxystrobin inhibited both nitrification and denitrification of soil microorganisms, and also diminished the carbon-sequestration ability. Integrated biomarker response analysis showed that dehydrogenase and nifH were the most sensitive indicators of trifloxystrobin exposure. It provides new insights about trifloxystrobin environmental pollution and its influence on soil ecosystem.
Collapse
Affiliation(s)
- Zongyuan Xiao
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Kaixuan Hou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Tongtong Zhou
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Jingwen Zhang
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China.
| | - Lusheng Zhu
- College of Resources and Environment, Shandong Agricultural University, Key Laboratory of Agricultural Environment in Universities of Shandong, 61 Daizong Road, Taian 271018, China
| |
Collapse
|
7
|
Baćmaga M, Wyszkowska J, Borowik A, Kucharski J. Effects of Tebuconazole Application on Soil Microbiota and Enzymes. Molecules 2022; 27:7501. [PMID: 36364328 PMCID: PMC9656111 DOI: 10.3390/molecules27217501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 07/29/2023] Open
Abstract
Identification of pesticide impact on the soil microbiome is of the utmost significance today. Diagnosing the response of bacteria to tebuconazole, used for plant protection, may help isolate the most active bacteria applicable in the bioaugmentation of soils contaminated with this preparation. Bearing in mind the above, a study was undertaken to test the effect of tebuconazole on the diversity of bacteria at all taxonomic levels and on the activity of soil enzymes. It was conducted by means of standard and metagenomic methods. Its results showed that tebuconazole applied in doses falling within the ranges of good agricultural practice did not significantly disturb the biological homeostasis of soil and did not diminish its fertility. Tebuconazole was found to stimulate the proliferation of organotrophic bacteria and fungi, and also the activities of soil enzymes responsible for phosphorus, sulfur, and carbon metabolism. It did not impair the activity of urease responsible for urea hydrolysis, or cause any significant changes in the structure of bacterial communities. All analyzed soil samples were mainly populated by bacteria from the phylum Proteobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, Planctomycetes, and Chloroflexi. Bacteria from the genera Kaistobacter, Arthrobacter, and Streptomyces predominated in the soils contaminated with tebuconazole, whereas these from the Gemmata genus were inactivated by this preparation.
Collapse
|
8
|
Assessment of the Effects of Triticonazole on Soil and Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196554. [PMID: 36235091 PMCID: PMC9572687 DOI: 10.3390/molecules27196554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Triticonazole is a fungicide used to control diseases in numerous plants. The commercial product is a racemate containing (R)- and (S)-triticonazole and its residues have been found in vegetables, fruits, and drinking water. This study considered the effects of triticonazole on soil microorganisms and enzymes and human health by taking into account the enantiomeric structure when applicable. An experimental method was applied for assessing the effects of triticonazole on soil microorganisms and enzymes, and the effects of the stereoisomers on soil enzymes and human health were assessed using a computational approach. There were decreases in dehydrogenase and phosphatase activities and an increase in urease activity when barley and wheat seeds treated with various doses of triticonazole were sown in chernozem soil. At least 21 days were necessary for the enzymes to recover the activities. This was consistent with the diminution of the total number of soil microorganisms in the 14 days after sowing. Both stereoisomers were able to bind to human plasma proteins and were potentially inhibitors of human cytochromes, revealing cardiotoxicity and low endocrine disruption potential. As distinct effects, (R)-TTZ caused skin sensitization, carcinogenicity, and respiratory toxicity. There were no significant differences in the interaction energies of the stereoisomers and soil enzymes, but (S)-TTZ exposed higher interaction energies with plasma proteins and human cytochromes.
Collapse
|
9
|
Liu H, Shan M, Liu M, Song J, Chen K. Assessment of the eco-toxicological effects in zoxamide polluted soil amended with fertilizers-An indoor evaluation. CHEMOSPHERE 2022; 301:134630. [PMID: 35447215 DOI: 10.1016/j.chemosphere.2022.134630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Zoxamide is a benzamide fungicide applied to control diseases caused by oomycete fungi. Fertilizers are important agricultural supplies to adjust soil properties and increase nutrition. To investigate the impact of zoxamide and seven fertilizers urea, phosphate fertilizer, potash fertilizer, compound fertilizer, organic fertilizer, vermicompost and soya bean cakes on the soil environment, the enantioselective dissipation characteristics of zoxamide, soil enzyme activities, pH and N, P nutrition changes were comprehensively analyzed in our present study. The enantioseparation method was successfully validated to quantify the zoxamide enantiomers in soil by HPLC using Chiral NQ (2)-RH column. Our results demonstrated that the R-(-)- and S-(+)-zoxamide half dissipated in the range of 10.88-17.81 and 8.05-14.41 days, respectively. S-(+)-zoxamide disappeared faster in soil. The vermicompost accelerated the dissipation rate of S-(+)-zoxamide, while urea, phosphate, organic and vermicompost fertilizer increased the dissipation selectivity. Zoxamide and fertilizers other than urea caused soil acidification during 80 days. Zoxamide was beneficial to soil catalase, instead inhibited soil urease, dehydrogenase activities and available phosphorus content. No significant effects on sucrase activity and available nitrogen content were found by zoxamide. Vermicompost and soya bean cakes had lasting and outstanding performance in efficiently improving soil enzyme activity and N, P nutrition. The comprehensive understanding of the ecological impact induced by chiral pesticide enantiomers and fertilizers on soil is vital to ensure the sustainable development and safety of agricultural production.
Collapse
Affiliation(s)
- Hui Liu
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Mei Shan
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Mengqi Liu
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Jiaqi Song
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| | - Kuiyuan Chen
- Department of Plant Protection, College of Agronomy, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
10
|
Ma G, Gao X, Nan J, Zhang T, Xie X, Cai Q. Fungicides alter the distribution and diversity of bacterial and fungal communities in ginseng fields. Bioengineered 2021; 12:8043-8056. [PMID: 34595989 PMCID: PMC8806933 DOI: 10.1080/21655979.2021.1982277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study was focused on comparison of four typical fungicides in ginseng field to evaluate the impact of the different fungicides on the soil bacterial and fungal communities’ composition and diversity by using high-throughput sequencing. Five treatments were designed comprising carbendazim (D), dimethyl disulfide (E), dazomet (M), calcium cyanamide (S), and control (C). The application of fungicide obviously altered the distribution of dominant fungal and bacterial communities and remarkably decreased the diversity (1099-763 and 6457-2245). The most abundant Proteobacteria obviously degenerate in fungicide-treated soil and minimum in E (0.09%) compared to control (25.72%). The relative abundance of Acidobacteria was reduced from 27.76 (C) to 7.14% after applying fungicide and minimum in E. The phylum Actinobacteria are both decomposers of organic matter and enemies of soil-borne pathogens, elevated from 11.62 to 51.54% and are high in E. The fungi community mainly distributed into Ascomycota that enriched from 66.09 to 88.21% and highin M and E (88.21 and 85.10%), and Basidiomycota reduced from 21.13 to 3.23% and low in M and E (5.27 and 3.23%). Overall, environmentally related fungicides decreased the diversity and altered the composition of bacterial and fungal communities, highest sensitivity present in dimethyl disulfide-treated soil.
Collapse
Affiliation(s)
- Guilong Ma
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xinxin Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Jie Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Tingting Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiaobao Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Qi Cai
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Energetic Value of Elymus elongatus L. and Zea mays L. Grown on Soil Polluted with Ni2+, Co2+, Cd2+, and Sensitivity of Rhizospheric Bacteria to Heavy Metals. ENERGIES 2021. [DOI: 10.3390/en14164903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plants, and microorganisms associated with them, offer an effective tool for removing pollutants, such as heavy metals, from the soil environment. The aim of this study was to determine changes caused by Ni2+, Co2+, and Cd2+ in the genetic diversity of soil-populating bacteria and the effect these heavy metals on the heating value of elongated coach grass (Elymus elongatus L.) and maize (Zea mays L.). Microorganisms support plants in removing heavy metals from soil. These plants can then be used for energetic purposes. The study aim was accomplished by determining counts of microorganisms and their resistance (RS) to Ni2+, Co2+, Cd2+, their colony development index (CD), ecophysiological diversity index (EP), and diversity established with the next generation sequencing (NGS) method. Further analyses aimed to establish test plants resistance to pollution with heavy metals and their heating value. Organotrophic bacteria turned out to be the most resistant to Co2+, whereas actinobacteria—to Cd2+ effects. At all taxonomic levels, the genetic diversity of bacteria was most adversely influenced by Cd2+ in the soil sown with Zea mays L. Bacteria belonging to Arthrobacter, Rhodoplanes, Kaistobacter, Devosia, Phycicoccus, and Thermomonas genera showed high tolerance to soil pollution with Ni2+, Co2+, and Cd2+, hence they should be perceived as potential sources of microorganisms useful for bioaugmentation of soils polluted with these heavy metals. Ni2+, Co2+, and Cd2+ had no effect on the heating value of Elymus elongatus L. and Zea mays L. The heating value of 1 kg of air-dry biomass of the tested plants was relatively high and ranged from 14.6 to 15.1 MJ. Elymus elongatus L. proved more useful in phytoremediation than Zea mays L.
Collapse
|
12
|
Meyer M, Diehl D, Schaumann GE, Muñoz K. Agricultural mulching and fungicides-impacts on fungal biomass, mycotoxin occurrence, and soil organic matter decomposition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36535-36550. [PMID: 33704638 PMCID: PMC8277611 DOI: 10.1007/s11356-021-13280-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plastic and straw coverage (PC and SC) are often combined with fungicide application but their influence on fungicide entry into soil and the resulting consequences for soil quality are still unknown. The objective of this study was to investigate the impact of PC and SC, combined with fungicide application, on soil residual concentrations of fungicides (fenhexamid, cyprodinil, and fludioxonil), soil fungal biomass, mycotoxin occurrence, and soil organic matter (SOM) decomposition, depending on soil depth (0-10, 10-30, 30-60 cm) and time (1 month prior to fungicide application and respectively 1 week, 5 weeks, and 4 months afterwards). Soil analyses comprised fungicides, fusarium mycotoxins (deoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, and zearalenone), ergosterol, soil microbial carbon and nitrogen, soil organic carbon, dissolved organic carbon, and pH. Fludioxonil and cyprodinil concentrations were higher under SC than under PC 1 week and 5 weeks after fungicide application (up to three times in the topsoil) but no differences were observed anymore after 4 months. Fenhexamid was not detected, presumably because of its fast dissipation in soil. The higher fludioxonil and cyprodinil concentrations under SC strongly reduced the fungal biomass and shifted microbial community towards larger bacterial fraction in the topsoil and enhanced the abundance and concentration of deoxynivalenol and 15-acetyldeoxynivalenol 5 weeks after fungicide application. Independent from the different fungicide concentrations, the decomposition of SOM was temporarily reduced after fungicide application under both coverage types. However, although PC and SC caused different concentrations of fungicide residues in soil, their impact on the investigated soil parameters was minor and transient (< 4 months) and hence not critical for soil quality.
Collapse
Affiliation(s)
- Maximilian Meyer
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany
| | - Dörte Diehl
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany
| | - Gabriele Ellen Schaumann
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany.
| | - Katherine Muñoz
- iES Landau, Institute for Environmental Sciences Landau, Group of Environmental and Soil Chemistry, University Koblenz-Landau, Landau, Germany
| |
Collapse
|
13
|
Wang Y, Xu Y, Huang Q, Liang X, Sun Y, Qin X, Zhao L. Effect of sterilization on cadmium immobilization and bacterial community in alkaline soil remediated by mercapto-palygorskite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116446. [PMID: 33486245 DOI: 10.1016/j.envpol.2021.116446] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) pollution in alkaline soil in some areas of northern China has seriously threatened wheat production and human health. However, there are still few effective amendments for alkaline soil, and the mechanism of amendments with a good immobilization effect remains unclear. In this study, soil sterilization experiments were conducted to investigate the effects of soil microorganisms on the immobilization of a novel amendment-mercapto palygorskite (MPAL) in Cd-contaminated alkaline soils. The results showed that the mercapto on the MPAL surface was not affected by autoclaving. Compared with the control, the available Cd concentration in 0.025% MPAL treatments decreased by 18.80-29.23% after 1 d of aging and stabled after 10 d of aging. Importantly, the immobilization of MPAL on Cd in sterilized soil was significantly better than that in natural soil due to the changes in Cd fractions. Compared with MPAL-treated natural soil, exchangeable Cd fraction and carbonate-bound Cd fraction in MPAL-treated sterilized soil decreased by 20.79-27.09% and 20.05-26.45%, while Fe/Mn oxide-bound Cd fraction and organic matter-bound Cd fraction increased by 17.77-22.68% and 18.85-27.32%. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analysis found that the potential functions of the microbial community in normal and sterilized soil were different significantly. Soil sterilization increased the soil pH and decreased the arylsulfatase activity, but did not change the soil zeta potential and available sulfur. The changes in Cd fractions in MPAL-treated sterilized soil may be related to the reduction in the bacterial community and the changes in function microbial, but not to the soil properties. In addition, MPAL application had little effects on the bacterial community, soil pH value, zeta potential, available sulfur, and arylsulfatase. These results showed that the immobilization of MPAL on Cd in alkaline soil was stable and effective, and was not affected by soil sterilization and soil microorganism reduction.
Collapse
Affiliation(s)
- Yale Wang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yingming Xu
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China.
| | - Qingqing Huang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Xuefeng Liang
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Xu Qin
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| | - Lijie Zhao
- Key Laboratory of Original Environmental Pollution Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, PR China
| |
Collapse
|