1
|
Castro RSDS, Dória AR, Costa F, Mattedi S, Eguiluz KIB, Salazar-Banda GR. Dipropyl ammonium ionic liquids to prepare Ti/RuO 2-Sb 2O 4 anodes at different calcination temperatures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29742-9. [PMID: 37723391 DOI: 10.1007/s11356-023-29742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/02/2023] [Indexed: 09/20/2023]
Abstract
The development of technologies capable of producing efficient and economically viable anodes is essential for the electrochemical treatment of water contaminated with complex organic pollutants. In this context, the use of ionic liquids as solvents to prepare mixed metal oxide (MMO) anodes has proven to be an up-and-coming alternative. Here, we analyze the influence of the temperature of calcination (300, 350, and 400 ºC) on the production of Ti(RuO2)0.8-(Sb2O4)0.2 anodes made using the thermal decomposition method using three ionic liquids (IL) as solvents: dipropyl ammonium acetate (DPA-Ac), dipropyl ammonium propionate (DPA-Pr), and dipropyl ammonium butyrate (DPA-Bu). The decomposition temperature for all IL, accessed by thermogravimetry, is below 200 ºC. Physical and electrochemical analyses demonstrate that the calcination temperature of the anodes is decisive for their durability and electrochemical properties. Anodes prepared with DPA-Bu at 350 ºC show higher stability (around 35 h) than those made with other ILs at temperatures of 300 and 400 ºC and improved results in terms of 4-NP mineralization, where 97% of TOC removal was achieved in 120 min. It could be verified that the calcination temperature and IL employed had a decisive influence on the characteristics of the presented anodes. Therefore, the anode prepared with DPA-Bu at 350 ºC is promising for application in the degradation of organic compounds.
Collapse
Affiliation(s)
- Raíra Souza de Santana Castro
- Graduate Program in Processes Engineering (PEP), University Tiradentes, Aracaju, SE, Brazil
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Aline Resende Dória
- Graduate Program in Processes Engineering (PEP), University Tiradentes, Aracaju, SE, Brazil
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Fabio Costa
- Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, BA, CEP 40210-630, Brazil
| | - Silvana Mattedi
- Graduate Program in Chemical Engineering, Polytechnic School, Federal University of Bahia (UFBA), Salvador, BA, CEP 40210-630, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Graduate Program in Processes Engineering (PEP), University Tiradentes, Aracaju, SE, Brazil
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Giancarlo Richard Salazar-Banda
- Graduate Program in Processes Engineering (PEP), University Tiradentes, Aracaju, SE, Brazil.
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil.
| |
Collapse
|
2
|
Feng H, Liao X, Yang R, Chen S, Zhang Z, Tong J, Liu J, Wang X. Generation, toxicity, and reduction of chlorinated byproducts: Overcome bottlenecks of electrochemical advanced oxidation technology to treat high chloride wastewater. WATER RESEARCH 2023; 230:119531. [PMID: 36580803 DOI: 10.1016/j.watres.2022.119531] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical advanced oxidation process (EAOP) is recommended for high-strength refractory organics wastewater treatment, but the accompanying chlorinated byproduct generation becomes a bottleneck that limits the application of this technology to actual wastewater. In this study, we applied EAOP (0.4-40 mA cm-2) to treat ultrafiltration effluent of an actual landfill leachate, and quantitatively assessed the toxicities of the dominant chlorinated byproducts in EAOP-treated effluent. Considering both toxic effect and dose, it followed the order: active chlorine > chlorate > perchlorate > organochlorines. The toxic active chlorine could spontaneously decompose by settling. And secondary bioreactor originally serving for denitrification could be used to reduce perchlorate and chlorate. The effects of residual active chlorine and extra carbon addition on simultaneous denitrification, perchlorate, and chlorate reduction were investigated. It seemed that 20 mg of active chlorine was an acceptable level to bioactivity, and sufficient electron donors favored the removal of chlorate and perchlorate. Pseudomonas was identified as an active chlorine tolerant chlorate-reducing bacteria. And Thauera was responsible for perchlorate reduction under the conditions of sufficient carbon source supply. Our results confirmed that the perchlorate and chlorate concentrations in the effluent below their health advisory levels were achievable, solving the issue of toxic chlorinated byproduct generation during EAOP. This study provided a solution to realistic application of EAOP to treat high chloride wastewater.
Collapse
Affiliation(s)
- Hualiang Feng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Xinqing Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruili Yang
- Yancheng Institute of Technology, Jiangsu, Yancheng 224051, China
| | - Shaohua Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaoji Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jinsheng Tong
- Longyan Water Environment Development Co. Ltd., Longyan 364000, China
| | - Jiajian Liu
- Longyan Water Environment Development Co. Ltd., Longyan 364000, China
| | - Xiaojun Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
3
|
Bomfim SA, Dória AR, Gonzaga IMD, Oliveira RVM, Romão LPC, Salazar-Banda GR, Ferreira LFR, Eguiluz KIB. Toward efficient electrocatalytic degradation of iohexol using active anodes: A laser-made versus commercial anodes. CHEMOSPHERE 2022; 299:134350. [PMID: 35331750 DOI: 10.1016/j.chemosphere.2022.134350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The X-ray iodinated contrast medium iohexol is frequently detected in aquatic environments due to its high persistence and the inefficiency of its degradation by conventional wastewater treatments. Hence, the challenge faced in this study is the development of an alternative electrochemical treatment using active anodes. We investigate the oxidation of iohexol (16.42 mg L-1) using different operating conditions, focusing on the role of different mixed metal oxide anodes in the treatment efficiency. The electrocatalytic efficiency of the Ti/RuO2-TiO2 anode prepared using a CO2 laser heating and an ionic liquid is compared with Ti/RuO2-TiO2-IrO2 and Ti/IrO2-Ta2O5 commercial anodes. The hypochlorite ions generated by the anodes are also analyzed. The effect of the electrolyte composition (NaCl, Na2SO4, and NaClO4) and current density (15, 30, and 50 mA cm-2) on the iohexol degradation is also studied. The Ti/RuO2-TiO2 laser-made anode is more efficient than the commercial anodes. After optimizing experimental parameters, this anode removes 95.5% of iohexol in 60 min and displays the highest kinetic rate (0.059 min-1) with the lowest energy consumption per order (0.21 kWh m-3order-1), using NaCl solution as the electrolyte and applying 15 mA cm-2. Additionally, iohexol-intensified groundwater was used to compare the efficiency of anodes. The Ti/RuO2-TiO2 is also more efficient in removing the organic charge from the real water matrix (21.7% TOC) than the commercial anodes. Notably, the iohexol removal achieved is higher than all electrochemical treatments already reported using state-of-the-art non-active anodes in lower electrolysis time. Therefore, data from this study indicate that the electrochemical degradation of iohexol using the Ti/RuO2-TiO2 anode is efficient and has excellent cost-effectiveness; thus, it is a promising approach in the degradation of iohexol from wastewater. Furthermore, the Ti/RuO2-TiO2 active anode is competitive and can be an excellent option for treating effluents contaminated with recalcitrant organic compounds such as iohexol.
Collapse
Affiliation(s)
- Sthefany A Bomfim
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | - Aline R Dória
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | - Isabelle M D Gonzaga
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | | | - Luciane P C Romão
- Study of Natural Organic Matter Laboratory, Federal University of Sergipe, 49100-000, São Cristovão-SE, Brazil; Institute of Chemistry, UNESP, National Institute of Alternative Technologies for Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactive Materials (INCT-DATREM), P.O. Box 355, 14800-900, Araraquara-SP, Brazil
| | - Giancarlo R Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil
| | - Luiz F R Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil.
| | - Katlin I B Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), 49032-490, Aracaju-SE, Brazil; Graduate Program in Process Engineering (PEP), Tiradentes University, 49032-490, Aracaju-SE, Brazil.
| |
Collapse
|
4
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
5
|
Chen W, Liu S, Fu Y, Yan H, Qin L, Lai C, Zhang C, Ye H, Chen W, Qin F, Xu F, Huo X, Qin H. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214341] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Rodríguez-Peña M, Barrios Pérez JA, Llanos J, Saez C, Barrera-Díaz CE, Rodrigo MA. Toward real applicability of electro-ozonizers: Paying attention to the gas phase using actual commercial PEM electrolyzers technology. CHEMOSPHERE 2022; 289:133141. [PMID: 34871614 DOI: 10.1016/j.chemosphere.2021.133141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
This work focuses on increasing the TRL of electro-ozonizer technology by evaluating the effect of electrolyte composition and operation conditions on the production of ozone, using an actual commercial cell, CONDIAPURE®, in conditions similar to what could be expected in a real application. Not only is attention paid to the changes in the concentration of ozone in the liquid phase, but also to those observed in the gas phase. The electrolyte and its recirculation flowrate, as well as operation temperatures and pressures are found to have significant influence on production rates. The most efficient way to produce ozone is operating at low temperatures and high pressures. In this work, 0.25 and 0.21 mg O3/min were obtained operating at 10 A in electrolytes consisting of aqueous solutions of perchloric and sulfuric acid, respectively, in tests carried out at 13 °C and 2 bars of gauge pressure. The negative effect of scavengers that appear electrochemically along the production of ozone is very important and seems to be partially compensated when organics are present in the solution due to the competition between the reaction of these scavengers with ozone or organics.
Collapse
Affiliation(s)
- M Rodríguez-Peña
- Department of Chemical Engineering. School of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain; Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de México, Mexico
| | - J A Barrios Pérez
- Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de México, Mexico
| | - J Llanos
- Department of Chemical Engineering. School of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - C Saez
- Department of Chemical Engineering. School of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - C E Barrera-Díaz
- Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de México, Mexico
| | - M A Rodrigo
- Department of Chemical Engineering. School of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
7
|
Goulart LA, Moratalla A, Lanza MRV, Sáez C, Rodrigo MA. Photoelectrocatalytic treatment of levofloxacin using Ti/MMO/ZnO electrode. CHEMOSPHERE 2021; 284:131303. [PMID: 34182289 DOI: 10.1016/j.chemosphere.2021.131303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Here, the antibiotic levofloxacin (LFX) widely used and detected in the environment was degraded by photoelectrolysis using a new electrode based on zinc oxide (ZnO) and a mixture of mixed oxides of ruthenium and titanium (MMO). The influence of the potential and irradiation of UV light was investigated in the photostability of the Ti/MMO/ZnO electrode and in the degradation of the antibiotic. The experiments were conducted at different pH values (5.0, 7.0 and 9.0) in sodium sulfate solution in a glass reactor with central lighting. It was observed that the new Ti/MMO/ZnO electrode has good stability under light irradiation and potential, presenting excellent photocurrent and high photoactivity in LFX photoelectrolysis. The removal efficiency of the compound was directly related to the formation of oxidizing species in solution, the photo-generated charges on the electrode and the electrostatic characteristics of the molecule. The mineralization rate, the formation of reaction intermediates and short chain carboxylic acids (acetic, maleic, oxalic and oxamic acid), in addition to the formation of N-mineral species (NO3- and NH4+) was dependent on the pH of the solution and the investigated processes: photoelectrolysis was more efficient than photolysis, which, in turn, was more efficient than electrolysis. The synergistic effect and the high rate of degradation of LFX after 4.0 h of treatment (100%) observed in photoelectrolysis at alkaline pH, was associated with the high stability of the Ti/MMO/ZnO electrode at this pH, the photoactivation of sulfate ions and the ease generation of oxidizing radicals, such as OH.
Collapse
Affiliation(s)
- Lorena A Goulart
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Angela Moratalla
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Marcos R V Lanza
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil.
| | - Cristina Sáez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
8
|
de Santana Mota WJ, de Oliveira Santiago Santos G, Resende Dória A, Rubens Dos Reis Souza M, Krause LC, Salazar-Banda GR, Barrios Eguiluz KI, López JA, Hernández-Macedo ML. Enhanced HCB removal using bacteria from mangrove as post-treatment after electrochemical oxidation using a laser-prepared Ti/RuO 2-IrO 2-TiO 2 anode. CHEMOSPHERE 2021; 279:130875. [PMID: 34134435 DOI: 10.1016/j.chemosphere.2021.130875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
The environmental persistence of hexachlorobenzene (HCB) is a challenge that promotes studies for efficient treatment alternatives to minimize its environmental impact. Here, we evaluated the HCB removal by electrochemical, biological, and combined approaches. The electrochemical treatment of 4 μM HCB solutions was performed using a synthesized Ti/RuO2-IrO2-TiO2 anode, while the biological treatment using mangrove-isolated bacteria was at 24, 48, and 72 h. The HCB degradability was assessed by analyzing chemical oxygen demand (COD), microbial growth capacity in media supplemented with HCB as the only carbon source, gas chromatography, and ecotoxicity assay after treatments. The synthesized anode showed a high voltammetric charge and catalytic activity, favoring the HCB biodegradability. All bacterial isolates exhibited the ability to metabolize HCB, especially Bacillus sp. and Micrococcus luteus. The HCB degradation efficiency of the combined electrochemical-biological treatment was evidenced by a high COD removal percentage, the non-HCB detection by gas chromatography, and a decrease in ecotoxicity tested with lettuce seeds. The combination of electrochemical pretreatment with microorganism degradation was efficient to remove HCB, thereby opening up prospects for in situ studies of areas contaminated by this recalcitrant compound.
Collapse
Affiliation(s)
- Wanessa Jeane de Santana Mota
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Gessica de Oliveira Santiago Santos
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Aline Resende Dória
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Michel Rubens Dos Reis Souza
- Materials Synthesis and Chromatography Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Laiza Canielas Krause
- Materials Synthesis and Chromatography Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - Giancarlo Richard Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil
| | - Katlin Ivon Barrios Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Processes Engineering Graduation - PEP, Universidade Tiradentes, 49032-490, Aracaju, SE, Brazil.
| | - Jorge A López
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| | - María Lucila Hernández-Macedo
- Molecular Biology Laboratory, Research and Technology Institute - ITP, Aracaju, SE, Brazil; Industrial Biotechnology Graduation, Universidade Tiradentes, 49032-490, Aracaju, Brazil
| |
Collapse
|
9
|
dos Reis MN, Ramos Neto AS, Vasconcelos VM, Dória AR, O. S. Santos G, dos Santos EA, Eguiluz KI, Salazar-Banda GR. Ti/Ru0.7M0.3O2 (M = Ir or Ti) anodes made by Pechini and ionic liquid methods: Uneven catalytic activity and stability. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Dória AR, Santos GOS, Pelegrinelli MMS, Silva DC, de Matos DB, Cavalcanti EB, Silva RS, Salazar-Banda GR, Eguiluz KIB. Improved 4-nitrophenol removal at Ti/RuO 2-Sb 2O 4-TiO 2 laser-made anodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23634-23646. [PMID: 32812159 DOI: 10.1007/s11356-020-10451-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
In this study, binary and ternary mixed metal oxide anodes of Ti/RuO2-Sb2O4 and Ti/RuO2-Sb2O4-TiO2 were prepared using two different heating methods: conventional furnace and alternative CO2 laser heating. The produced anodes were physically and electrochemically characterized by using different techniques. The main difference found in the laser-made anodes was their more compact morphology, without the common deep cracks found in anodes made by typical thermal decomposition, which showed an important correlation with the prolonged accelerated service life. The correlation between the physicochemical properties of the anodes with their performance towards the 4-nitrophenol oxidations is discussed. The results demonstrated that the ternary anode (Ti/RuO2-Sb2O4-TiO2) is very promising, presenting a kinetic 5.7 times faster than the respective binary anode and the highest removal efficiency when compared with conventionally made anodes. Also, the lowest energy consumption per unit of mass of contaminant removed is seen for the laser-made Ti/RuO2-Sb2O4-TiO2 anode, which evidences the excellent cost-benefit of this anode material. Finally, some by-products were identified, and a degradation route is proposed. Graphical abstract.
Collapse
Affiliation(s)
- Aline R Dória
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
| | - Géssica O S Santos
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil.
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil.
| | - Mariane M S Pelegrinelli
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Deyvid C Silva
- Functional Nanomaterials Group, Department of Physics, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Danielle B de Matos
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
- Waste and Sewage Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Eliane Bezerra Cavalcanti
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
- Waste and Sewage Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
| | - Ronaldo S Silva
- Functional Nanomaterials Group, Department of Physics, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
| | - Katlin I B Eguiluz
- Electrochemistry and Nanotechnology Laboratory, Institute of Technology and Research (ITP), Aracaju, SE, Brazil
- Postgraduate Program in Process Engineering (PEP), Tiradentes University, Aracaju, SE, Brazil
| |
Collapse
|
11
|
Goulart LA, Santos GOS, Eguiluz KIB, Salazar-Banda GR, Lanza MRV, Saez C, Rodrigo MA. Towards a higher photostability of ZnO photo-electrocatalysts in the degradation of organics by using MMO substrates. CHEMOSPHERE 2021; 271:129451. [PMID: 33450425 DOI: 10.1016/j.chemosphere.2020.129451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In this work, it is proposed a novel strategy to increase the photostability of the ZnO photoelectrocatalyst under prolonged light irradiation, without the addition or deposition of metals and/or semiconductor oxides during their synthesis. This strategy is based on the use of a mixed metal oxide (MMO-Ru0.3Ti0.7O2) coating as the substrate for the electrodeposition of ZnO. To assess it, the electrodeposition of ZnO films on Ti and Ti/MMO substrates and the photoelectrocatalytic activity of these materials for the degradation of the herbicide clopyralid were studied. The results showed that the substrate directly influenced the photo-stability of the ZnO film. Under the incidence of UV light and polarization, the novel Ti/MMO/ZnO electrode showed greater photocurrent stability as compared to Ti/ZnO, which is a very important outcome because the behavior of these electrodes was similar when compared in terms of the degradation of clopyralid. Single electrolysis was not able to degrade efficiently clopyralid at the different potentials studied. However, the irradiation of UV light on the polarized surface of the Ti/ZnO and Ti/MMO/ZnO electrodes increased markedly the degradation rate of clopyralid. A synergistic effect was observed between light and electrode polarization, since the rate of degradation of clopyralid was twice as high in photoelectrocatalysis (PhEC) than in photocatalysis (PhC) and different intermediates were formed. From these results, mechanisms of degradation of clopyralid for the PhC and PhEC systems with the Ti/ZnO and Ti/MMO/ZnO electrodes were presented. Therefore, the Ti/MMO/ZnO electrode could be a cheap and simple alternative to be applied in the efficient photodegradation of organic pollutants, presenting the great advantage of having a facile synthesis and high capacity to work at relatively low potentials.
Collapse
Affiliation(s)
- Lorena A Goulart
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Géssica O S Santos
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Katlin I B Eguiluz
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Aracaju, SE, Brazil
| | - Giancarlo R Salazar-Banda
- Processes Engineering Post-graduation - PEP, Universidade Tiradentes, 49037-580, Aracaju, SE, Brazil; Electrochemistry and Nanotechnology Laboratory, Research and Technology Institute (ITP), Aracaju, SE, Brazil
| | - Marcos R V Lanza
- Institute of Chemistry - São Carlos, University of São Paulo, P.O. Box 780, CEP-13560-970, São Carlos, SP, Brazil.
| | - Cristina Saez
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
12
|
Patidar R, Srivastava VC. Evaluation of the sono-assisted photolysis method for the mineralization of toxic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Goulart LA, Moratalla A, Lanza MR, Saez C, Rodrigo MA. Photocatalytic performance of Ti/MMO/ZnO at degradation of levofloxacin: Effect of pH and chloride anions. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Fang F, Zhang Y, Bai J, Li J, Mei X, Zhou C, Zhou M, Zhou B. Efficient urine removal, simultaneous elimination of emerging contaminants, and control of toxic chlorate in a photoelectrocatalytic-chlorine system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115605. [PMID: 33254651 DOI: 10.1016/j.envpol.2020.115605] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Urine, which is an important waste biomass resource, is the main source of nitrogen in sewage and contains large quantities of emerging contaminants (ECs). In this study, we propose a new method to efficiently remove urine, simultaneously eliminate ECs, and control the generation of toxic chlorate during urine treatment using a photoelectrocatalytic-chlorine (PEC-Cl) system. A type-II heterojunction of WO3/BiVO4 was used as a photoanode to generate chlorine radicals (Cl•) by decreasing the oxidation potential of WO3 valence band for the highly selective conversion of urine to N2 and the simultaneous degradation of ECs in an efficient manner. The method presented surprising results. It was observed that the amount of toxic chlorate was significantly inhibited by circumventing the over-oxidation of Cl- by holes or hydroxyl radicals (•OH). Moreover, the removal of urea nitrogen reached 97% within 90 min, while the degradation rate of trimethoprim in urine was above 98.6% within 60 min, which was eight times more than that in the PEC system (12.1%). Compared to the bare WO3 photoanode, the toxic chlorate and nitrate generated by the WO3/BiVO4 heterojunction photoanode decreased by 61% and 44%, respectively. Thus, this study provides a safe, efficient, and environmentally-friendly approach for the disposal of urine.
Collapse
Affiliation(s)
- Fei Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaojie Mei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Mengyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai, 200240, PR China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan, 650034, PR China.
| |
Collapse
|
15
|
Vasconcelos VM, Gonzaga IM, Dória AR, Cordeiro-Junior PJ, Lanza MR, Eguiluz KI, Salazar-Banda GR. Effects of temperature and heating method on the performance of Ti/Ru0.25Ir0.25Ti0.50O2 anodes applied toward Bisphenol S removal. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
16
|
Khan SU, Khan H, Anwar S, Khan S, Boldrin Zanoni MV, Hussain S. Computational and statistical modeling for parameters optimization of electrochemical decontamination of synozol red dye wastewater. CHEMOSPHERE 2020; 253:126673. [PMID: 32302900 DOI: 10.1016/j.chemosphere.2020.126673] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
In this study, computational and statistical models were applied to optimize the inherent parameters of an electrochemical decontamination of synozol red. The effect of various experimental variables such as current density, initial pH and concentration of electrolyte on degradation were assessed at Ti/RuO0·3TiO0·7O2 anode. Response surface methodology (RSM) based central composite design was applied to investigate interdependency of studied variables and train an artificial neural network (ANN) to envisage the experimental training data. The presence of fifteen neurons proved to have optimum performance based on maximum R2, mean absolute error, absolute average deviation and minimum mean square error. In comparison to RSM and empirical kinetics models, better prediction and interpretation of the experimental results were observed by ANN model. The sensitive analysis revealed the comparative significance of experimental variables are pH = 61.03%>current density = 17.29%>molar concentration of NaCl = 12.7%>time = 8.98%. The optimized process parameters obtained from genetic algorithm showed 98.6% discolorization of dye at pH 2.95, current density = 5.95 mA cm-2, NaCl of 0.075 M in 29.83 min of electrolysis. The obtained results revealed that the use of statistical and computational modeling is an adequate approach to optimize the process variables of electrochemical treatment.
Collapse
Affiliation(s)
- Saad Ullah Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan; Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Hammad Khan
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Sajid Anwar
- Faculty of Computer Sciences and Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan
| | - Sabir Khan
- Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil
| | - Maria V Boldrin Zanoni
- Institute of Chemistry Araraquara, São Paulo State University (UNESP), Av. Prof. Francisco Degni 55, Araraquara, SP, 14800-060, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactivies (INCT-DATREM), São Paulo State University (UNESP), Institute of Chemistry, Araraquara, SP, 14800-060, Brazil
| | - Sajjad Hussain
- Faculty of Materials and Chemical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, 23460, Pakistan; Faculdade de Engenharias, Arquitetura e Urbanismo e Geografia, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, CEP 79070-900, Campo Grande, MS, Brazil.
| |
Collapse
|
17
|
Santos GDO, Eguiluz KI, Salazar-Banda GR, Saez C, Rodrigo MA. Testing the role of electrode materials on the electro-Fenton and photoelectro-Fenton degradation of clopyralid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Barbosa Ferreira M, Souza FL, Muñoz-Morales M, Sáez C, Cañizares P, Martínez-Huitle CA, Rodrigo MA. Clopyralid degradation by AOPs enhanced with zero valent iron. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122282. [PMID: 32105951 DOI: 10.1016/j.jhazmat.2020.122282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Four different technologies have been compared (photolysis, ZVI + photolysis, electrolysis and ZVI + electrolysis) regarding the: (1) degradation of clopyralid, (2) extent of its mineralization, (3) formation of by-products and main reaction pathways. Results show that photolysis is the less efficient treatment and it only attains 5 % removal of the pollutant, much less than ZVI, which reaches 45 % removal and that electrolysis, which attains complete removal and 78 % mineralization within 4 h. When ZVI is used as pre-treatment of electrolysis, it was obtained the most efficient technology. The identification of transformation products was carried out for each treatment by LCMS. In total, ten products were identified. Tentative pathways for preferential clopyralid degradation for all processes were proposed. This work draws attention of the synergisms caused by the coupling of techniques involving the treatment of chlorinated compound and sheds light on how the preferential mechanisms of each treatment evaluated occurred.
Collapse
Affiliation(s)
- M Barbosa Ferreira
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario 3000, 59078-970 Natal, RN, Brazil
| | - F L Souza
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - M Muñoz-Morales
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - C Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - C A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Campus Universitario 3000, 59078-970 Natal, RN, Brazil
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|