1
|
Rocha MAM, Barros MUG, de Assis de Souza Filho F, Neto IEL. Diel and seasonal mixing patterns and water quality dynamics in a multipurpose tropical semiarid reservoir. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43309-43322. [PMID: 38898349 DOI: 10.1007/s11356-024-34044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Eutrophication has become a recurrent concern in reservoirs worldwide. This problem is intensified in tropical semiarid regions, where the reservoirs have high seasonal and annual variability of water level and volume. Therefore, an extensive understanding of the diel variation of water quality key-parameters can help improve management of such reservoirs. This study focuses on Castanhão reservoir with the largest multipurpose dam in the Brazilian semiarid. Its main water uses are irrigation, fish farming, and human supply. The reservoir faced a decline in water quality due to a prolonged drought period. While previous research has predominantly emphasized the seasonal dynamics of thermal and chemical stratification, our investigation provides diel assessments of multiple water quality parameters, including nutrient concentrations and phytoplankton abundance. Our primary objective is to compare seasonal and diel variations in stratification and nutrient distribution within the reservoir. Key findings reveal a diel cycle of thermal stratification, primarily during dry season, driven by higher wind speeds. This is corroborated by a significant negative correlation between wind speed and the relative water column stability index. In contrast, during the rainy season, the reservoir experiences continuous thermal stratification due to inflowing water being warmer than the reservoir's water temperature. Notably, a significant negative correlation between total phosphorus and chlorophyll-a, along with a two-fold increase of this nutrient throughout the day during the rainy season, underscores the influence of the phytoplankton community dynamics on the diel nutrient variation. Chemical stratification of dissolved oxygen occurred during dry and rainy seasons, indicating that even during the dry season, where there is no significant inflow, the internal nutrient loading can also significantly impact the water quality of a reservoir. This study advances the understanding of diel water quality dynamics in tropical semiarid reservoirs, shedding light on both climatic and anthropogenic influences on water resources.
Collapse
Affiliation(s)
- Maria Aparecida Melo Rocha
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, bl. 713, 60.451-970, Fortaleza, Brazil
| | | | | | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, bl. 713, 60.451-970, Fortaleza, Brazil.
| |
Collapse
|
2
|
Bastami KD, Manbohi A, Mehdinia A, Hamzehpour A, Haghparast S, Taheri M. Distribution of hydrogen sulfide, nitrogen and phosphorous species in inshore and offshore sediments of the south Caspian Sea. MARINE POLLUTION BULLETIN 2024; 202:116330. [PMID: 38636340 DOI: 10.1016/j.marpolbul.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to geochemically investigate the sediments of the south Caspian Sea at different depths in summer and winter 2020. Sampling was conducted in 5 transects along the south coastline of the Caspian Sea and sediment grain size, hydrogen sulfide, Oxidation-reduction potential (Eh), total nitrogen, nitrite, nitrate, ammonium, total phosphorus, organic and inorganic phosphorous were measured. Eh values showed significant differences between seasons and between different transects (p < 0.05). Hydrogen sulfide ranged from 1.87 to 307.00 ppm. No significant difference was observed in hydrogen sulfide between seasons and among depths (p > 0.05). Total, inorganic and organic phosphorus contents were 782.96-1335.79 ppm, 639.66-1183.60 ppm, and 42.58-205.46 ppm, respectively. Total nitrogen revealed significant differences among transects (p < 0.05). Based on sediment quality guidelines, most sampling sites had alerting conditions for organic matter, and phosphorous contamination was detected at all stations. Anoxic condition was seen at most sites according to sedimentary Eh.
Collapse
Affiliation(s)
- Kazem Darvish Bastami
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran.
| | - Ali Mehdinia
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| | - Sarah Haghparast
- Department of Fisheries, Faculty of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University, Km 9 Darya Boulevard, P.O. Box, 578 Sari, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), No. 3, Etemadzadeh St., Fatemi Ave., 1411813389 Tehran, Iran
| |
Collapse
|
3
|
Goes MCA, Barros MUG, Neto IEL. Prediction of total phosphorus in reservoir cascade systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1550. [PMID: 38030894 DOI: 10.1007/s10661-023-12155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2023] [Indexed: 12/01/2023]
Abstract
Reservoir cascade systems have attracted the attention of scientists worldwide. The present study investigates the cascade of five reservoirs (R1, R2, R3, R4, and R5) along a 192-km water channel system located in the state of Ceará, in the Brazilian semiarid region. This cascade system was implemented in 2012 to promote water availability and security to the capital of Ceará and the strategic industry and port complex of the region. However, these reservoirs have faced a progressive degradation of water quality, which has resulted in intense eutrophication and high-water treatment costs. The study evaluates the dynamics of water quality from 2013 to 2021 along this reservoir cascade (from R1 to R5). The results revealed that water quality did not improve along the cascade system, differently from previous studies on reservoirs interconnected by natural rivers. This was attributed to the low water residence time and low capacity of pollutant removal along the man-made water channel system, as well as to the high internal phosphorus loads of the reservoirs. Multiple regression models involving the explanatory variables of total phosphorus, total nitrogen, chlorophyll-a, cyanobacteria, transparency, rainfall, and volume from upstream reservoirs were obtained to determine total phosphorus concentration in downstream reservoirs, considering different combinations of reservoir pairs in the cascade and different time delays. A clear trend of R2 decline with the distance between the upstream and downstream reservoirs was observed. For example, the R2 values for the correlations adjusted between R1 and R2 (48 km), R1 and R3 (172 km), R1 and R4 (178 km), and R1 and R5 (192 km) were 0.66, 0.32, 0.22, and 0.12, respectively. On the other hand, the adoption of time delays of the order of the cumulative residence times of the reservoirs promoted a significant improvement in the R2 values. For instance, the best correlation adjusted between R1 and R5 improved from R2 = 0.12 to 0.69 by considering a time delay of 21 months. This suggests that previous data from upstream reservoirs can be used to predict current and future total phosphorus concentration in downstream reservoirs. The results from this study are important to better understand the spatiotemporal dynamics of water quality in reservoir cascade systems and thus improve water resources management, especially in drylands.
Collapse
Affiliation(s)
- Marianna Correia Aragão Goes
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Bl. 713, Fortaleza, 60.451-970, Brazil
| | | | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Bl. 713, Fortaleza, 60.451-970, Brazil.
| |
Collapse
|
4
|
Raulino JBS, Lima Neto IE. Adaptation and application of the fuzzy synthetic evaluation (FSE) method for characterizing the trophic state of tropical semiarid reservoirs. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1177. [PMID: 37690050 DOI: 10.1007/s10661-023-11765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Eutrophication is a recurrent problem in water bodies, especially in tropical semiarid reservoirs. The trophic state index (TSI) is an important tool for the environmental management of aquatic systems. However, determining the TSI involves uncertainties that can affect decision-making. This study aimed to adapt and apply the fuzzy synthetic evaluation (FSE) to characterize the TSI considering the uncertainties of the reference eutrophication classification system. The Castanhão reservoir, the largest in the State of Ceará, Brazil, was taken as a case study. The results showed that (i) the uncertainty of the trophic classification system can be characterized by the triangular and trapezoidal membership functions; (ii) the result matrix associates the global trophic level with a degree of certainty, providing greater confidence to the decision maker; (iii) the eutrophication index (EI) is not an adequate tool for hierarchizing the trophic degree; and (iv) the membership level of the global trophic state generated by the FSE method is a suitable alternative to the EI. It is concluded that the proposed FSE model can be a useful tool for improving water resources management, especially in drylands.
Collapse
Affiliation(s)
- João B S Raulino
- Department of Hydraulic Engineering and Environment, Federal University of Ceará, Fortaleza, Brazil
| | - Iran E Lima Neto
- Department of Hydraulic Engineering and Environment, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
5
|
Guimarães BMDM, Neto IEL. Chlorophyll-a prediction in tropical reservoirs as a function of hydroclimatic variability and water quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91028-91045. [PMID: 37468780 DOI: 10.1007/s11356-023-28826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
The study goal was to determine spatiotemporal variations in chlorophyll-a (Chl-a) concentration using models that combine hydroclimatic and nutrient variables in 150 tropical reservoirs in Brazil. The investigation of seasonal variability indicated that Chl-a varied in response to changes in total nitrogen (TN), total phosphorus (TP), volume (V), and daily precipitation (P). Therefore, an empirical model for Chl-a prediction based on the product of TN, TP, and normalized functions of V and P was proposed, but their individual exponents as well as a general multiplicative factor were adjusted by linear regression for each reservoir. The fitted relationships were capable of representing algal temporal dynamics and blooms, with an average coefficient of determination of R2 = 0.70. The results revealed that nutrients yielded better predictability of Chl-a than hydroclimatic variables. Chl-a blooms presented seasonal and interannual variability, being more frequent in periods of high precipitation and low volume. The equations demonstrate different Chl-a responses to the parameters. In general, Chl-a was positively related to TN and/or TP. However, in some cases (22%), high nutrient concentrations reduced Chl-a, which was attributed to limited phytoplankton growth driven by light deficiency due to increased turbidity. In 49% of the models, precipitation intensified Chl-a levels, which was related to increases in the nutrient concentration from external sources in rural watersheds. Contrastingly, 51% of the reservoirs faced a decrease in Chl-a with precipitation, which can be explained by the opposite effect of dilution of nutrient concentration at the reservoir inlet in urban watersheds. In terms of volume, in 67% of the reservoirs, water level reduction promoted an increase in Chl-a as a response to higher nutrient concentration. In the other cases, Chl-a decreased with lower water levels due to wind-induced destratification of the water column, which potentially decreased the internal nutrient release from bottom sediment. Finally, applying the model to the two largest studied reservoirs showed greater sensitivity of Chl-a to changes in water use classes regarding variations in TN, followed by TP, V, and P.
Collapse
Affiliation(s)
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Bl. 713, 60, Fortaleza, 451-970, Brazil.
| |
Collapse
|
6
|
Buta B, Wiatkowski M, Gruss Ł, Tomczyk P, Kasperek R. Spatio-temporal evolution of eutrophication and water quality in the Turawa dam reservoir, Poland. Sci Rep 2023; 13:9880. [PMID: 37336929 DOI: 10.1038/s41598-023-36936-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023] Open
Abstract
The objectives of the article are: to assess spatio-temporal evolution of eutrophication and water quality of the Turawa dam reservoir, located in south-western Poland on the Mała Panew River; to identify location and relationship between potential sources of physicochemical pollution related to the progressing process of eutrophication; and to determine trophic status and water quality indices of the selected research object. The analysis (Mann-Whitney U test, PCA, HCA, Spearman correlation matrix) showed a high susceptibility of the reservoir to eutrophication processes, especially due to the influence of dangerous loads of compounds emerging from areas with high tourist intensity and pollutants flowing from the Mała Panew River. The parameters deteriorating the ecological status were TP, DO, BOD5, and COD. Considering the cumulative results of water quality indices for the period 1998-2020, the average water quality was in classes II or III. A noticeable deterioration appeared in water quality for the years 2016-2020, which proves the progressing eutrophication in the Turawa reservoir. In 1998-2020, the reservoir was classified as eutrophic or mesoeutrophic based on the calculated three trophic status indices. This article would help in developing a strategy for dealing with water blooms, a reliable system for monitoring pressures causing eutrophication, and optimal technologies for the reconstruction of multifunctional reservoirs.
Collapse
Affiliation(s)
- Bogna Buta
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Mirosław Wiatkowski
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Łukasz Gruss
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| | - Paweł Tomczyk
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland.
| | - Robert Kasperek
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-363, Wrocław, Poland
| |
Collapse
|
7
|
Carneiro BLDS, de Jesus D Rocha M, Barros MUG, Paulino WD, Lima Neto IE. Predicting anoxia in the wet and dry periods of tropical semiarid reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116720. [PMID: 36356542 DOI: 10.1016/j.jenvman.2022.116720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/16/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The dissolved oxygen (DO) level in the hypolimnion of lakes and reservoirs can reach anoxic conditions, which favor the release of phosphorus from the sediment bed to the water column. However, to estimate nutrient release from sediment is extremely important to quantify the duration of anoxia. In low latitude regions, the water-sediment layer is warmer than in temperate regions and eutrophication is usually more severe, potentially accelerating oxygen depletion and extending the anoxia period. Considering that the available equations to quantify the duration of anoxia were developed for temperate lakes, there is a need to effectively quantify this period in lakes and reservoirs located in other climate regions, such as the semiarid. In this study, the dynamics of thermal stratification was analyzed as a function of the Relative Water Column Stability coefficient (RWCS) and then correlated with DO dynamics for nineteen tropical semiarid reservoirs. RWCS values were higher during the rainy season, when anoxia duration was longer and the hypolimnion was thicker with respect to total water depth. Then, two new equations for quantification of anoxia duration, based on the equation originally developed for temperate climate, were adapted for the wet and dry seasons of the tropical semiarid region. The results showed that the proposed equations presented a better performance compared to the original one, which tends to underestimate anoxia in tropical semiarid reservoirs. This work intended to provide simple and locally adjusted tools to better quantify anoxic events and support the water quality and internal phosphorus load modeling for tropical semiarid reservoirs.
Collapse
Affiliation(s)
- Brenda Lara D S Carneiro
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, UFC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil
| | - Maria de Jesus D Rocha
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, UFC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil
| | - Mário U G Barros
- Water Resources Company of the State of Ceará COGERH, Rua Adualdo Batista, 1550, Fortaleza, Brazil
| | - Walt Disney Paulino
- Water Resources Company of the State of Ceará COGERH, Rua Adualdo Batista, 1550, Fortaleza, Brazil
| | - Iran E Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, UFC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Effects of air discharge on bubble dynamics in vertically discharged bubble plumes. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Xiao M, Burford MA, Wood SA, Aubriot L, Ibelings BW, Prentice MJ, Galvanese EF, Harris TD, Hamilton DP. Schindler's legacy: from eutrophic lakes to the phosphorus utilization strategies of cyanobacteria. FEMS Microbiol Rev 2022; 46:fuac029. [PMID: 35749580 PMCID: PMC9629505 DOI: 10.1093/femsre/fuac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/01/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
David Schindler and his colleagues pioneered studies in the 1970s on the role of phosphorus in stimulating cyanobacterial blooms in North American lakes. Our understanding of the nuances of phosphorus utilization by cyanobacteria has evolved since that time. We review the phosphorus utilization strategies used by cyanobacteria, such as use of organic forms, alternation between passive and active uptake, and luxury storage. While many aspects of physiological responses to phosphorus of cyanobacteria have been measured, our understanding of the critical processes that drive species diversity, adaptation and competition remains limited. We identify persistent critical knowledge gaps, particularly on the adaptation of cyanobacteria to low nutrient concentrations. We propose that traditional discipline-specific studies be adapted and expanded to encompass innovative new methodologies and take advantage of interdisciplinary opportunities among physiologists, molecular biologists, and modellers, to advance our understanding and prediction of toxic cyanobacteria, and ultimately to mitigate the occurrence of blooms.
Collapse
Affiliation(s)
- Man Xiao
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
- Nanjing Institute of Geography & Limnology, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, China
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, 7010, New Zealand
| | - Luis Aubriot
- Phytoplankton Physiology and Ecology Group, Sección Limnología, Instituto de Ecología y Ciencias Ambientales, Facultad de Ciencias; Universidad de la República, Montevideo, 11400, Uruguay
| | - Bas W Ibelings
- Department F.-A. Forel for Aquatic and Environmental Sciences and Institute for Environmental Sciences, University of Geneva, Geneva, 1290, Switzerland
| | - Matthew J Prentice
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| | - Elena F Galvanese
- Laboratório de Análise e Síntese em Biodiversidade, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 81531-998, Brazil
- Programa de Pós-graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, 80060-140, Brazil
| | - Ted D Harris
- Kansas Biological Survey and Center for Ecological Research, Lawrence, KS, 66047, United States
| | - David P Hamilton
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
10
|
Nunes Carvalho TM, Lima Neto IE, Souza Filho FDA. Uncovering the influence of hydrological and climate variables in chlorophyll-A concentration in tropical reservoirs with machine learning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:74967-74982. [PMID: 35648343 DOI: 10.1007/s11356-022-21168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Climate variability and change, associated with increasing water demands, can have significant implications for water availability. In the Brazilian semi-arid, eutrophication in reservoirs raises the risk of water scarcity. The reservoirs have also a high seasonal and annual variability of water level and volume, which can have important effects on chlorophyll-a concentration (Chla). Assessing the influence of climate and hydrological variability on phytoplankton growth can be important to find strategies to achieve water security in tropical regions with similar problems. This study explores the potential of machine learning models to predict Chla in reservoirs and to understand their relationship with hydrological and climate variables. The model is based mainly on satellite data, which makes the methodology useful for data-scarce regions. Tree-based ensemble methods had the best performances among six machine learning methods and one parametric model. This performance can be considered satisfactory as classical empirical relationships between Chla and phosphorus may not hold for tropical reservoirs. Water volume and the mix-layer depth are inversely related to Chla, while mean surface temperature, water level, and surface solar radiation have direct relationships with Chla. These findings provide insights on how seasonal climate prediction and reservoir operation might influence water quality in regions supplied by superficial reservoirs.
Collapse
Affiliation(s)
- Taís Maria Nunes Carvalho
- Department of Hydraulic and Environmental Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 713, Fortaleza, CEP, 60455-760, Brazil
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 713, Fortaleza, CEP, 60455-760, Brazil.
| | - Francisco de Assis Souza Filho
- Department of Hydraulic and Environmental Engineering, Universidade Federal Do Ceará, Campus do Pici, Bloco 713, Fortaleza, CEP, 60455-760, Brazil
| |
Collapse
|
11
|
Raulino JBS, Silveira CS, E L Neto I. Eutrophication risk assessment of a large reservoir in the Brazilian semiarid region under climate change scenarios. AN ACAD BRAS CIENC 2022; 94:e20201689. [PMID: 36102389 DOI: 10.1590/0001-3765202220201689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/06/2021] [Indexed: 11/21/2022] Open
Abstract
The present study assesses the risk of eutrophication of a large semiarid reservoir under SSP2-4.5 and SSP5-8.5 scenarios for three future periods and different conditions of influent total phosphorus (TP) concentration and reservoir withdrawal. An integrated approach coupling climate, hydrological and water quality models was proposed for forecasting the climate change impacts on the trophic condition of the reservoir. The projected TP concentrations were organized as probability-based cumulative distribution functions to quantify the risk of eutrophication. The results indicated changes of eutrophication status in the three future periods, with the end of the 21st century experiencing the highest impacts on water quality. On the other hand, major reductions both in the inlet TP concentration and the reservoir withdrawal are necessary to significantly improve the trophic status and minimize the risk of eutrophication. The results also showed that the dry period is more susceptible to eutrophication than the rainy period, suggesting that tropical semiarid reservoirs are more vulnerable to eutrophication under climate change than reservoirs in other regions of the world. The proposed approach and model results are important to better understand the impact of climate change on reservoir water quality and improve water resources management in tropical semiarid regions.
Collapse
Affiliation(s)
- João B S Raulino
- Universidade Federal do Ceará, Departamento de Engenharia Hidráulica e Ambiental, Av. Mister Hull, Bloco 713, Pici, 60451-970 Fortaleza, CE, Brazil
| | - Cleiton S Silveira
- Universidade Federal do Ceará, Departamento de Engenharia Hidráulica e Ambiental, Av. Mister Hull, Bloco 713, Pici, 60451-970 Fortaleza, CE, Brazil
| | - Iran E L Neto
- Universidade Federal do Ceará, Departamento de Engenharia Hidráulica e Ambiental, Av. Mister Hull, Bloco 713, Pici, 60451-970 Fortaleza, CE, Brazil
| |
Collapse
|
12
|
Lei J, Lin J, Zhan Y, Wen X, Li Y. Effect of sediment burial depth on the control of sedimentary phosphorus release by iron/aluminum co-modified calcite and strategy for overcoming the negative effect of sediment burial. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156467. [PMID: 35660602 DOI: 10.1016/j.scitotenv.2022.156467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
After placing an active capping material on surface sediments, the capping layer will be buried by the newly formed sediment. In this research, the influence of sediment burial depth on the performance of iron/aluminum co-modified calcite (FeAlCAL) to suppress sedimentary phosphorus (P) release into overlaying water (OL-water) was studied. Furthermore, in order to find out the strategy for overcoming the negative effect of sediment burial, the efficiencies and mechanisms of three different FeAlCAL treatments (one-time FeAlCAL capping with 3 cm sediment burial, multiple FeAlCAL capping with 1 cm sediment burial, and amendment of top 3 cm sediment with FeAlCAL) in the inhibition of sediment P release were contrastively studied. The results showed that with the increase of sediment burial depth, the efficiency of FeAlCAL to block the release of sediment P into OL-water gradually decreased until the FeAlCAL lost the ability to hinder sediment-P release. In contrast to the one-time FeAlCAL capping in the presence of 3 cm sediment burial, the multiple FeAlCAL capping in the presence of 1 cm sediment burial and amendment of top 3 cm sediment with FeAlCAL both effectively prevented the release of P from sediment into OL-water. All results of this work suggest that although sediment burial can negatively affect the ability of FeAlCAL in the inhibition of sediment P release into OL-water and the negative effect becomes stronger as the sediment burial depth increases, the transformation of the application mode of FeAlCAL from one-time capping to multiple capping or from capping to amendment can overcome the negative influence of sediment burial.
Collapse
Affiliation(s)
- Jiajia Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xin Wen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yanqi Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| |
Collapse
|
13
|
Wang Z, Wang C, Jiang H, Liu H. Higher dissolved oxygen levels promote downward migration of phosphorus in the sediment profile: Implications for lake restoration. CHEMOSPHERE 2022; 301:134705. [PMID: 35487357 DOI: 10.1016/j.chemosphere.2022.134705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Lake restoration (typically sediment dredging) commonly involves producing a new sediment-water interface (SWI). This study comprehensively investigated the migration and transformation of P during the formation of a new SWI under different dissolved oxygen (DO) levels in the overlying water, based on Fe/Al-rich sediment. The results suggest that DO had a profound effect on the 0-7 cm sediment layer properties and higher DO levels in the overlying water resulted in the diffusion of DO deeper into the sediments. Importantly, besides preventing Fe reductive dissolution and sulfides competition, higher DO levels inhibited the release of P from sediment by inducing the mitigation of P from the upper (0-3 cm) into the bottom (3-7 cm) sediments. The migration of P was found to be closely related to the interactions between organic matter and Al, Fe, and Ca in the sediment profile caused by higher DO levels in overlying water. Particularly, the decrease in organic matter in the upper sediments increased the mobility of Ca and promoted aging of Al and Fe, which increased the migration of the different forms of P. The increased organic matter in the bottom sediments retained the mobile Ca and increased amorphous Fe, which immobilized the P that had migrated from the upper sediments. These results demonstrate the relatively high mobility of P in the upper sediments and the importance of P immobilization capability of bottom sediments on regulating P release from SWI under higher DO levels in overlying water. Accordingly, measures for lake restoration with producing a new SWI were recommended to be applied in combination with P immobilization method to develop more feasible strategies.
Collapse
Affiliation(s)
- Zhanling Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huan Liu
- Yangtze Ecology and Environmental Co., Ltd, Wuhan, Hubei, 434000, PR China
| |
Collapse
|
14
|
Rocha MDJD, Lima Neto IE. Internal phosphorus loading and its driving factors in the dry period of Brazilian semiarid reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 312:114983. [PMID: 35390612 DOI: 10.1016/j.jenvman.2022.114983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/03/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the relationships between physical, limnological and climatic drivers with the internal total phosphorus (TP) loading produced over the dry period in 30 water supply reservoirs of the Brazilian semiarid. Improvements in the understanding of sedimentary TP fluxes in reservoirs of dryland regions are pressing as they usually have serious water quality related issues, remaining mostly eutrophic especially under frequent drought events. Gross daily fluxes and net seasonal average release rates were calculated from mass balance and regression equations considering water and sediment TP concentrations, anoxic duration, water temperature and fish contribution. Additionally, the ratio of wind speed to reservoir volume was proposed as a new surrogate and then applied as explanatory variable to predictive models. The results indicated TP release rates higher than reported for non-semiarid lakes/reservoirs with average gross fluxes ranging from 17.64 to 35.99 mg m-2 day-1. This may be attributed to the enriched sediments (1029.49 ± 552.49 mg kg-1) allied with warmer water temperature, high trophic state, and prolonged anoxic periods (average duration of about 60 days). The average release rates were negatively correlated with water transparency and water depth, and positively correlated with Chl-a, wind speed and trophic state. The release rates increased across the trophic gradient (p < 0.05), about 10-fold higher under hypertrophic conditions than in oligotrophic ones. As anoxia is linked with eutrophication, phosphorus release is more likely in eutrophic ecosystems. Regarding the new surrogate, a strong predictive ability for TP release (R2: 0.26-0.93) was observed. Similarly, the proposed models presented a physically consistent behavior with a stabilizing releasing pattern suggesting the achievement of equilibrium in nutrient exchange between sediment-water interface. This research advanced by combining and proposing methods to assess and quantify sedimentary fluxes in data-scarce regions balancing accuracy and transferability, in order to be replicable to other dryland environments globally.
Collapse
Affiliation(s)
- Maria de Jesus Delmiro Rocha
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, FC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, FC, Bl. 713, Center of Technology, Fortaleza, Ceará, Brazil.
| |
Collapse
|
15
|
Effect of grid-screen on bubble characteristics of vertically discharged bubble plumes. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Delmiro Rocha MDJ, Lima Neto IE. Phosphorus mass balance and input load estimation from the wet and dry periods in tropical semiarid reservoirs. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10027-10046. [PMID: 34510349 DOI: 10.1007/s11356-021-16251-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The dynamics of total phosphorus (TP) in 18 strategic reservoirs of the high-density reservoir network of the Brazilian semiarid was evaluated during the wet and dry periods for the past 12 years. Seasonal overlying concentrations presented no significant differences for about 90% of the reservoirs (p>0.05). This was attributed to a trade-off between the hydrological/limnological processes occurring in the two seasons. Then, a transient complete-mix mass balance model was applied with particular adaptations for the tropical semiarid reservoirs to estimate the TP load for each season. Because of the relatively well-mixed conditions and high hypolimnetic dissolved oxygen concentrations during the wet season, the wet load was assumed to represent the external TP load. On the other hand, because of the absence of reservoir inflow during the dry season, phosphorus release under anoxic sediment conditions and wind-induced resuspension under shallow water depths, the dry load was assumed to reflect the internal TP load. The maximum external loads were related to peak inflows, notably after drought periods. Consistently, the largest internal loads were obtained during the drought periods, when the reservoirs were shallower and more prone to phosphorus release and resuspension. By comparing the impact of the two input load types, the wet period load was predominant in 72% of the reservoirs. The areal phosphorus loads ranged from 0.66 to 7.29 gP m2 year-1, which were consistent with the literature, despite the very high density of reservoirs. Finally, power-law curves including data for all studied reservoirs were adjusted between the dry period load and volume, dry and wet period loads, wet period load and inflow, and total load and catchment area, resulting in satisfactory R2 (0.84-0.98).
Collapse
Affiliation(s)
- Maria de Jesus Delmiro Rocha
- Department of Hydraulic and Environmental Engineering, Center of Technology, Federal University of Ceará-UFC, Bl. 713, Fortaleza, Ceará, Brazil
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Center of Technology, Federal University of Ceará-UFC, Bl. 713, Fortaleza, Ceará, Brazil.
| |
Collapse
|
17
|
Kuster AC, Huser BJ, Thongdamrongtham S, Padungthon S, Junggoth R, Kuster AT. Drinking water treatment residual as a ballast to sink Microcystis cyanobacteria and inactivate phosphorus in tropical lake water. WATER RESEARCH 2021; 207:117792. [PMID: 34717209 DOI: 10.1016/j.watres.2021.117792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
The combination of a low dose of coagulant with a ballast that can inactive phosphorus (P) in lake sediment-a technique known as "flock and lock"-is one method for restoration of eutrophic lakes. The effectiveness of a drinking water treatment residual (DWTR) as a ballast in flock and lock was assessed using assays of eutrophic lake water from Thailand dominated by Microcystis aeruginosa cyanobacteria colonies by measuring changes in chlorophyll-a, pH, and zeta potential. P sorption isotherms were developed from long-term batch equilibrium experiments; desorption of nutrients and metals was assessed via leaching experiments; and morphological changes to cellular structure were assessed using scanning electron microscopy. Results showed that combining DWTR with a low dose of aluminum sulfate (0.6-4.0 mg Al/L) effectively sank 74-96% of Microcystis, with DWTR dose (50-400 mg/L), initial chlorophyll-a concentration (92-976 µg/L), pH (7.4-9.3), and alkalinity (99-108 ppm CaCO3) identified as factors significantly associated with sinking efficacy. P sorption capacity of the DWTR (7.12 mg/g) was significantly higher than a local soil (0.33 mg/g), enabling the DWTR to inactivate P in lake sediment. Desorption of Al, Fe, Ca and N from the DWTR was estimated to contribute to a marginal increase in concentrations of those compounds in the water column of a small shallow lake (1.2, 0.66, 53.4, and 0.07 µg/L, respectively) following a simulated application. Therefore, pre-treated DWTRs may be a viable alternative ballast in the flock and lock approach to lake restoration, supplementing or replacing modified local soils or lanthanum modified clays.
Collapse
Affiliation(s)
- Anthony C Kuster
- Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Brian J Huser
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Surapol Padungthon
- Environmental Engineering Program, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - Rittirong Junggoth
- Department of Environmental Health and Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anootnara T Kuster
- Department of Environmental Health and Occupational Health and Safety, Faculty of Public Health, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
18
|
Lei J, Lin J, Zhan Y, Zhang Z, Ma J. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113471. [PMID: 34358942 DOI: 10.1016/j.jenvman.2021.113471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The effectiveness and mechanism of aluminum/iron co-modified calcite (Al/Fe-CA) for the control of phosphorus (P) liberation from sediments was investigated. The results showed that Al/Fe-CA possessed good sorption performance for phosphate, and the maximum phosphate sorption capacity for Al/Fe-CA could reach 27.0 mg/g. The major mechanisms involved the surface adsorption of phosphate on calcite, the precipitation between phosphate and Ca2+ leached from calcite, and the ligand exchange between Al/Fe-bound hydroxyl groups and phosphate to form the Al-O-P and Fe-O-P inner-sphere complexes. The re-releasing risk of Al/Fe-CA-bound P under the circumstances of normal pH (5-9) and reducing environment was very low. Al/Fe-CA addition could significantly reduce the risk of P releasing from sediment to overlying water (OL-water), and the inactivation of mobile P, reactive soluble P (SRP) and diffusive gradient in thin-films (DGT)-labile P in sediment by Al/Fe-CA had a great part in the suppression of sediment-P liberation to OL-water by the Al/Fe-CA amendment. Al/Fe-CA capping and fabric-wrapped Al/Fe-CA capping both could greatly reduce the risk of P releasing from sediment into OL-water, and the formation of a static layer with low concentrations of SRP and DGT-labile P in the upper sediment was the key to sustaining a high P controlling efficiency. When the applied mode of Al/Fe-CA varied from capping to amendment, although the inactivation efficiency of DGT-labile P in the overlying water and upper sediment by Al/Fe-CA would decrease to a certain degree, the inactivation efficiency of DGT-labile P in the lower sediment by Al/Fe-CA would increase. Results of this study suggest that Al/Fe-CA has the high potential to be used as an active capping or amendment material for the management of internal P loading in surface water bodies.
Collapse
Affiliation(s)
- Jiajia Lei
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Jianwei Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China.
| | - Yanhui Zhan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, PR China
| | - Jiawen Ma
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, PR China
| |
Collapse
|
19
|
Rocha MDJD, Lima Neto IE. Modeling flow-related phosphorus inputs to tropical semiarid reservoirs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113123. [PMID: 34348431 DOI: 10.1016/j.jenvman.2021.113123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/07/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Hydrological data and total phosphorus (TP) concentration at reservoirs' outlet were combined in a transient complete-mix model to obtain mean input loads and inlet concentration-flow relationships. This approach was designed to investigate the issue of phosphorus pollution in semiarid regions with intermittent rivers. The methodology was applied for twenty reservoirs in the State of Ceará, Brazilian semiarid. The modeled TP loads correlated well (R2 = 0.74) with reference loads estimated from environmental inventories, with only 10% of underestimated results. The average input loads per unit area of the catchments ranged from about 4 to 40 kg km-2 yr-1, which were considerably lower than the national average of about 500 kg km-2 yr-1. This was attributed to lower precipitation indexes, intermittent river regime and a high-density reservoir network, peculiar of the Brazilian semiarid. Meanwhile, the input load per unit area of a small and highly populated urban catchment, with higher precipitation indexes and deficient sanitation was substantially higher (2626 kg km-2 yr-1). Moreover, the fitted TP concentration-flow relationships directly reflected different TP input sources: strong u-shaped behavior marked the curves of highly non-point source dominated catchments, whereas a dilution pattern prevailed in those with significant point source inputs. The model validation with measured riverine TP concentration reached a NSE of 0.63. However, peak values in TP concentration during low flow rates sensitively affected the fitting of the models. In spite of non-point source dominance in the catchments, some relationships presented a slight signal of this use type. The variation range of the fitting parameters in comparison with other studies, as well the expected behavior of the curves in light of land use characteristics, strongly support the methodology applied in this study. The proposed approach will potentially help address the TP issue in tropical semiarid regions. Furthermore, the paper presents a simple way to deal with the challenging lack of monitored data in such environments.
Collapse
Affiliation(s)
- Maria de Jesus Delmiro Rocha
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Block 713 - 1st Floor - Center of Technology, Fortaleza, Ceará, Brazil
| | - Iran Eduardo Lima Neto
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Block 713 - 1st Floor - Center of Technology, Fortaleza, Ceará, Brazil.
| |
Collapse
|