1
|
García-Garcinuño R, Marcé RM, Vallecillos L, Borrull F. Passive sampling of high production volume chemicals and polycyclic aromatic hydrocarbons in urban atmospheres near petrochemical sites: Uptake rate determination and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124697. [PMID: 39122175 DOI: 10.1016/j.envpol.2024.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study describes the use of passive sampling followed by pressurised liquid extraction and gas chromatography-mass spectrometry for monitoring high production volume chemicals (HPVCs), such as benzothiazoles, benzesulfonamides, phthalate esters (PAEs), organophosphate esters, ultraviolet stabilizers, and phenolic antioxidants and polycyclic aromatic hydrocarbons (PAHs) in urban atmospheres close to a petrochemical area. To obtain accurate results when applying passive sampling, the uptake rates of each target compound for the sampling time applied must be known. Firstly, passive sampling was calibrated for two months and uptake rates of HPVCs and PAHs in an urban atmosphere determined using active sampling as the reference method. The obtained results showed experimental diffusive uptake rates between 1.6 m3 day-1 and 27 m3 day-1 for 32 of the target compounds that will allow enable cost-effective long-term monitoring campaigns of HPVCs to be performed. Secondly, the experimentally obtained uptake rates were used to monitor the concentrations of HPVCs and PAHs at six urban sampling sites close to the two petrochemicals parks in Tarragona (Spain) during a period the two months. Regardless of the sampling campaign, PAEs and PAHs were the families of compounds found at the highest concentration levels, with a sum of their mean values of 23 ng m-3 and 20 ng m-3, respectively.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
2
|
Fernández-Arribas J, Callejas-Martos S, Balasch A, Moreno T, Eljarrat E. Simultaneous analysis of several plasticizer classes in different matrices by on-line turbulent flow chromatography-LC-MS/MS. Anal Bioanal Chem 2024:10.1007/s00216-024-05593-2. [PMID: 39425761 DOI: 10.1007/s00216-024-05593-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The development of methodologies for the determination of plasticizers is essential for assessing the environmental and human impact resulting from the use of plastics. A fast analytical method with on-line purification based on turbulent flow chromatography (TFC) coupled to tandem mass spectrometry (MS-MS) has been developed for the analysis of ten phthalates, four alternative plasticizers (including adipates and citrates), and 20 organophosphate esters (OPEs). The method has been validated for the determination of plasticizers across different matrices. Analytical parameters showed acceptable recoveries ranging between 50 and 125%, RSDs lower than 20%, and mLODs of 0.001-2.08 ng g-1 wet weight (ww), 0.002-0.30 ng g-1, and 0.001-0.93 ng m-3 for foodstuffs, face masks, and ambient air, respectively. These methodologies were applied to foodstuff samples purchased in grocery stores, reusable and self-filtering masks, and indoor air measured in different locations. Plasticizers were detected in all the analyzed samples, with values up to 22.0 μg g-1 ww, 6.78 μg g-1, and 572 ng m-3 for foodstuffs, face masks, and indoor air, respectively. The contribution of each family to the total plasticizer content varied between 1.3 and 87%, 0.5 and 98%, and 0.5 and 65% for phthalates, alternative plasticizers, and OPEs, respectively. These findings highlighted the need for analytical methodologies capable of simultaneously assessing a wide number of plasticizers with minimal extraction steps. This capability is crucial in order to obtain more conclusive insights into the impact of these pollutants on both the environment and human health, arising from different sources of exposure such as foodstuffs, plastic materials, and atmospheric air.
Collapse
Affiliation(s)
- Julio Fernández-Arribas
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Sandra Callejas-Martos
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Aleix Balasch
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Teresa Moreno
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ethel Eljarrat
- Institute of Environmental Assessment and Water Research (IDAEA)-CSIC, Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
3
|
Gómez Ó, Ramírez N, Vallecillos L, Borrull F. Determining personal exposure to high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) with silicone wristbands: A pilot study. ENVIRONMENTAL RESEARCH 2024; 263:120107. [PMID: 39368597 DOI: 10.1016/j.envres.2024.120107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
High production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) are semi-volatile organic compounds (semi-VOCs) of great environmental concern because of their presence worldwide and health problems resulting from long-term exposure to some of them. It is essential to have robust analytical methods to monitor the concentrations of these compounds not only in environmental samples but also individual exposure. In this pilot study we develop and validate a multiresidue analytical method based on ultrasound-assisted extraction and gas-chromatography mass spectrometry for the simultaneous determination of 56 semi-VOCs using silicone wristbands (SWBs) as personal passive samplers. The developed method provided recoveries between 43% and 114% on sampled SWBs and method detection and quantification limits in the range of 0.1-35 ng/g and 0.3-119 ng/g, respectively. A preliminary study was performed with a small group of adults living in the industrial city of Tarragona (north-eastern Spain) to evaluate the applicability of SWBs for monitoring individual exposure to the studied HPVCs and PAHs. Benzothiazoles, benzenesulfonamides, UV stabilisers and phenolic antioxidants were determined for the first time in SWBs. Phthalates (PAEs), stood out above the rest, accounting for 52% of the total concentrations. Diethylhexyl phthalate was the compound found at the highest concentrations with values between 1.1 and 82 μg/g. Carcinogenic and non-carcinogenic dermal risk assessment was performed for adults and considering two scenarios (low and high). PAHs were the compounds with the highest carcinogenic and non-carcinogenic dermal risk regardless of the exposure scenario. The second family of compounds that contributed the most to the total risk were PAEs but high punctual concentrations of these compounds caused significant differences between exposure scenarios.
Collapse
Affiliation(s)
- Óscar Gómez
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain; Universitat Rovira i Virgili, Department of Electrical and Automatic control Engineering, Sescelades Campus Building E4, Av. Països Catalans, 26, 43007, Tarragona, Spain
| | - Noelia Ramírez
- Institut d'Investigació Sanitària Pere Virgili, Excorxador, s/n, 43007, Tarragona, Spain; Universitat Rovira i Virgili, Paediatrics Research Unit, Nutrition & Human Development, Sescelades Campus Building E4, Països Catalans, 26, 43007, Tarragona, Spain
| | - Laura Vallecillos
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain.
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus Building N4, Marcel⋅lí Domigo, 1, 43007, Tarragona, Spain
| |
Collapse
|
4
|
Cao H, Xie Q, Luo P, Chen J, Xia K, Ma L, Chen D, Deng C, Wan Z. Di-(2-ethylhexyl) phthalate exposure induces premature testicular senescence by disrupting mitochondrial respiratory chain through STAT5B-mitoSTAT3 in Leydig cell. GeroScience 2024; 46:4373-4396. [PMID: 38499958 PMCID: PMC11336147 DOI: 10.1007/s11357-024-01119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a prevalent plasticizer, is known to have endocrine-disrupting effects on males and cause reproductive toxicity. There were causal effects of DEHP on testosterone levels in the real world by Mendelian randomization analysis. Exposure to DEHP during the preadult stage might lead to premature testicular senescence, but the mechanisms responsible for this have yet to be determined. In this study, we administered DEHP (300 mg/kg/day) to male C57BL/6 mice from postnatal days 21 to 49. The mice were kept for 6 months without DEHP. RNA sequencing was conducted on testicular tissue at PNM6. The results indicated that DEHP hindered testicular development, lowered serum testosterone levels in male mice, and induced premature testicular senescence. TM3 Leydig cells were exposed to 300 μM of mono(2-ethylhexyl) phthalate (MEHP), the bioactive metabolite of DEHP, for 72 h. The results also found that DEHP/MEHP induced senescence in vivo and in vitro. The mitochondrial respiratory chain was disrupted in Leydig cells. The expression and stability of STAT5B were elevated by MEHP treatment in TM3 cells. Furthermore, p-ERK1/2 was significantly decreased by STAT5B, and mitochondria-STAT3 (p-STAT3 ser727) was significantly decreased due to the decrease of p-ERK1/2. Additionally, the senescence level of TM3 cells was decreased and treated with 5 mM NAC for 1 h after MEHP treatment. In conclusion, these findings provided a novel mechanistic understanding of Leydig cells by disrupting the mitochondrial respiratory chain through STAT5B-mitoSTAT3.
Collapse
Affiliation(s)
- Haiming Cao
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- The Reproductive Andrology Clinic, the Seventh Affiliated Hospital of Sun Yat-Sen University, 628 Zhenyuan Road, 518000, Shenzhen, Guangdong, China
| | - Qigen Xie
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- The Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peng Luo
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jiaqi Chen
- The Urology Department, Affiliated Sanming First Hospital, Fujian Medical University, Sanming, 365000, Fujian, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Lin Ma
- The Reproductive Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, Guangdong, China
| | - Demeng Chen
- Translational Medicine Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chunhua Deng
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zi Wan
- The Andrology Department, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Pálešová N, Bláhová L, Janoš T, Řiháčková K, Pindur A, Šebejová L, Čupr P. Exposure to benzotriazoles and benzothiazoles in Czech male population and its associations with biomarkers of liver function, serum lipids and oxidative stress. Int Arch Occup Environ Health 2024; 97:523-536. [PMID: 38546760 PMCID: PMC11130049 DOI: 10.1007/s00420-024-02059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/22/2024] [Indexed: 05/28/2024]
Abstract
INTRODUCTION Benzotriazoles and benzothiazoles (BTs) are high-production volume chemicals as well as widely distributed emerging pollutants with potential health risk. However, information about human exposure to BTs and associated health outcomes is limited. OBJECTIVE We aimed to characterise exposure to BTs among Czech men, including possible occupational exposure among firefighters, its predictors, and its associations with liver function, serum lipids and oxidative stress. METHODS 165 participants (including 110 firefighters) provided urine and blood samples that were used to quantify the urinary levels of 8 BTs (high-performance liquid chromatography-tandem mass spectrometry), and 4 liver enzymes, cholesterol, low-density lipoprotein, and 8-hydroxy-2'-deoxyguanosine. Linear regression was used to assess associations with population characteristics and biomarkers of liver function, serum lipids and oxidative stress. Regression models were adjusted for potential confounding variables and false discovery rate procedure was applied to account for multiplicity. RESULTS The BTs ranged from undetected up to 46.8 ng/mL. 2-hydroxy-benzothiazole was the most predominant compound (detection frequency 83%; median 1.95 ng/mL). 1-methyl-benzotriazole (1M-BTR) was measured in human samples for the first time, with a detection frequency 77% and median 1.75 ng/mL. Professional firefighters had lower urinary 1M-BTR compared to non-firefighters. Urinary 1M-BTR was associated with levels of γ-glutamyl transferase (β = - 17.54%; 95% CI: - 26.127, - 7.962). CONCLUSION This is the first study to investigate BT exposure in Central Europe, including potentially exposed firefighters. The findings showed a high prevalence of BTs in the study population, the relevance of 1M-BTR as a new biomarker of exposure, and an urgent need for further research into associated adverse health outcomes.
Collapse
Affiliation(s)
- Nina Pálešová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tomáš Janoš
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Katarína Řiháčková
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aleš Pindur
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Training Centre of Fire Rescue Service, General Directorate of Fire Rescue Service of the Czech Republic, Ministry of the Interior, Trnkova 85, 628 00, Brno, Czech Republic
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Čupr
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
6
|
Mao W, Qu J, Liu H, Guo R, Liao K, Wu S, Hangbiao J, Hu Z. Associations between urinary concentrations of benzothiazole, benzotriazole, and their derivatives and lung cancer: A nested case-control study. ENVIRONMENTAL RESEARCH 2024; 251:118750. [PMID: 38522739 DOI: 10.1016/j.envres.2024.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Benzothiazole (BTH), benzotriazole (BTR), and their respective derivatives (BTHs and BTRs) are emerging environmental pollutants with widespread human exposure and oncogenic potential. Studies have demonstrated adverse effects of exposure to certain BTHs and BTRs on the respiratory system. However, no study has examined the associations between exposure to BTHs and BTRs and lung cancer risk. We aimed to examine the associations between urinary concentrations of BTHs and BTRs and the risk of lung cancer in the general population from Quzhou, China. We conducted a nested case-control study in an ongoing prospective Quzhou Environmental Exposure and Human Health (QEEHH) cohort, involving 20, 694 participants who provided urine samples during April 2019-July 2020. With monthly follow-up until November 2022, 212 lung cancer cases were recruited and 1:1 matched with healthy controls based on age and sex. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) of lung cancer risk associated with urinary BTHs and BTRs concentrations using conditional logistic regression models after controlling for potential covariates. We also examined effect modification by several covariates, including sex, socioeconomic status, smoking status, alcohol consumption, and dietary habit. Creatinine-corrected urinary BTH and 2-hydroxy-benzothiazole (2-OH-BTH) levels were significantly associated with the risk of lung cancer, after adjusting for a variety of covariates. Participants in the highest quartile of BTH had a 95% higher risk of lung cancer, compared with those in the lowest quartile (adjusted OR = 1.95, 95% CI: 1.08-3.49; p for trend = 0.01). Participants with higher levels of urinary 2-OH-BTH had an 83% higher risk of lung cancer than those with lower levels (adjusted OR = 1.83, 95% CI: 1.16-2.88; p for trend = 0.01). Exposure to elevated levels of BTH and 2-OH-BTH may be associated with an increased risk of lung cancer. These associations were not modified by socio-demographic characteristics.
Collapse
Affiliation(s)
- Weili Mao
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China
| | - Jianli Qu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Huimeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Kaizhen Liao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, 710061, PR China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi 710061, PR China
| | - Jin Hangbiao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China.
| | - Zefu Hu
- Department of Pharmacy, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, PR China.
| |
Collapse
|
7
|
García-Garcinuño R, Vallecillos L, Marcé RM, Borrull F. Occurrence of high production volume chemicals and polycyclic aromatic hydrocarbons in urban sites close to industrial areas. Human exposure and risk assessment. CHEMOSPHERE 2024; 351:141167. [PMID: 38218240 DOI: 10.1016/j.chemosphere.2024.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Evaluating the occurrence of high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) in the air is important because they carry a carcinogenic risk and can lead to respiratory or endocrine problems. Examples of HPVCs are organophosphate esters, benzosulfonamides, benzothiazoles, phthalate esters (PAEs), phenolic antioxidants and ultraviolet stabilizers. In this paper we develop a multi-residue method for determining HPVCs and PAHs in air samples via pressurized liquid extraction followed by gas chromatography-mass spectrometry. Air samples were collected by active sampling with high volume samplers using quartz fiber filter for the particulate matter (PM10) and polyurethane foams for gas phase. The compounds found at the highest concentrations were PAEs, with a concentration of up to 24 ng m-3 of DEHP in gas phase and up to 109 ng m-3 of DEHA in PM10. Non-carcinogenic risk assessment results ranged from 9.7E-05 to 9.5E-03 for most of the compounds studied. On the other hand, the results for carcinogenic risk showed that PAHs made the highest contribution.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
8
|
Zhang X, Diao Z, Ma H, Xie X, Wang Y, Liu X, Yuan X, Zhu F. Multi-class organic pollutants in PM 2.5 in mixed area of Shanghai: Levels, sources and health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166352. [PMID: 37598962 DOI: 10.1016/j.scitotenv.2023.166352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The occurrence of 25 multi-class pollutants comprising phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), and synthetic musks (SMs) were studied in PM2.5 samples collected at an industrial/commercial/residential/traffic mixed area in Shanghai during four seasons. During the whole period, a slight exceedance of the PM2.5 annual limit was observed, with an average of 36.8 μg/m3, and PAEs were the most predominant, accounting for >70 % of the studied organic pollutants in PM2.5, followed by PAHs and SMs. Statistically significant differences were observed for the concentrations of PM2.5, PAEs, PAHs, and SMs in winter and summer. This seasonal variation could be derived from anthropogenic activities and atmospheric dynamics. Principal component analysis (PCA) and PAHs ratios suggested a mixed source mainly derived from vehicle emissions and industrial processes. Moreover, gaseous pollutants were also accounted for, indicating the emission of PAHs might accompany the NO2 emission process. Finally, inhalation of PM2.5-bound organic pollutants for carcinogenic and non-carcinogenic risks were estimated as average values for each season, showing outside the safe levels in autumn and winter in some cases, suggesting that new policies should be to developed to reduce their emissions and protect human health in this area.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zishan Diao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Hui Ma
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China; Environmental Monitoring Station of Pudong New District, Shanghai 200135, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Ying Wang
- Minhang Environmental Monitoring Station of Shanghai, Shanghai 201199, PR China
| | - Xinyu Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
9
|
Khare A, Jadhao P, Vaidya AN, Kumar AR. Benzotriazole UV stabilizers (BUVs) as an emerging contaminant of concern: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121370-121392. [PMID: 37996596 DOI: 10.1007/s11356-023-30567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
Benzotriazole UV stabilizers (BUVs) are a group of industrial chemicals used in various consumer products and industrial applications. Due to its large-scale production and use, BUVs have been detected in all environmental matrices. Humans are exposed to BUVs from environmental media, food, personal care products (PCPs), and consumer products. As a result, BUVs are detected in human breast milk, attracting researchers and regulatory bodies worldwide. BUVs such as UV-328 exhibit the characteristics of persistent organic pollutants (POPs); hence, it has been recently listed under Stockholm Convention POP list. The current review focuses on the occurrence of BUVs in the environment with emphasis on persistency, bioaccumulation, and toxicity (PBT). Scarcity of scientific data on BUVs' properties, environmental occurrence, exposure levels, and effects on organisms poses significant challenges to the policymakers and regulatory bodies in adopting management strategies. The need for a science-based integrated framework for risk assessment and management of BUVs is recommended. Considering the potential threat of BUVs to human health and the environment, it is recommended that BUVs should be taken as a subject of priority research. Studies on the degradation and transformation route of BUVs need to be explored for the sound management of BUVs.
Collapse
Affiliation(s)
- Ankur Khare
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Jadhao
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Sánchez-Piñero J, Novo-Quiza N, Moreda-Piñeiro J, Muniategui-Lorenzo S, López-Mahía P. A multi-residue method for the analysis of organic pollutants released from atmospheric PM 2.5 in simulated biological fluids: Inhalation bioaccessibility and bioavailability estimation. Anal Chim Acta 2023; 1280:341862. [PMID: 37858566 DOI: 10.1016/j.aca.2023.341862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND In recent decades, there has been a growing interest within the scientific community regarding the study of the fraction that could be released in simulated biological fluids to estimate in vitro bioaccessibility and bioavailability of compounds. Concerning particulate matter (PM), studies were essentially focused on metal (oid)s probably due to more complex methodologies needed for organic compounds, requiring extraction and pre-concentration steps from simulated fluids, followed by chromatographic analysis. Thus, the development of a simple and sensitive methodology for the analysis of multi-class organic compounds released in different inhalation simulated fluids would represent a great contribution to the field. RESULTS In this work, a methodology for the analysis of 49 organic pollutants, including 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 11 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols released in simulated fluids from PM2.5 samples was developed. After a physiologically based extraction test (PBET) by using artificial lysosomal fluid (ALF) and a simulated body fluid (SBF, filling a dialysis membrane) to obtain in vitro inhalation bioaccessible and bioavailable fractions, respectively; compounds were determined by a vortex-assisted liquid-liquid extraction (VALLE) and a subsequent analysis by programmed temperature vaporization-gas chromatography-tandem mass spectrometry (PTV-GC-MS/MS). Experimental conditions concerning VALLE extraction (extraction time and amount of NaCl (g)) were optimized by using a central composite design (CCD), best MS/MS transitions were selected and matrix-matched calibration combined with use of labelled subrogate standards provided high sensitivity, minimization of matrix effects and recovering losses compensation. SIGNIFICANCE The successful validation results obtained for most of the compounds demonstrated the effectiveness of the proposed methodology for the analysis of multi-class organic pollutants released in ALF and SBF for inhalation bioaccessibility and bioavailability assessment, respectively. Furthermore, applicability of the method was proved by analysing 20 p.m.2.5 samples, being the proposed in vitro PBET dialyzability approach for assessing organic pollutant's inhalation bioavailability applied to PM2.5 samples for the first time.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain.
| | - Natalia Novo-Quiza
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña, Grupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA), Department of Chemistry, Faculty of Sciences, Campus de A Coruña, s/n. 15071, A Coruña, Spain
| |
Collapse
|
11
|
Khare A, Jadhao P, Kawre S, Kanade G, Patil M, Vaidya AN, Kumar AR. Occurrence, spatio-temporal variation and ecological risk assessment of benzotriazole ultraviolet stabilizers (BUVs) in water and sediment of rivers in central India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163381. [PMID: 37030358 DOI: 10.1016/j.scitotenv.2023.163381] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
Occurrence of benzotriazole ultraviolet stabilizers (BUVs) in different environmental matrices has attracted researchers and regulatory agencies worldwide due to its persistency, bioaccumulative and toxic properties. Environmental occurrence of BUVs in Indian freshwater is lacking. The present study analyzed six targeted BUVs in surface water and sediments of three rivers of Central India. BUVs were determined in pre- and post-monsoon seasons to reveal their concentration, spatio-temporal distribution and probable ecological risks. Results indicated that total concentration of BUVs (ƩBUVs) ranged from ND to 42.88 μg/L in water, and ND to 165.26 ng/g in sediments with UV-329 as the predominant BUV in surface water and sediments during pre- and post-monsoon seasons. Surface water samples from Pili River, and sediment of Nag River accounted for maximum BUVs concentration. Partitioning coefficient results confirmed the effective transfer of BUVs from overlaying water to sediments. The observed concentration of BUVs in water and sediments posed low ecological risk to planktons. Untreated municipal discharges and poor waste management practices including dumping of wastes might be the sources of BUVs in water bodies.
Collapse
Affiliation(s)
- Ankur Khare
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pradip Jadhao
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shatabdi Kawre
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India
| | - Gajanan Kanade
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahendra Patil
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
12
|
Castro Ó, Borrull S, Riu J, Gimeno-Monforte S, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ, Pocurull E, Borrull F. Seafood consumption as a source of exposure to high production volume chemicals: A comparison between Catalonia and the Canary Islands. Food Chem Toxicol 2023; 175:113729. [PMID: 36925040 DOI: 10.1016/j.fct.2023.113729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Seafood plays an important role in diet because of its health benefits. However, the fact that chemical compounds such as high production volume chemicals may be present in seafood means that its consumption can be a potential risk for population. To assess the occurrence of HPVs and estimate the exposure and risk associated with their consumption, specimens of the most consumed seafood species in Catalonia and the Canary Islands, Spain, were collected and analysed. Results showed higher levels of HPVs in samples from Catalonia and a prevalence of phthalate esters and benzenesulfonamides over the other target compounds in samples from both locations. Multivariate analysis showed spatial differences between the mean concentration profiles of HPVs for the samples from Catalonia and the Canary Islands. Exposures were higher for the samples from Catalonia, although the intake of HPVs via seafood was not of any real concern in either of the locations.
Collapse
Affiliation(s)
- Óscar Castro
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Sílvia Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Jordi Riu
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Sandra Gimeno-Monforte
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Sarah Montesdeoca-Esponda
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Zoraida Sosa-Ferrera
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Jose Juan Santana-Rodríguez
- Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain
| | - Eva Pocurull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain.
| | - Francesc Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| |
Collapse
|
13
|
Castro Ó, Borrull S, Borrull F, Pocurull E. High production volume chemicals in the most consumed seafood species in Tarragona area (Spain): Occurrence, exposure, and risk assessment. Food Chem Toxicol 2023; 173:113625. [PMID: 36682418 DOI: 10.1016/j.fct.2023.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023]
Abstract
Seafood consumption has become a potential exposure route towards high production volume chemicals (HPVs) due to the pathway of these compounds reaching the aquatic environment via industrial and domestic discharges. The present study focuses on the determination of phthalate esters (PAEs), organophosphate esters (OPEs), benzothiazoles (BTs), benzotriazoles (BTRs) and benzenesulfonamides (BSAs) in the ten most consumed fish species in Catalonia. A total of 120 commercially available seafood specimens were purchased throughout February 2019-February 2020 in three different stores (supermarket, local market, and local fishmonger) of the city of Tarragona, Spain, to cover the most typical places where seafood can be obtained. ΣOPEs, ΣBTs, ΣBSAs and ΣPAEs concentrations ranged between 5.99 and 139.45 ng g-1 w.w., 8.41-54.08 ng g-1 w.w., 8.38-304.47 ng g-1 w.w and 2.86-323.80 ng g-1 w.w., respectively. BTRs were not detected in any of the samples. PAEs and BSAs had similar contributions which combined represented nearly the 70% of detected compounds and sardine resulted as the species with the higher HPVs mean concentration. No considerable threat was posed due to the individual intake of these compounds via seafood consumption.
Collapse
Affiliation(s)
- Óscar Castro
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Sílvia Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain.
| | - Eva Pocurull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domigo s/n, 43007, Tarragona, Spain
| |
Collapse
|
14
|
Determination of benzothiazoles, benzotriazoles and benzenesulfonamides in seafood using quick, easy, cheap, effective, rugged and safe extraction followed by gas chromatography - tandem mass spectrometry: Method development and risk assessment. J Chromatogr A 2023; 1691:463841. [PMID: 36739837 DOI: 10.1016/j.chroma.2023.463841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
The common use of benzothiazoles, benzotriazoles and benzenesulfonamides has led to widespread ubiquity in several environmental matrices. Their occurrence in edible fish could represent an additional exposure route for the population. The present study aims to develop a method for the simultaneous determination of these three compound families in seafood samples. Based on QuEChERS extraction, different salt combinations and clean-up strategies have been evaluated to achieve the highest recoveries while reducing the matrix effect in low and high lipidic content species. The best results were obtained with the original method salts and the lipid-selective push-through clean-up, which combined with gas chromatography-tandem mass spectrometry led to recoveries between 50 and 112% with negligible matrix effects and method detection limits between 0.15-9.50 ng g-1 dw. The application of the method to commercially available samples confirmed the presence of BTs as well as BSAs, with the latter being determined in seafood for the first time. Exposure and risk assessment calculations indicated a minor risk for the population when consuming fish.
Collapse
|
15
|
Maceira A, Borrull F, Marcé RM. Occurrence of organic contaminants bonded to the particulate matter from outdoor air influenced by industrial activities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76644-76667. [PMID: 36169846 DOI: 10.1007/s11356-022-23103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
This paper discusses the occurrence of organic contaminants bonded to particulate matter (PM) in ambient air. We describe the presence and concentration levels of contaminants mainly reported in atmospheres close to factories or at locations influenced by them, and the relationship between factory emissions and the type of organic contaminants found in PM samples from the surrounding air. Many organic contaminants have been found in these types of samples, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polychlorinated biphenyls (PCBs). Their sources, fates and distributions in the ambient atmosphere are therefore well known. However, in addition to these most studied compounds, others are also of concern nowadays due to their detection and toxic effects on the environment. The continuous updating of regulations on these contaminants and the appearance of new air pollutants make it important to be aware of their occurrence. This will help to either establish new guidelines for the newer contaminants or reassess existing limitations for known ones. Moreover, if we know their occurrence, we can analyse their sources, destinations and distributions in the outdoor air.
Collapse
Affiliation(s)
- Alba Maceira
- Department of Analytical Chemistry and Organic Chemistry, Faculty of Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Faculty of Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, 43007, Tarragona, Spain.
| | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Faculty of Chemistry, Campus Sescelades, Universitat Rovira i Virgili, Marcel∙lí Domingo s/n, 43007, Tarragona, Spain
| |
Collapse
|
16
|
Sánchez-Piñero J, Novo-Quiza N, Moreda-Piñeiro J, Turnes-Carou I, Muniategui-Lorenzo S, López-Mahía P. Multi-class organic pollutants in atmospheric particulate matter (PM 2.5) from a Southwestern Europe industrial area: Levels, sources and human health risk. ENVIRONMENTAL RESEARCH 2022; 214:114195. [PMID: 36030919 DOI: 10.1016/j.envres.2022.114195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The occurrence of 50 multi-class pollutants comprising 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 12 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols was studied in atmospheric particulate matter (PM2.5) samples collected at an industrial area focused on automotive manufacturing located at the Southwestern Atlantic European region (Vigo city, Spain) during 1-year period. Among all quantitated pollutants in PM2.5 samples, bisphenol A (BPA) was the most predominant with an average concentration of 6180 pg m-3, followed by PAHs comprising benzo(b+j)fluoranthene (BbF + BjF) and benzo(g,h,i)perylene (BghiP), accounting for 546 pg m-3 and 413 pg m-3 respectively. In addition, two OPFRs concerning tris(chloropropyl) phosphate (TCPP) and triphenyl phosphine oxide (TPPO) were the next following the concentration order, accounting for 411 pg m-3 and 367 pg m-3 respectively; being butyl benzyl phthalate (BBP) the most profuse PAE (56.1 pg m-3 by average). High relative standard deviations (RSDs) were observed during the whole sampling period, while statistically significant differences were only observed for PAHs concentrations during cold and warm seasons. Furthermore, some water-soluble ions and metal(oid)s were analysed in PM2.5 samples to be used as PM source tracers, whose concentrations were quite below the target levels set in the current legislation. Data obtained from principal component analysis (PCA) and PAHs molecular indices suggested a pyrogenic and petrogenic origin for PAHs, whereas occurrence of the remaining compounds seems to be attributed to resources used in the automotive industrial activity settled in the sampling area. Moreover, although a substantial anthropogenic source to PM2.5 in the area was observed, marine and soil resuspension contributions were also accounted. Finally, carcinogenic and non-carcinogenic risks posed by PM2.5-bound pollutants inhalation were assessed, being both averages within the safe level considering the whole period.
Collapse
Affiliation(s)
- Joel Sánchez-Piñero
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain.
| | - Natalia Novo-Quiza
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Jorge Moreda-Piñeiro
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Isabel Turnes-Carou
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Soledad Muniategui-Lorenzo
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| | - Purificación López-Mahía
- University of A Coruña. Grupo Química Analítica Aplicada (QANAP), Instituto Universitario de Medio Ambiente (IUMA), Department of Chemistry. Faculty of Sciences. Campus de A Coruña, s/n. 15071, A Coruña, Spain
| |
Collapse
|
17
|
Núñez M, Fontanals N, Borrull F, Marcé RM. Multiresidue analytical method for high production volume chemicals in dust samples, occurrence and human exposure assessment. CHEMOSPHERE 2022; 301:134639. [PMID: 35447216 DOI: 10.1016/j.chemosphere.2022.134639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
A multiresidue analytical method based on pressurised liquid extraction and gas-chromatography mass spectrometry was developed to determine 22 compounds belonging to different chemical families in indoor dust.: Seven organophosphate esters, six phthalate esters, three benzotriazoles, five benzothiazoles and four benzenesulfonamides were included in the present study, all of them belonging to the category of high production volume chemicals (HPVCs). Apparent recoveries ranged between 45% and 123% and method quantification limits ranged from 0.03 μg/g to 3.8 μg/g. The occurrence of the selected HPVCs was evaluated in indoor dust from different locations in the Tarragona (Catalonia, Spain) region. Two benzenesulfonamides, ortho-toluenesulfonamide and para-toluenesulfonamide, were detected in dust samples for the first time. Phthalate esters and organophosphate esters were the most abundant compounds found, and di-(2-ethylhexyl) phthalate (DEHP) was determined at the highest concentrations. With the data obtained, human exposure was assessed by calculating the estimated daily intakes (EDI) via ingestion and dermal contact. Non-carcinogenic and carcinogenic risk assessments found no risks in any of the scenarios tested, which included two age classes (children and adults) and two possible exposure scenarios (median and worst-case scenario), except for the evaluation of carcinogen risk due to ingestion of DEHP in the worst-case scenario.
Collapse
Affiliation(s)
- Mireia Núñez
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo s/n, Building N4, Tarragona, 43007, Spain
| | - Núria Fontanals
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo s/n, Building N4, Tarragona, 43007, Spain
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo s/n, Building N4, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Sescelades Campus, Marcel·lí Domingo s/n, Building N4, Tarragona, 43007, Spain.
| |
Collapse
|
18
|
High production volume chemicals in seafood: A review of analytical methods, occurrence and population risk. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Huang YQ, Zeng Y, Wang T, Chen SJ, Guan YF, Mai BX. PM 2.5-bound phthalates and phthalate substitutes in a megacity of southern China: spatioseasonal variations, source apportionment, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37737-37747. [PMID: 35075556 DOI: 10.1007/s11356-022-18784-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Plasticizers are ubiquitous pollutants in the environment, whereas few efforts have been made to elucidate their emission sources in the atmosphere. In this research, the spatioseasonal variations and sources of particle-bound (PM2.5) phthalates (PAEs) and their substitutes (APs) at residential sites in seven districts and at four potential point-source sites across a megacity in South China were revealed. The total concentrations of PAEs ranging from 10.7 to 528 ng/m3 were substantially higher than those of APs (1.45.58.5 ng/m3). Significant spatial variations in the concentrations of the pollutants were observed, which were generally higher at the sites with intensive industrial activities and the point-source sites. Most atmospheric plasticizer levels peaked in summer, probably due to the temperature-promoted volatilization. Seven sources of plasticizers were identified by the positive matrix factorization (PMF) model. The sources in less industrialized districts are mainly associated with domestic and commercial emissions and with industry in the industrialized districts. Specifically, plastics and personal care products together contributed 60% of the plasticizers in the atmosphere of this city, followed by solvents and polyester industry sources. The incremental lifetime cancer risk of inhalation exposure to bis(2-ethylhexyl) phthalate in the study city is below the acceptable level. Relatively higher risks were found for residents living around sites with intensive industrial activities and around wastewater treatment plant.
Collapse
Affiliation(s)
- Yu-Qi Huang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yuan Zeng
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Tao Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - She-Jun Chen
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Yu-Feng Guan
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
20
|
Sánchez-Piñero J, Moreda-Piñeiro J, Moscoso-Pérez C, FernándezGonzález V, Prada-Rodríguez D, López-Mahía P. Development and validation of a multi-pollutant method for the analysis of polycyclic aromatic hydrocarbons, synthetic musk compounds and plasticizers in atmospheric particulate matter (PM2.5). TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
21
|
Naccarato A, Tassone A, Martino M, Elliani R, Sprovieri F, Pirrone N, Tagarelli A. An innovative green protocol for the quantification of benzothiazoles, benzotriazoles and benzosulfonamides in PM 10 using microwave-assisted extraction coupled with solid-phase microextraction gas chromatography tandem-mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117487. [PMID: 34090069 DOI: 10.1016/j.envpol.2021.117487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Benzothiazoles (BTHs), benzotriazoles (BTRs), and benzenesulfonamides (BSAs) are chemicals used in several industrial and household applications. Despite these compounds are emerging pollutants, there is still a lack of information about their presence in outdoor air samples. In this paper, we developed a new method for the quantification of BTHs, BTRs, and BSAs in airborne particulate matter (PM10). The extraction of fourteen analytes from PM10 was accomplished by microwave-assisted extraction (MAE) using an environmentally friendly mixture of water and ethanol. SPME was used to analyze the target compounds from the MAE extract by gas chromatography-tandem mass spectrometry (SPME-GC-MS/MS), eliminating additional sample clean-up steps. The best working conditions for MAE and SPME were examined multivariately by experimental design techniques. The target compounds were quantified in selected reaction monitoring acquisition mode. The proposed method was carefully validated, and the achieved results were satisfactory in terms of linearity, lower limit of quantification (picograms per cubic meter), intra- and inter-day accuracy (81-118% and 82-114%, respectively), and precision (repeatability and reproducibility in the range 2.3-17% and 7.4-19%, respectively). The application in a real monitoring campaign showed that the developed protocol is a valuable and eco-friendly alternative to the methods proposed so far.
Collapse
Affiliation(s)
- Attilio Naccarato
- CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, I-87036, Arcavacata di Rende, CS, Italy
| | - Antonella Tassone
- CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, I-87036, Arcavacata di Rende, CS, Italy
| | - Maria Martino
- CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, I-87036, Arcavacata di Rende, CS, Italy
| | - Rosangela Elliani
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende, CS, Italy
| | - Francesca Sprovieri
- CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, I-87036, Arcavacata di Rende, CS, Italy
| | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, Division of Rende, UNICAL-Polifunzionale, I-87036, Arcavacata di Rende, CS, Italy
| | - Antonio Tagarelli
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/C, I-87036, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
22
|
Wang J, Zhao T, Chen J, Kang L, Wei Y, Wu Y, Han L, Shen L, Long C, Wu S, Wei G. Multiple transcriptomic profiling: p53 signaling pathway is involved in DEHP-induced prepubertal testicular injury via promoting cell apoptosis and inhibiting cell proliferation of Leydig cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124316. [PMID: 33162236 DOI: 10.1016/j.jhazmat.2020.124316] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely-used plasticizer and has long been recognized as an endocrine-disrupting chemical with male reproductive toxicities. DEHP exposure at the prepubertal stage may lead to extensive testicular injury. However, the underlying mechanisms remain to be elucidated. In the present study, we gavaged male C57BL/6 mice with different concentrations of DEHP (0, 250, and 500 mg/kg-bw·d) from postnatal day 22-35, and exposed TM3 Leydig cells with 0, 100, 200, 300, and 400 μM of MEHP (bioactive metabolite of DEHP) for 12-48 h. RNA sequencing was performed both in testicular tissue and TM3 cells. The results showed that DEHP disrupts testicular development and reduces serum testosterone levels in male prepubertal mice. Bioinformatic analysis and experimental verification have revealed that DEHP/MEHP induces cell cycle arrest in TM3 cells and increases apoptosis both in vivo and in vitro. Furthermore, the p53 signaling pathway was found to be activated upon DEHP/MEHP treatment. The inhibition of p53 by pifithrin-α significantly reduced MEHP-induced injuries in TM3 cells. Cumulatively, these findings revealed the involvement of the p53 signaling pathway in DEHP-induced prepubertal testicular injury by promoting cell apoptosis and inhibiting cell proliferation of Leydig cells.
Collapse
Affiliation(s)
- Junke Wang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Tianxin Zhao
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Jiadong Chen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lian Kang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yuexin Wei
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Yuhao Wu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lindong Han
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing 400014, PR China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, PR China; National Clinical Research Center for Child Health and Disorders, Chongqing 400014, PR China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, PR China; Chongqing Key Laboratory of Pediatrics, Chongqing 400014, PR China
| |
Collapse
|