1
|
Leiva NV, Montenegro D, Orrego R, Vidal R, González MT. Tolerance of free-living larval stage of a parasite from coastal mining areas in northern Humboldt Current to copper pollution at low and high temperatures. PLoS One 2024; 19:e0310473. [PMID: 39499694 PMCID: PMC11537404 DOI: 10.1371/journal.pone.0310473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/01/2024] [Indexed: 11/07/2024] Open
Abstract
Metal pollution is a worldwide problem and one of the greatest threats to ecosystem integrity due to its toxicity, persistence, and bioaccumulation in biological systems. Anthropogenic pollution impacts marine organisms and host-parasite dynamics, with the northern Chilean coast experiencing elevated copper levels in marine waters and sediments due to mining activities. In this study, we assessed the effects of exposure to copper concentrations at low and high-water temperatures on the survival and longevity of the marine parasite Himasthla sp. cercariae (Trematoda: Digenea) using the snail Echinolittorina peruviana as its first intermediate host. Snails were collected from intertidal rocky pools in northern Chile (23°S). To assess parasite survival and longevity, cercariae were collected from a pool of infected snails, and their mortality was recorded every 6 hours until all cercariae were dead. In a preliminary experiment conducted at 19°C, cercariae were exposed to different copper concentrations (0.2, 1.5, 3.0, and 6.0 mg/L) for 78 hours. Cercariae showed tolerance to copper. However, at the higher copper concentration (6 mg/L), survival was negatively impacted (50%) at 54 hours. In contrast, at the lower concentration (0.2 mg/L) and in the control group, cercariae sustained a 73-90% survival rate even after 54 hours. Based on these findings, we conducted subsequent experiments involving two copper treatments (0.2 and 3.0 mg/L) and two temperatures (14 and 22°C). Survival and longevity were significantly higher at lower temperature and copper concentration (14°C and 0.2 mg/L). Conversely, at higher temperature and copper concentration (22°C and 3 mg/L), survival and longevity decreased to only 66 hours. Our results show that Himasthla sp. cercariae tolerated most copper concentrations, with vulnerability observed primarily in high water temperatures, indicating an adverse effect on cercariae performance. This study contributes valuable insights into how parasites respond to environmental pollution, in marine ecosystems influenced by anthropogenic activities.
Collapse
Affiliation(s)
- Natalia V. Leiva
- Programa Doctorado en Ciencias Aplicadas Mención Sistemas Acuáticos, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Naturales “Alexander von Humboldt”, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Diana Montenegro
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - Rodrigo Orrego
- Instituto de Ciencias Naturales “Alexander von Humboldt”, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Rodrigo Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - M. Teresa González
- Instituto de Ciencias Naturales “Alexander von Humboldt”, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
2
|
He J, Ye Q, Pan S, Guo Y, Chu Z, Gao Y, Dai X, Zhao S, Zhao B, Ruan Q. Transcriptional dynamic changes in energy metabolism, protein synthesis and cell cycle regulation reveal the biological adaptation mechanisms of juvenile Acrossocheilus wenchowensis under acute temperature changes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116835. [PMID: 39106571 DOI: 10.1016/j.ecoenv.2024.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
In recent years, frequent acute temperature changes have posed a serious threat to the physiology and survival of fish. This study utilized RNA-Seq technology to analyze the transcriptional dynamics in the muscle tissues of Acrossocheilus wenchowensis under various acute temperature conditions (16◦C, 20◦C, 24◦C, 28◦C and 32◦C). Through comprehensive analysis, we identified 11509 differentially expressed genes (DEGs), a gene set (profiles 19) that was significantly up-regulated with increasing temperature, and two weighted gene co-expression network analysis (WGCNA) modules that were significantly correlated with acute temperature changes. Furthermore, we identified 28 transcription factors that are pivotal in oxidative stress and energy metabolism under acute temperature changes. Our results showed that, compared to the control group (24°C), KEGG functional enrichment analysis revealed significant enrichment of DEGs in the cell cycle, DNA replication, and p53 signaling pathway, with an overall trend of suppressed expression. This indicates that maintaining cell stability and reducing cell damage is an effective adaptive mechanism for A. wenchowensis to cope with acute temperature changes. Through STEM analysis and the black WGCNA module associated with high-temperature stress, we identified significant up-regulation of pathways and hub genes related to energy metabolism including oxidative phosphorylation, TCA cycle, purine metabolism, and glutathione metabolism, as well as the central roles of signal transduction pathways such as MAPK signaling pathway and AMPK signaling pathway, which synergistically regulate energy production. Under acute low-temperature stress, the turquoise WGCNA module highlighted significant up-regulation of hub genes associated with Ribosomal and Spliceosomal pathways related to protein synthesis and processing, as well as activation of calcium signaling pathways, which plays an important role in maintaining cellular function during low-temperature adaptation. These findings provide a critical theoretical and molecular basis for the adaptation of eurythermal fish to rapid temperature changes.
Collapse
Affiliation(s)
- Jinghong He
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Qiaodie Ye
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Shiyuan Pan
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Yongyao Guo
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Zhangjie Chu
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Yang Gao
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Xiaoxin Dai
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Shanshan Zhao
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China
| | - Bo Zhao
- College of Fisheries, Zhejiang Ocean University, Zhoushang 316022, China.
| | - Qiumei Ruan
- Shaoxing City Shangyu District Aquaculture Technology Extension Center, Shaoxing 312300, China.
| |
Collapse
|
3
|
Zebral YD, Righi BDP, Anni ISA, Escarrone ALV, Guillante T, Vieira CED, Costa PG, Bianchini A. Organic contamination and multi-biomarker assessment in watersheds of the southern Brazil: an integrated approach using fish from the Astyanax genus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30543-30554. [PMID: 38607488 DOI: 10.1007/s11356-024-33181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
We aimed to examine the responses of pollution biomarkers in feral fish from Astyanax genus collected at three hydrographic regions in southern Brazil and the capacity of these tools to differentiate between various levels of contamination. To achieve this, levels of organochlorine pesticides (liver), as well as the biomarkers AChE (muscle and brain), TBARS (liver), and EROD (liver) were assessed. Collections were conducted in four municipalities (Alegrete, Caraá, Lavras, and Santa Vitória) during 1 year, encompassing winter and summer. Fish from Alegrete were the most contaminated overall, but animals sampled in Caraá, and Lavras also displayed elevated levels of current-use pesticides. Elevated levels of endosulfans, DDTs, HCHs, and current-use pesticides were accompanied by elevated levels of TBARS in the liver. Conversely, fish from Santa Vitória exhibited the highest levels of PAHs, accompanied by elevated levels of EROD in the liver and reduced levels of AChE in muscle and brain. TBARS proved to be a reliable biomarker for assessing impacts arising from pesticide accumulation, while EROD and AChE served as valuable indicators of impacts resulting from PAHs accumulation. Ultimately, the results obtained in this study demonstrate the reliable use of the proposed biomarkers for tracking biological impacts stemming from aquatic pollution using feral Astyanax as biomonitoring species.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Bruna Duarte Pereira Righi
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Iuri Salim Abou Anni
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ana Laura Venquiaruti Escarrone
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Tainá Guillante
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Carlos Eduardo Delfino Vieira
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Patrícia Gomes Costa
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Adalto Bianchini
- Postgraduate Program in Physiological Sciences, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
4
|
Kim MJ, Heo M, Kim SJ, Song HE, Lee H, Kim NE, Shin H, Do AR, Kim J, Cho YM, Hong YS, Kim WJ, Won S, Yoo HJ. Associations between plasma metabolites and heavy metal exposure in residents of environmentally polluted areas. ENVIRONMENT INTERNATIONAL 2024; 187:108709. [PMID: 38723457 DOI: 10.1016/j.envint.2024.108709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Heavy metals are commonly released into the environment through industrial processes such as mining and refining. The rapid industrialization that occurred in South Korea during the 1960s and 1970s contributed significantly to the economy of the country; however, the associated mining and refining led to considerable environmental pollution, and although mining is now in decline in South Korea, the detrimental effects on residents inhabiting the surrounding areas remain. The bioaccumulation of toxic heavy metals leads to metabolic alterations in human homeostasis, with disruptions in this balance leading to various health issues. This study used metabolomics to explore metabolomic alterations in the plasma samples of residents living in mining and refining areas. The results showed significant increases in metabolites involved in glycolysis and the surrounding metabolic pathways, such as glucose-6-phosphate, phosphoenolpyruvate, lactate, and inosine monophosphate, in those inhabiting polluted areas. An investigation of the associations between metabolites and blood clinical parameters through meet-in-the-middle analysis indicated that female residents were more affected by heavy metal exposure, resulting in more metabolomic alterations. For women, inhabiting the abandoned mine area, metabolites in the glycolysis and pentose phosphate pathways, such as ribose-5-phosphate and 3-phosphoglycerate, have shown a negative correlation with albumin and calcium. Finally, Mendelian randomization(MR) was used to determine the causal effects of these heavy metal exposure-related metabolites on heavy metal exposure-related clinical parameters. Metabolite biomarkers could provide insights into altered metabolic pathways related to exposure to toxic heavy metals and improve our understanding of the molecular mechanisms underlying the health effects of toxic heavy metal exposure.
Collapse
Affiliation(s)
- Mi Jeong Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Min Heo
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Su Jung Kim
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Ha Eun Song
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Hyoyeong Lee
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea
| | - Nam-Eun Kim
- Department of Public Health Sciences, Seoul National University, Seoul, South Korea
| | - Hyeongyu Shin
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Ah Ra Do
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; RexSoft Corp, Seoul, South Korea
| | - Jeeyoung Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Yong Min Cho
- Department of Nano Chemical and Biological Engineering, Seokyeong University, Seoul, Republic of Korea
| | - Young-Seoub Hong
- Department of Preventive Medicine, College of Medicine, Dong-A University, 32, Daesin Gongwon-ro, Seo-gu, Busan 49201, Korea
| | - Woo Jin Kim
- Department of Internal Medicine and Environmental Health Center, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sungho Won
- Interdisciplinary Program of Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, South Korea; Department of Public Health Sciences, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea; RexSoft Corp, Seoul, South Korea.
| | - Hyun Ju Yoo
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, Seoul, South Korea; Department of Digital Medicine, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
5
|
Liu XH, Pang X, Jin L, Pu DY, Wang ZJ, Zhang YG. Exposure to acute waterborne cadmium caused severe damage on lipid metabolism of freshwater fish, revealed by nuclear lipid droplet deposition in hepatocytes of rare minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106433. [PMID: 36841070 DOI: 10.1016/j.aquatox.2023.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is a widely distributed aquatic toxic heavy metal with the potential to disrupt fish metabolism; however, more research is needed to clarify the underlying mechanisms. In the present study, rare minnows (Gobiocypris rarus) were used to detect the effects of cadmium on freshwater fish lipid metabolism and its underlying mechanism by histopathological observation, measurement of serum and liver biochemical indexes, and analysis of gene expression in terms of lipid oxidation, synthesis and transport. Here, severe damage, such as cytoplasmic lipid droplet (LD) accumulation, ectopic deposition of LDs, and the appearance of nuclear LDs (nLDs), was detected after exposure to 2.0 mg/L or higher concentrations (2.5 and 2.8 mg/L CdCl2) for 96 h. Other damage included abnormal increases in rough endoplasmic reticulum (RER) lamellae in a fingerprint or concentric circle pattern and necrosis of hepatocytes, and which was observed in the livers of fish exposed to 2.0 mg/L CdCl2.. Both hepatic and serum lipids, such as triglycerides and total cholesterol, were significantly increased after exposure to 2.0 mg/L CdCl2, as was serum lipase (LPS). Hepatic lipase and lipoprotein lipase remained unchanged, in accordance with the unchanged hepatic mRNA transcripts of PPARɑ. Furthermore, the mRNA transcripts of both SCD and SQLE were significantly decreased. Moreover, hepatic and serum low-density and high-density lipoprotein cholesterol showed significant changes, which were accompanied by a significant increase and decrease in hepatic APOAI and APOB100 mRNA levels, respectively. All the results indicate the presence of severe damage to hepatic lipid metabolism and that disrupted lipid transport may play a key role in the accumulation of hepatic LDs. In addition, the hepatic nLDs of nonmammalian vertebrates and their location across the nuclear envelope are intriguing, suggesting that large-size nLDs are a common marker for severe liver damage.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Xu Pang
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
6
|
de Mendonça Francisco C, Pavanin LA, Morelli S, Bravo JVM, Pereira BB. Using native fish in eco-genotoxic assessment of heavy metal contamination pollution arising from nearby large Brazilian rivers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:74-85. [PMID: 36628475 DOI: 10.1080/15287394.2022.2164754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Worldwide water quality has declined progressively due to continuous pollution of aquatic resources by agrochemicals in particular heavy metals. Fish genotoxicity biomarkers are vital to identify and complement chemical parameters for determining environmental risk of adverse effects. Therefore, it was of interest to examine the eco-genotoxicity attributed to water pollution over different stream sections of Brazilian rivers by using Cichlasoma paranaense (Teleostei: Cichlidae), a neotropical freshwater cichlid fish, as a biological model. Chemical analysis of water and sediments collected from different Brazilian rivers sites demonstrated contamination by metals. Cichlasoma paranaense were collected at a reference location (a permanent water preservation area), maintained in the lab under standard conditions (controlled temperature, lighting, daily feeding, and constant aeration) and exposed to environmental samples of water and sediments. Subsequently, micronucleus (MN) and nuclear abnormalities (NA) frequencies were assessed in erythrocytes obtained from the caudal and gill regions. The highest concentrations of Cu were found in samples from river sites with forest fragmentation attributed to intensive agriculture practices. Similarly, exposure of fish to samples from agricultural areas induced significantly higher number of genotoxic effects. There was no marked difference between the tissues (tail and gill) regarding the observed frequencies of MN and NA. Thus C. paranaense fish served as a reliable model for detecting genotoxic effects, especially when water samples were collected near the discharge of agrochemicals. Evidence indicates that this method be considered for other global river sites which are also exposed to agrochemicals discharges containing Cu.
Collapse
Affiliation(s)
- Carine de Mendonça Francisco
- Institute of Biotechnology, Umuarama Campus, Avenida Pará, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Luiz Alfredo Pavanin
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Sandra Morelli
- Institute of Biotechnology, Umuarama Campus, Avenida Pará, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - João Vitor M Bravo
- Institute of Geography, Santa Mônica Campus, Avenida João Naves de Ávila, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Boscolli Barbosa Pereira
- Institute of Biotechnology, Umuarama Campus, Avenida Pará, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- Institute of Geography, Santa Mônica Campus, Avenida João Naves de Ávila, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
7
|
Pillet M, Muttin F, Marengo M, Fullgrabe L, Huet V, Lejeune P, Thomas H. First characterization of seasonal variations in biomarkers baseline in Patella sp. from Mediterranean ports (North Corsica, France). MARINE POLLUTION BULLETIN 2023; 187:114524. [PMID: 36580838 DOI: 10.1016/j.marpolbul.2022.114524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In port areas the identification of contamination sources is necessary for an efficient management. Biomonitoring provides information on the environmental impact of the pollutants. It is often difficult to differentiate the natural variations of biomarkers from those induced by pollution. The present study aims to define a baseline level for biochemical biomarkers in limpet (Patella sp.) collected in four North-Corsica port areas. Reference data for five biomarkers (superoxide dismutase, glutathione S-transferase, laccase, pyruvate kinase and acetylcholinesterase) were described in a model, using length of the limpet shell, temperature and salinity. The measured biomarkers responses on potentially polluted sites usually fell within the range of the expected values for an unaffected site, suggesting that a main part of the variations is explained by environmental conditions. Not included in the model, biological factors (sex, development stage, etc.), annual variation or other physico-chemical parameter could explain the variations in the model.
Collapse
Affiliation(s)
- Marion Pillet
- LIttoral ENvironnement et Sociétés (UMR7266), La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France.
| | - Frédéric Muttin
- Ecole d'ingénieurs généralistes (EIGSI), 26 rue François de Vaux de Foletier, F-17041 La Rochelle Cedex 01, France
| | - Michel Marengo
- STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France
| | - Lovina Fullgrabe
- STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France
| | - Valérie Huet
- LIttoral ENvironnement et Sociétés (UMR7266), La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Pierre Lejeune
- STAtion de REcherches Sous-marines et Océanographiques, Punta Revellata, BP33, 20260 Calvi, France
| | - Hélène Thomas
- LIttoral ENvironnement et Sociétés (UMR7266), La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
8
|
Brix KV, De Boeck G, Baken S, Fort DJ. Adverse Outcome Pathways for Chronic Copper Toxicity to Fish and Amphibians. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2911-2927. [PMID: 36148934 PMCID: PMC9828004 DOI: 10.1002/etc.5483] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/22/2022] [Accepted: 09/15/2022] [Indexed: 05/28/2023]
Abstract
In the present review, we synthesize information on the mechanisms of chronic copper (Cu) toxicity using an adverse outcome pathway framework and identify three primary pathways for chronic Cu toxicity: disruption of sodium homeostasis, effects on bioenergetics, and oxidative stress. Unlike acute Cu toxicity, disruption of sodium homeostasis is not a driving mechanism of chronic toxicity, but compensatory responses in this pathway contribute to effects on organism bioenergetics. Effects on bioenergetics clearly contribute to chronic Cu toxicity with impacts at multiple lower levels of biological organization. However, quantitatively translating these impacts into effects on apical endpoints such as growth, amphibian metamorphosis, and reproduction remains elusive and requires further study. Copper-induced oxidative stress occurs in most tissues of aquatic vertebrates and is clearly a significant driver of chronic Cu toxicity. Although antioxidant responses and capacities differ among tissues, there is no clear indication that specific tissues are more sensitive than others to oxidative stress. Oxidative stress leads to increased apoptosis and cellular damage in multiple tissues, including some that contribute to bioenergetic effects. This also includes oxidative damage to tissues involved in neuroendocrine axes and this damage likely alters the normal function of these tissues. Importantly, Cu-induced changes in hormone concentrations and gene expression in endocrine-mediated pathways such as reproductive steroidogenesis and amphibian metamorphosis are likely the result of oxidative stress-induced tissue damage and not endocrine disruption. Overall, we conclude that oxidative stress is likely the primary driver of chronic Cu toxicity in aquatic vertebrates, with bioenergetic effects and compensatory response to disruption of sodium homeostasis contributing to some degree to observed effects on apical endpoints. Environ Toxicol Chem 2022;41:2911-2927. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V. Brix
- EcoToxMiamiFloridaUSA
- Rosenstiel School of Marine, Atmospheric, and Earth Sciences, Department of Marine Biology and EcologyUniversity of MiamiMiamiFloridaUSA
| | | | | | | |
Collapse
|
9
|
Park K, Kwak IS. Environmental co-exposure of high temperature and Cu induce hormonal disturbance of cortisol signaling and altered responses of cellular defense genes in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156555. [PMID: 35750185 DOI: 10.1016/j.scitotenv.2022.156555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/29/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Global warming is causing a continuous increase in environmental temperatures, which simultaneously activates toxic environmental stresses, such as heavy metal exposure, in aquatic ecosystems. The present study aimed at evaluating the effects of Cu toxicity along with increased temperature during zebrafish embryogenesis. Decreased survival rates were observed following combined exposure to high temperature and Cu. Heart rates of zebrafish embryos were significantly increased only during heat stress. An abnormal morphology with curved body shape was induced by exposure to a combination of Cu and heat stress. Furthermore, heat stress also triggered Cu-induced intracellular reactive oxygen species (ROS) production, with upregulation of superoxide dismutase (SOD) and glutathione s-transferase (GST) expression, and cell death with modified expression of p53 and B-cell lymphoma-2 (Bcl-2) in zebrafish embryos. Finally, increased cortisol levels and altered expression of cortisol-signaling genes were observed following exposure to Cu and high temperatures. These results highlight that realistic exposure to combined stressors induces developmental disturbances via stress-induced responses involving oxidative stress and cell death as well as transcriptional alterations leading to cortisol signaling in fish.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
10
|
Vieira CED, Marques JA, da Silva NG, Bevitório LZ, Zebral YD, Maraschi AC, Costa SR, Costa PG, Damasceno EM, Pirovani JCM, do Vale-Oliveira M, Souza MM, de Martinez Gaspar Martins C, Bianchini A, Sandrini JZ. Ecotoxicological impacts of the Fundão dam failure in freshwater fish community: Metal bioaccumulation, biochemical, genetic and histopathological effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154878. [PMID: 35364171 DOI: 10.1016/j.scitotenv.2022.154878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the ecotoxicological impacts of the Fundão dam rupture, one of the major environmental disaster that occurred in Brazil and in the world mining industry history, through multi-biomarkers responses and metals bioaccumulation in the fish community of different trophic levels. Specimens of the fishes (omnivorous/herbivorous and carnivorous) were collected along the Doce River channel and its affluent Guandú River, and in different lakes and coastal lagoons adjacent to the river channel, in the Espirito Santo State, Southeast of Brazil. Four sampling collections were carried out over two years (2018 to 2020, during dry and rainy seasons). For both trophic groups the biomarkers responses indicated physiological alterations related to metals exposure and showed strong seasonal variations. The principal component analysis and integrated biomarker response index showed that DNA damage and lipid peroxidation were more associated with dry season 2 (Sep/Oct 2019) and the oxidative damage in proteins, metallothioneins concentration and the activity of superoxide dismutase in the gills showed a greater association with rainy season 2 (Jan/Feb 2020). On the other hand, the enzymes of energy metabolism, catalase and histological damage in the liver and the gills, were more associated with the dry and rainy campaigns of the first year of monitoring. The multivariate approach also suggested a temporal intensification in the bioaccumulation of metals and biological effects in the lacustrine environments. Thus, these results demonstrate that the release of mineral residues from the rupture of the Fundão mine dam affects the health status of the fish from the Doce River basin, provoking metals bioaccumulation, hepatic and branchial damage in the fish besides inducing of enzyme activity related to metal contamination, even four years after the rupture.
Collapse
Affiliation(s)
- Carlos Eduardo Delfino Vieira
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil.
| | - Joseane Aparecida Marques
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Niumaique Gonçalves da Silva
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Lorena Ziviani Bevitório
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Anieli Cristina Maraschi
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Simone Rutz Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Patricia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Eduardo Medeiros Damasceno
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Juliana Castro Monteiro Pirovani
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Maysa do Vale-Oliveira
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil; Centro Universitário Norte do Espírito Santo, Universidade Federal do Espírito Santo - CEUNES/UFES, Rod. Governador Mário Covas, Km 60, Litorâneo, São Mateus, ES, Brazil
| | - Marta Marques Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Av. Itália, s/n, Carreiros, Rio Grande, RS, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, Brazil
| |
Collapse
|
11
|
Chen Y, Cheng B, Liu Y, Bai Y, Yang X, Xu S. Metabolic responses of golden trout (Oncorhynchus mykiss aguabonita) after acute exposure to waterborne copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106236. [PMID: 35842982 DOI: 10.1016/j.aquatox.2022.106236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Despite the broad knowledge of copper-induced stress and toxicity, data on the physiological responses to acute copper exposure and the correlation of those activities to a generalized stress response are still limited. The present study aimed to assess the physiological responses of golden trout to overcome copper stress at concentrations of 60 µg/L and 120 µg/L after 96 h, respectively. The activities of glucose-6-phosphate dehydrogenase (G6PD) phosphoenolpyruvate carboxykinase (PEPCK) and NADPH/NADP+ ratio were significantly increased, and metabolites including glucose 6-phosphate, fructose 1-phosphate and fatty acids significantly accumulated in fish liver, indicating that gluconeogenesis, the pentose-phosphate pathway, as well as alteration of the membrane fatty acid composition were activated to serve as a defense mechanism against 60 µg/L of copper after 96 h. After exposure to 120 µg/L of copper for 96 h, the NAD+ and ATP contents, the activities of enzymes in the glycolytic pathway (phosphofructokinase, PFK and pyruvate kinase, PK) and mitochondrial respiratory chain complex I decreased significantly in fish liver. In addition, carbohydrates and MDA accumulated in golden trout after 120 µg/L copper treatment. These results indicated that 120 µg/L of copper exposure may induce a metabolic stress in golden trout after 96 h. The multi-marker approach allows us to reach a greater understanding of the effects of copper on physiological responses of golden trout.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, PR China
| | - Yang Liu
- College of Eco-Environmental Engineering, Qinghai University, Xining 810016, PR China
| | - Yucen Bai
- China Rural Technology Development Center, No.54 Sanlihe Road, Xicheng District, Beijing 100045, PR China.
| | - Xiaofei Yang
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shaogang Xu
- Beijing Key Laboratory of Fishery Biotechnology, Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China.
| |
Collapse
|
12
|
Resende AC, Mauro Carneiro Pereira D, Cristina Schleger I, Dmengeon Pedreiro de Souza MR, Alvez Neundorf AK, Romão S, Herrerias T, Donatti L. Effects of heat shock on energy metabolism and antioxidant defence in a tropical fish species Psalidodon bifasciatus. JOURNAL OF FISH BIOLOGY 2022; 100:1245-1263. [PMID: 35266159 DOI: 10.1111/jfb.15036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Predictions about global warming have raised interest in assessing whether ectothermic organisms will be able to adapt to these changes. Understanding the physiological mechanisms and metabolic adjustment capacity of fish subjected to heat stress can provide subsidies that may contribute to decision-making in relation to ecosystems and organisms subjected to global climate change. This study investigated the antioxidant defence system and energy metabolism of carbohydrate and protein responses in the gill, liver and kidney tissues of Psalidodon bifasciatus (Garavello & Sampaio 2010), a Brazilian freshwater fish used in aquaculture and in biological studies, following exposure to heat shock at 31°C for 2, 6, 12, 24 and 48 h. The fish presented signs of stress in all tissues tested, as evidenced by increased lipid peroxidation concentration at 2 h and phosphofructokinase, hexokinase and malate dehydrogenase activity at 48 h in the gills; increased glutathione-S-transferase activity at 12 h, citrate synthase activity at 24 h and concentration of reduced glutathione (GSH) concentration at 12 and 48 h in the liver; and through increased activity of superoxide dismutase at 48 h, glutathione reductase at 24 h, glucose-6-phosphate dehydrogenase at 48 h and concentration of GSH at 24 h in the kidney. In the kidneys, changes in the antioxidant system were more prominent, whereas in the gills, there were greater changes in the carbohydrate metabolism. These results indicated the importance of glycolysis and aerobic metabolism in the gills, aerobic metabolism in the liver and pentose-phosphate pathway in the kidneys during homeostasis. The biomarker response was tissue specific, with the greatest number of biomarkers altered in the gills, followed by those in the kidneys and liver.
Collapse
Affiliation(s)
- Anna Carolina Resende
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| | | | - Ieda Cristina Schleger
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
| | | | | | - Silvia Romão
- Laranjeiras do Sul, Universidade Federal da Fronteira Sul, Curitiba, Brazil
| | - Tatiana Herrerias
- Department of Health Promotion, Uniguairacá University Center, Curitiba, Brazil
| | - Lucélia Donatti
- Adaptive Biology Laboratory, Department of Cell Biology, Federal University of Paraná, Curitiba, Brazil
- Postgraduate Program on Ecology and Conservation, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
13
|
Ding R, Li M, Zou Y, Wang Y, Yan C, Zhang H, Wu R, Wu J. Effect of normal and strict anaerobic fermentation on physicochemical quality and metabolomics of yogurt. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Zebral YD, Costa PG, de Souza MM, Bianchini A. Avian blood and feathers as biological tools to track impacts from trace-metals: Bioaccumulation data from the biggest environmental disaster in Brazilian history. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151077. [PMID: 34678360 DOI: 10.1016/j.scitotenv.2021.151077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The Mariana's dam collapse was the worst environmental disaster in Brazilian history and one of the biggest worldwide. This perverse disaster resulted in the release of a contaminated mud tsunami that greatly impacted both aquatic and terrestrial biota. The aim of this study was to track environmental impacts resulting from Mariana's disaster using trace-element accumulation in avian blood and feathers as monitoring tool. For this, animals were collected at Doce River mouth (Regência), origin of the contaminated mud, and at southern (Aracruz) and northern (São Mateus) coastal areas. There were two sampling events (2018-2019), one during the winter period (first collection) and another during the summer period (second collection). Trace-element assessed were As, Cd, Cr, Cu, Fe, Pb, Hg, Mn and Zn. Findings show that inorganic contamination in birds followed a strong spatial and temporal behavior. In terms of time patterns, blood and feather contamination levels were markedly elevated in samples from the first collection event in comparison to the second. In terms of space, bioaccumulation was greater in Doce River mouth (Regência) and southern area (Aracruz). Additionally, levels found for Pb, Hg, As and Cd in birds from the first expedition were above proposed threshold levels, indicating possible health impacts. Finally, it is concluded that avian from areas impacted by Mariana's disaster still presents elevated levels of inorganic contamination even after 5 years following the event. Additionally, local climatic factors might pose as major drivers for bioaccumulation patterns in these animals, resulting in marked spatial and temporal fluctuations.
Collapse
Affiliation(s)
- Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900 Rio Grande, RS, Brazil.
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900 Rio Grande, RS, Brazil
| | - Marta Marques de Souza
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900 Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900 Rio Grande, RS, Brazil
| |
Collapse
|
15
|
Pereira Righi BD, Abujamara LD, Barcarolli IF, Jorge MB, Zebral YD, Costa PG, Dos Reis Martinez CB, Bianchini A. Response of biomarkers to metals, hydrocarbons and organochlorine pesticides contamination in crabs (Callinectes ornatus and C. bocourti) from two tropical estuaries (São José and São Marcos bays) of the Maranhão State (northeastern Brazil). CHEMOSPHERE 2022; 288:132649. [PMID: 34699884 DOI: 10.1016/j.chemosphere.2021.132649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Response of biomarkers to chemical contamination was evaluated in crabs of the Callinectes genus (Callinectes ornatus and C. bocourti) from two tropical estuaries (São José and São Marcos bays) of the Maranhão State (northeastern Brazil). Biomarkers evaluated included hepatopancreatic metallothionein-like proteins (MTLP) and lipid peroxidation (LPO), as well as muscle acetylcholinesterase (AChE). Tissue concentrations of metals (pereiopod muscle and hepatopancreas), hydrocarbons (hepatopancreas) and organochlorine pesticides (hepatopancreas) were also evaluated. Crab samples were collected in three sites of each estuary (São Marcos Bay and São José Bay). Sampling was performed in August/2012 (dry season), January/2013 (rainy season), August/2013 (dry season), and January/2014 (rainy season). Concentrations of chemical contaminants and responses of biomarkers showed significant spatial (São Marcos Bay and São José Bay) and/or seasonal (dry and rainy seasons) and annual (2012-2014) variability. However, a general higher Zn concentration was observed in hepatopancreas of crabs from São José Bay. In turn, a general higher Cd concentration paralleled by oxidative damage (LPO) was observed in hepatopancreas of crabs from São Marcos Bay. As expected, these findings support the idea that this bay is more intensively or chronically impacted by industrial activities while the São José Bay is likely more affected by domestic activities. Interestingly, LPO level in crab hepatopancreas showed to be the most reliable and adequate biomarker to distinguish the two bays.
Collapse
Affiliation(s)
- Bruna Duarte Pereira Righi
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Laís Donini Abujamara
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Indianara Fernanda Barcarolli
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Marianna Basso Jorge
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Patrícia Gomes Costa
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina - UEL, Campus Universitário - Jardim Universitário, Londrina, PR, 86051-990, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas - Fisiologia Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, Km 8, Rio Grande, RS, 96203-900, Brazil.
| |
Collapse
|
16
|
Borges VD, Zebral YD, Costa PG, da Silva Fonseca J, Klein RD, Bianchini A. Metal Accumulation and Ion Regulation in the Fish Hyphessobrycon luetkenii Living in a Site Chronically Contaminated by Copper: Insights from Translocation Experiments. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:62-71. [PMID: 34664084 DOI: 10.1007/s00244-021-00895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Fish living in the João Dias creek (southern Brazil) have to deal with trace-metal contamination in the long-term basis, as this aquatic environment has been historically impacted by copper mining activities. In order to survive in this harsh environment, the local biota had to develop adaptations related to pollution tolerance. The aim of this study was to test if biochemical mechanisms related to osmoregulation were among these adaptations, using translocation experiments. Water ionic and trace-metal compositions were measured in a nonmetal impacted site (NMIS) and in a metal impacted site (MIS) of this creek. Also, whole-body metal accumulation, ion concentration and branchial enzyme activity (Na,K-ATPase and carbonic anhydrase) were evaluated in Hyphessobrycon luetkenii. In both NMIS and MIS, fish were collected and immediately stored, kept caged or translocated from sites. The result shows that waterborne Cu was 3.4-fold higher at the MIS. Accordingly, animals that had contact with this site showed elevated whole-body Cu levels. Moreover, both translocated groups showed elevated Na,K-ATPase activity. Additionally, fish translocated from the NMIS to the MIS showed lower carbonic anhydrase activity. These findings indicate that H. luetkenii chronically or acutely exposed to naturally elevated waterborne Cu showed a rapid Cu bioaccumulation but was unable to readily excrete it. Moreover, classic Cu osmoregulatory toxicity related to Na,K-ATPase inhibition was not observed. Conversely, impacts in ammonia excretion related to carbonic anhydrase inhibition may have occurred.
Collapse
Affiliation(s)
- Vinícius Dias Borges
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Roberta Daniele Klein
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96.203-900, Rio Grande, RS, Brazil.
| |
Collapse
|
17
|
Ren X, Huang X, Wu Q, Tan L, Fu C, Chen Y, Meng X. Nanoscale metal organic frameworks inhibition of pyruvate kinase of M2. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
da Silva Fonseca J, Zebral YD, Bianchini A. Metabolic status of the coral Mussismilia harttii in field conditions and the effects of copper exposure in vitro. Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108924. [PMID: 33122134 DOI: 10.1016/j.cbpc.2020.108924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
It is widely known that metals can alter enzyme functioning, however, little is known about the mechanisms of metal toxicity in energy metabolism enzymes of corals. Thus, the present study had two objectives: firstly, we evaluated the activity of eight metabolic enzymes of the coral Mussismilia harttii to clarify metabolic functioning under field conditions. After that, we investigated the in vitro effect of copper (Cu) exposure in the activity of an enzyme representative of each metabolism stage. We evaluated enzymes involved in glycolysis (hexokinase, HK; phosphofructokinase, PFK; pyruvate kinase, PK and lactate dehydrogenase, LDH), Krebs cycle (citrate synthase, CS and isocitrate dehydrogenase, IDH), electron transport chain (electron transport system activity, ETS) and pentose phosphate pathway (glucose-6-phosphate dehydrogenase, G6PDH). The in vitro tests were performed through contamination of the reaction medium using Cu concentrations of 0, 1.4, 3.7 and 14.2 μg L-1. The results showed that M. harttii has elevated activity of HK, PK and CS in field conditions compared to the activity of other energy metabolism enzymes evaluated. Moreover, lower activities of LDH and ETS in exposed samples were observed. In conclusion, in field conditions this species has elevated aerobic metabolism and glucose may be an important energetic fuel. Also, exposure to Cu in vitro caused inhibition of LDH and ETS by direct binding.
Collapse
Affiliation(s)
- Juliana da Silva Fonseca
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Rio Grande, RS 96203-900, Brazil
| | - Yuri Dornelles Zebral
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Rio Grande, RS 96203-900, Brazil
| | - Adalto Bianchini
- Instituto Coral Vivo, Rua dos Coqueiros, Parque Yaya, Santa Cruz Cabrália, BA 45807-000, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, Rio Grande, RS 96203-900, Brazil.
| |
Collapse
|