1
|
Song Y, Liu Z, Zhang Q. Engineering the future: Unveiling novel paths in heavy metal wastewater remediation with advanced carbon-based nanomaterials - Beyond performance comparison, tackling challenges, and exploring opportunities. CHEMOSPHERE 2024; 366:143477. [PMID: 39374670 DOI: 10.1016/j.chemosphere.2024.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
This review addresses the pressing issue of heavy metal pollution in water, specifically focusing on the application of adsorption technology utilizing carbon materials such as biochar, carbon nanotubes, graphene, and carbon quantum dots. Utilizing bibliometric analysis with VOSviewer based on Web of Science core dataset, this study identifies research hotspots related to carbon-based materials in heavy metal applications over the past decade. However, existing literature still lacks sufficient comparative analysis of the potential of carbon-based materials' structural characteristics and inherent advantages in heavy metal applications. This review strategically addresses this gap, offering a comprehensive comparative analysis of these four materials from an engineering application perspective. It offers a thorough evaluation of their suitability for various water treatment applications, providing a detailed examination of their advantages and limitations in heavy metal application. Additionally, the review provides insights into performance comparisons, addresses challenges, and explores emerging opportunities in this field. Insights into potential application fields based on structural characteristics and inherent advantages are presented. This unique focus on a comprehensive comparative analysis distinguishes the article, offering a nuanced perspective on the strengths and future possibilities of carbon materials in tackling the global challenge of heavy metal pollution in water.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhanqi Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
2
|
Keneshbekova A, Smagulova G, Kaidar B, Imash A, Ilyanov A, Kazhdanbekov R, Yensep E, Lesbayev A. MXene/Carbon Nanocomposites for Water Treatment. MEMBRANES 2024; 14:184. [PMID: 39330525 PMCID: PMC11434601 DOI: 10.3390/membranes14090184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
One of the most critical problems faced by modern civilization is the depletion of freshwater resources due to their continuous consumption and contamination with different organic and inorganic pollutants. This paper considers the potential of already discovered MXenes in combination with carbon nanomaterials to address this problem. MXene appears to be a highly promising candidate for water purification due to its large surface area and electrochemical activity. However, the problems of swelling, stability, high cost, and scalability need to be overcome. The synthesis methods for MXene and its composites with graphene oxide, carbon nanotubes, carbon nanofibers, and cellulose nanofibers, along with their structure, properties, and mechanisms for removing various pollutants from water, are described. This review discusses the synthesis methods, properties, and mechanisms of water purification using MXene and its composites. It also explores the fundamental aspects of MXene/carbon nanocomposites in various forms, such as membranes, aerogels, and textiles. A comparative analysis of the latest research on this topic shows the progress in this field and the limitations for the practical application of MXene/carbon nanocomposites to solve the problem of drinking water scarcity. Consequently, this review demonstrates the relevance and promise of the material and underscores the importance of further research and development of MXene/carbon nanocomposites to provide effective water treatment solutions.
Collapse
Affiliation(s)
- Aruzhan Keneshbekova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
| | - Gaukhar Smagulova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Bayan Kaidar
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Aigerim Imash
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Akram Ilyanov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Ramazan Kazhdanbekov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Eleonora Yensep
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Aidos Lesbayev
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| |
Collapse
|
3
|
Ismail UM, Vohra MS, Onaizi SA. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. ENVIRONMENTAL RESEARCH 2024; 251:118562. [PMID: 38447605 DOI: 10.1016/j.envres.2024.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Increased levels of heavy metals (HMs) in aquatic environments poses serious health and ecological concerns. Hence, several approaches have been proposed to eliminate/reduce the levels of HMs before the discharge/reuse of HMs-contaminated waters. Adsorption is one of the most attractive processes for water decontamination; however, the efficiency of this process greatly depends on the choice of adsorbent. Therefore, the key aim of this article is to review the progress in the development and application of different classes of conventional and emerging adsorbents for the abatement of HMs from contaminated waters. Adsorbents that are based on activated carbon, natural materials, microbial, clay minerals, layered double hydroxides (LDHs), nano-zerovalent iron (nZVI), graphene, carbon nanotubes (CNTs), metal organic frameworks (MOFs), and zeolitic imidazolate frameworks (ZIFs) are critically reviewed, with more emphasis on the last four adsorbents and their nanocomposites since they have the potential to significantly boost the HMs removal efficiency from contaminated waters. Furthermore, the optimal process conditions to achieve efficient performance are discussed. Additionally, adsorption isotherm, kinetics, thermodynamics, mechanisms, and effects of varying adsorption process parameters have been introduced. Moreover, heavy metal removal driven by other processes such as oxidation, reduction, and precipitation that might concurrently occur in parallel with adsorption have been reviewed. The application of adsorption for the treatment of real wastewater has been also reviewed. Finally, challenges, limitations and potential areas for improvements in the adsorptive removal of HMs from contaminated waters are identified and discussed. Thus, this article serves as a comprehensive reference for the recent developments in the field of adsorptive removal of heavy metals from wastewater. The proposed future research work at the end of this review could help in addressing some of the key limitations facing this technology, and create a platform for boosting the efficiency of the adsorptive removal of heavy metals.
Collapse
Affiliation(s)
- Usman M Ismail
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| | - Muhammad S Vohra
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
4
|
Gayathri J, Roniboss A, Sivalingam S, Sangeetha Selvan K. Electrochemical sensing of Hg(ii) in chicken liver and snail shell extract samples using novel modified SDA/MWCNT electrodes. RSC Adv 2024; 14:16056-16068. [PMID: 38769970 PMCID: PMC11103563 DOI: 10.1039/d4ra00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
Heavy metal ions (Hg(ii)) were detected in fresh chicken liver and snail shell extract samples using novel synthesised SDA/MWCNT-modified electrodes. The synthesized N,N'-bis(salicylaldehyde)-1,2-diaminobenzene (SDA) ligand was characterized via FT-IR, 1H-NMR, and 13C-NMR spectroscopy. The hydroxyl and imine functional groups present in SDA act as active sites and bind to the MWCNT surface. The surface morphology of the modified SDA/MWCNT electrode exhibited a star-like crystal structure and the preconcentration of Hg(ii)-SDA/MWCNTs lead to a crystal cloud structure, as characterized by SEM with EDX. The enhancement of current and conductance of the SDA/MWCNT- and MWCNT-modified electrode was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The conductance (σ) values for the MWCNT- and SDA/MWCNT-modified electrodes are 234.1 × 10-5 S cm-1 and 358.4 × 10-5 S cm-1, respectively, as determined by electrochemical impedance spectroscopy. Consequently, an electrochemical sensor with outstanding performance in terms of reproducibility, stability and anti-interference ability was fabricated. The stripping analysis of Hg(ii) was performed using square wave anodic stripping voltammetry (SWASV) and cyclic voltammetry (CV). Using SWASV, a linear range of Hg(ii) response was found to be 1.3 to 158 μg L-1, and the limit of detection (LOD) was 0.24 μg L-1. Finally, the results of the recovered value of Hg(ii) in freshly prepared chicken liver and snail shell extract samples by SWASV were compared with the atomic absorption spectroscopy (AAS) results.
Collapse
Affiliation(s)
- Jayagopi Gayathri
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - A Roniboss
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Sivakumar Sivalingam
- Department of Chemistry, VelTech Rangarajan Dr Sagunthala R & D Institute of Science and Technology Avadi Chennai Tamil Nadu 600 062 India
| | - Kumar Sangeetha Selvan
- Department of Chemistry, Anna Adarsh College for Women Anna Nagar Chennai Tamil Nadu 600040 India
| |
Collapse
|
5
|
Hu C, Gu Y, Qiu Q, Ding H, Mou J, Wu D, Ma L, Xu M, Mou C. Tribological Properties of Blocky Composites with Carbon Nanotubes. Int J Mol Sci 2024; 25:3938. [PMID: 38612749 PMCID: PMC11011580 DOI: 10.3390/ijms25073938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
A large amount of primary energy is lost due to friction, and the study of new additive materials to improve friction performance is in line with the concept of low carbon. Carbon nanotubes (CNTs) have advantages in drag reduction and wear resistance with their hollow structure and self-lubricating properties. This review investigated the mechanism of improving friction properties of blocky composites (including polymer, metal, and ceramic-based composites) with CNTs' incorporation. The characteristic tubular structure and the carbon film make low wear rate and friction coefficient on the surface. In addition, the effect of CNTs' aggregation and interfacial bond strength on the wear resistance was analyzed. Within an appropriate concentration range of CNTs, the blocky composites exhibit better wear resistance properties. Based on the differences in drag reduction and wear resistance in different materials and preparation methods, further research directions of CNTs have been suggested.
Collapse
Affiliation(s)
- Chaoxiang Hu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Yunqing Gu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Qianfeng Qiu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Hongxin Ding
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Jiegang Mou
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Denghao Wu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Longbiao Ma
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Maosen Xu
- College of Metrology Measurement and Instrument, China Jiliang University, Hangzhou 310018, China; (C.H.); (Q.Q.); (H.D.); (J.M.); (D.W.); (L.M.); (M.X.)
- Zhejiang Engineering Research Center of Fluid Equipment and Measurement and Control Technology, Hangzhou 310018, China
| | - Chengqi Mou
- College of Energy Engineering, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
6
|
Prato JG, Millán F, Rangel M, Márquez A, González LC, Ríos I, García C, Rondón C, Wang E. Adsorption of Pb (II) ions on variable charge oxidic calcined substrates with chemically modified surface. F1000Res 2024; 12:747. [PMID: 38571570 PMCID: PMC10989241 DOI: 10.12688/f1000research.132880.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Background The paper describes lead ion adsorption on variable charge oxidic calcined substrates with chemically modified surfaces. Amphoteric oxides of iron, aluminum, titanium, and manganese, change their surface electric charge after acid or alkaline treatment, letting cationic or anionic adsorption reactions from aqueous solutions. This property allows using them as adsorbing substrate for heavy metals retention in water treatment systems. Methods Substrate was prepared by extruding cylindrical strips from a saturate paste of the oxidic lithological material-OLM; dries it up and thermally treated by calcination. The study was performed by triplicated trial, on batch mode, using 2 grams samples of treated with NaOH 0.1N and non-treated substrate. Lead analysis was performed by AAS-GF. Freundlich and Langmuir models were used to fit results. Comparing differential behavior between treated and non-treated substrates showed the variable charge nature of the OLM. Results Results show L-type isotherms for the adsorption of Pb(II) ions on the activated substrate, suggesting good affinity between Pb(II) ions and OLM's surface. Average value of adsorption capacity ( K) for activated substrate (1791.73±13.06), is around four times greater than the non-activated substrate (491.54±31.97), during the adsorption reaction, 0.35 and 0.26 mmolH + of proton are produced on the activated and non-activated substrate respectively using a 1 mM Pb(II) solution and 72.2 and 15.6 mmolH + using a 10 mM Pb(II) solution. This acidification agrees with the theoretic model of transitional metals chemisorption on amphoteric oxides, present in lithological material used for the preparation of adsorbent substrates, confirming the information given by the L-type isotherms. Conclusions Results suggest that these variable charge oxidic adsorbent substrate show great potential as an alternative technique for water treatment at small and medium scale using granular filtration system. The easiness and low price make them suitable to apply in rural media where no treating water systems is available.
Collapse
Affiliation(s)
- José G. Prato
- Escuela de Ingeniería Química, Facultad de Ingeniería, Universidad de Los Andes, Mérida, 5101, Venezuela
- Grupo de Investigación Estudios Interdisciplinarios, Ingeniería Ambiental, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - Fernando Millán
- Chemical Engineering School, Polytechnical Institute Santiago Mariño, IUPSM-Mérida, Mérida, 5101, Venezuela
| | - Marialy Rangel
- Chemical Engineering School, Polytechnical Institute Santiago Mariño, IUPSM-Mérida, Mérida, 5101, Venezuela
| | - Andrés Márquez
- Chemical Engineering School, Polytechnical Institute Santiago Mariño, IUPSM-Mérida, Mérida, 5101, Venezuela
- Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Luisa Carolina González
- Grupo de Investigación “Análisis de Muestras Biológicas y Forenses”, Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - Iván Ríos
- Grupo de Investigación Estudios Interdisciplinarios, Ingeniería Ambiental, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - César García
- Arquitectura, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba, Chimborazo Province, 060103, Ecuador
| | - Carlos Rondón
- Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela
| | - Enju Wang
- Department of Chemistry, Saint John´s University, Jamaica, NY, 11439, USA
| |
Collapse
|
7
|
Yiğit M, Bayraktutan T. Detection of protamine based on competitive adsorption onto the surface of functionalized multi-walled carbon nanotubes. LUMINESCENCE 2023; 38:2007-2017. [PMID: 37650445 DOI: 10.1002/bio.4588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/04/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
This study developed an adsorption-based determination system for protamine. A multi-walled carbon nanotube (MWCNT), which is a strong adsorbent, was used. The competitive adsorption process between dyes and protamine formed the basis of the sensor system. The adsorption process was followed over the dyes by UV-Vis. absorption spectroscopy. This sensor system was developed using the thermodynamic parameters. Transmission electron microscopy and Fourier-transform infrared spectroscopy techniques were used for the characterization of the sensor system. It was determined that the sensor system remained stable at physiological temperature and pH range. Limit of detection values of PyB-COO-MWCNT and PyY-COO-MWCNT systems were found to be 1.32 and 1.12 ng mL-1 , respectively. The applicability of the sensor systems was demonstrated using bovine serum solutions.
Collapse
Affiliation(s)
- Makbule Yiğit
- Department of Biochemistry, Faculty of Art and Science, Iğdır University, Iğdır, Turkey
| | - Tuğba Bayraktutan
- Department of Biochemistry, Faculty of Art and Science, Iğdır University, Iğdır, Turkey
| |
Collapse
|
8
|
Chaudhary S, Goyal S, Umar A. Fabrication of biogenic carbon-based materials from coconut husk for the eradication of dye. CHEMOSPHERE 2023; 340:139823. [PMID: 37586494 DOI: 10.1016/j.chemosphere.2023.139823] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/31/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
The highly biocompatible nature of carbon dots (CQDs) and potential usage in waste water treatment makes them as one of the effective alternative for treating water pollution. Herein, biogenic carbon dots (CQDs) with size range of 2 nm were prepared from waste coconut husk as a precursor source. The hydrophilic nature and higher surface area of as prepared CQDs has further supported the superior adsorption efficiency of more than 90% for Victoria blue B (VB) dye from waste water samples. Different dye adsorption parameters including adsorbate and adsorbent dosage, pH of reaction media and equilibrium time have been optimized and found that 8 mg of adsorbent was sufficient to remove 70 mg VB dye in 4 mL aqueous solution in 60 min at pH = 7. The adsorption kinetic (2nd order) and isotherms (Freundlich-type) were well followed on prepared CQDs. The reusability studies up to 5 times with minimal decrement of 4% confirm the constancy of CQDs for the adsorptive removal of VB. The methodology presents a greener way for overcoming ecological issues with sustainable materials in an economical manner.
Collapse
Affiliation(s)
- Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Sandeep Goyal
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ahmad Umar
- Department of Chemistry, College of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Patel PK, Pandey LM, Uppaluri RVS. Synthesized carboxymethyl-chitosan variant composites for cyclic adsorption-desorption based removal of Fe, Pb, and Cu. CHEMOSPHERE 2023; 340:139780. [PMID: 37572711 DOI: 10.1016/j.chemosphere.2023.139780] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023]
Abstract
The global issue of environmental contamination from industrial wastewater comprising Cu, Fe and Pb demands effective treatment strategies. In this article, a functional composite sorbent was devised to selectively remove copper, iron, and lead from a real-world mimicking wastewater system. For the purpose, high, medium, and low molecular weight chitosan with amine and hydroxyl functional groups were used as a substrate, and glutaraldehyde was used to anchor the organic compound with carboxymethyl groups. Characterization with X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray analyzer accompanied by field emission scanning electron microscope, and Brunauer-Emmett-Teller were conducted for the synthesized adsorbent. Accordingly, the properties of the adsorbent were evaluated to infer that the synthesis assured a purified and functionalized system. The surface area of the medium carboxymethyl chitosan derivative was analyzed as 31.43 m2 g-1. Various adsorption parameters were examined methodically to assess upon optimal removal requirements. The effect of adsorbent dosage, contact time and concentration on the adsorption of the studied metal ions were conducted and the optimum values were achieved at pH 3.82, 540 min contact duration and 1.2 g L-1 sorbent dose. Maximum adsorbent capacities of 344.83 mg g-1, 9.59 mg g-1, and 90.09 mg g-1 were realized for Cu, Pb, and Fe, respectively. The experimental measurements of the studied heavy metal ions inferred the best fitness of Langmuir isotherm equilibrium and pseudo second order kinetic models. Further, elution studies with easy-to-deploy low-cost acidic and basic eluents (HCl, HNO3, H2SO4, KOH, and NaOH) were conducted with cyclic adsorption-desorption strategies. These investigations confirmed the adsorbent's good reusability up to 3 cycles of adsorption and its proximity to serve as a potential material for multi-heavy metal ions elimination from complex adsorbate systems.
Collapse
Affiliation(s)
- Prabhat Kumar Patel
- Centre for the Environment, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India
| | - Lalit Mohan Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, North Guwahati, 781039, Assam, India.
| |
Collapse
|
10
|
Dahiya A, Bhardwaj A, Rani A, Arora M, Babu JN. Reduced and oxidized rice straw biochar for hexavalent chromium adsorption: Revisiting the mechanism of adsorption. Heliyon 2023; 9:e21735. [PMID: 38027719 PMCID: PMC10663864 DOI: 10.1016/j.heliyon.2023.e21735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Surface oxygen functional groups of biochar were tuned by oxidation and reduction of biochar for establishing Cr(VI) adsorption mechanism. Oxygen functional groups (OFGs) on the surface of leached rice straw biochar (LBC4-6) obtained from pyrolysis at 400, 500 and 600 °C, were oxidized to furnish OBC4-6 using modified Hummer's method. Reduced biochar RBC4-6 were obtained by esterification and NaBH4/I2 reduction of oxidized biochar (OBC4-6). The modified biochar were characterized by increase in O/C and H/C ratio, respectively, in case of OBC4-6 and RBC4-6. The Cr(VI) adsorption by modified biochar LBC4-6, OBC4-6, and RBC4-6 showed optimum conditions of pH 3 and dose 0.1 g/L with a good non-linear fit for Langmuir & Freundlich isotherm. The maximum adsorption (Qm) followed the trend: OBC4 (17.47 mg/g) > RBC4 (15.23) > OBC5 (13.23) > LBC4 (10.23) > RBC5 (9.83) > OBC6 (9.60) > RBC6 (7.24) > LBC5 (6.32) > LBC6 (5.98). The adsorption kinetics for adsorption of Cr(VI) on to modified biochar fits pseudo second order (PSO), Elovich and intraparticle diffusion kinetics, showing a chemisorptions in case of biochar L/O/RBC4-6. The lower temperature modified biochar O/RBC4 show better Cr(VI) adsorption. X-ray Photoelectron Spectroscopy (XPS) studies establish optimum OFGs for reduction of Cr(VI) and chelation of the reduced Cr(III). Adsorption and stripping cycles show the oxidized and reduced biochar as better adsorbents with excellent stripping of Cr up to >98 % upon desorption with 1 M NaOH.
Collapse
Affiliation(s)
- Amarjeet Dahiya
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Badal Road, Punjab, 151401, India
| | - Akanksha Bhardwaj
- Department of Environmental Science & Technology, Central University of Punjab, VPO Ghudda, Badal Road, Bathinda, Punjab, 151401, India
| | - Archana Rani
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Badal Road, Punjab, 151401, India
| | - Meenu Arora
- Department of Chemistry, Maharaja Ranjit Singh Punjab Technical University, Badal Road, Bathinda, Punjab, 151001, India
| | - J. Nagendra Babu
- Department of Chemistry, School of Basic Sciences, Central University of Punjab, VPO Ghudda, Badal Road, Punjab, 151401, India
| |
Collapse
|
11
|
Jahani F, Maleki B, Mansouri M, Noorimotlagh Z, Mirzaee SA. Enhanced photocatalytic performance of milkvetch-derived biochar via ZnO-Ce nanoparticle decoration for reactive blue 19 dye removal. Sci Rep 2023; 13:17824. [PMID: 37857691 PMCID: PMC10587109 DOI: 10.1038/s41598-023-45145-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
In this research, the photocatalytic removal of reactive blue 19 (RB19) dye is investigated employing zinc oxide/cerium (ZnO@Ce) nanoparticles decorated with biochar under LED irradiation. Synthesis of ZnO@Ce nanoparticles decorated with biochar was performed utilizing the co-precipitation procedure and, then, the texture and morphology of the fabricated nanocomposite were analyzed using energy dispersive X-ray (EDX), field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), and Fourier transform infrared (FTIR) spectroscopy techniques. Moreover, FE-SEM images demonstrate that ZnO-Ce nanoparticles were successfully decorated on the surface of biochar. The specific surface areas of biochar and biochar/ZnO-Ce were 519.75 and 636.52 m2/g, respectively. To achieve the maximum yield in the removal of RB19 dye, the effects of operating variables including dye concentration, LED lamp power, biochar@ZnO-Ce catalyst dose, pH and H2O2 dose were explored. Besides, the maximum percentage of RB19 dye removal was 96.47% under optimal conditions, i.e. catalyst dosage of 100 mg, H2O2 dosage of 1 mL, pH of 9, initial dye concentration of 5 ppm, LED power of 50 W, and reaction time of 140 min. Furthermore, the kinetic analysis reveals that the removal of RB19 dye follows the pseudo-first order kinetic model, with calculated values of a reaction rate constant of 0.045 min-1 and a correlation coefficient of R2 = 0.99, respectively. Moreover, the reusability and recyclability of biochar@ZnO/Ce nanocatalyst was promising over five runs, with only a 6.08% decrease in RB19 dye removal efficiency. Therefore, it can be concluded that the biochar @ZnO/Ce photocatalyst can be promisingly applied for the removal of azo dyes in aqueous solutions.
Collapse
Affiliation(s)
- Fatemeh Jahani
- Department of Chemical Engineering, Faculty of Engineering, Ilam University, Ilam, Iran
| | - Basir Maleki
- Department of Chemical Engineering, Faculty of Engineering, Ilam University, Ilam, Iran
| | - Mohsen Mansouri
- Department of Chemical Engineering, Faculty of Engineering, Ilam University, Ilam, Iran.
| | - Zahra Noorimotlagh
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran.
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran.
| | - Seyyed Abbas Mirzaee
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Environmental Health Engineering, School of Health, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
12
|
Abubakar HL, Tijani JO, Abdulkareem AS, Egbosiuba TC, Abdullahi M, Mustapha S, Ajiboye EA. Effective removal of malachite green from local dyeing wastewater using zinc-tungstate based materials. Heliyon 2023; 9:e19167. [PMID: 37662824 PMCID: PMC10470254 DOI: 10.1016/j.heliyon.2023.e19167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The frequent use of an industrial dye such as malachite green (MG) has caused major water body deterioration and is one of the most pressing global challenges, demanding effective treatment techniques. To solve these issues, a simplistic method was developed to synthesize zinc-tungstate (ZnWO4) nanoparticles and also dope the surface matrix of the ZnWO4 nanoparticles using nonmetals of boron (B), carbon (C), and nitrogen (N) at different ratios for enhanced MG removal from wastewater. The prepared nanomaterials were characterized by different methods for crystal structure composition, surface properties, surface morphology, microstructures, functional groups, and elemental oxidation states. The BET analysis revealed a mesoporous structure with surface areas of 30.740 m2/g for ZnWO4, 38.513 m2/g for ZnWO4@BCN, 37.368 m2/g for ZnWO4@BCN/B, 39.325 m2/g for ZnWO4@BCN/C, and 45.436 m2/g for ZnWO4@BCN/N nanocomposites. The best removal of MG was accomplished at pH (8), contact period (50 min), nanoadsorbent dose (0.8 g/L), initial MG concentration (20 mg/L), and temperature (303 K). The maximum adsorption capacities of ZnWO4 and ZnWO4@BCN/N towards MG were 218.645 and 251.758 mg/g, respectively. At equilibrium, the Freundlich isotherm and pseudo-second-order kinetic models were the best fits for the experimental data of MG adsorption on both nanoadsorbents. After eight cycles of adsorption and desorption, both ZnWO4 and ZnWO4@BCN/N were found to be good at removing MG, with efficiencies of 71.00 and 74.20%, respectively. Thermodynamic investigations further validated the spontaneity and endothermic nature of the adsorption process. All study findings confirm the nanoadsorbents exceptional capability and economic feasibility for removing MG dye.
Collapse
Affiliation(s)
- Hassana Ladio Abubakar
- Department of Chemistry, Federal University of Technology, PMB. 65, Minna, Niger State, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB. 65, Minna, Niger State, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB. 65, Minna, Niger State, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger State, Nigeria
| | - Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, P.M.B 02, Uli Campus, Anambra State, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger State, Nigeria
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Mann Abdullahi
- Department of Chemistry, Federal University of Technology, PMB. 65, Minna, Niger State, Nigeria
| | - Saheed Mustapha
- Department of Chemistry, Federal University of Technology, PMB. 65, Minna, Niger State, Nigeria
- Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, P.M.B 65, Bosso, Minna, Niger State, Nigeria
| | | |
Collapse
|
13
|
Sun J, Li R, Wang X, Zhao C, Song Q, Liu F, Wang Z, Liu C, Zhang X. Marine oil spill remediation by Candelilla wax modified coal fly ash cenospheres. CHEMOSPHERE 2023; 330:138619. [PMID: 37031841 DOI: 10.1016/j.chemosphere.2023.138619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 05/14/2023]
Abstract
Biodegradable candelilla wax (CW) was creatively used for hydrophobic modification of coal fly ash cenospheres (FACs), a waste product from thermal power plants, and a new spherical hollow particulate adsorbent with fast oil adsorption rate and easy agglomeration was prepared. CW was confirmed to physically coat FACs and the optimum mass of wax added to 3 g of FACs was 0.05 g. From a series of batch scale experiments, CW-FACs were found to adsorb oil, reaching adsorption efficiency of 80.6% within 10 s, and aggregate into floating clumps which were easily removed from the water's surface. The oil adsorption efficiency was highly dependent on hydrophobicity of the used adsorbent, the adsorption of Venezuela oil onto CW-FACs was found to be a homogenous monolayer, and the capacity and intensity of the adsorption decreased as temperature increased from 10 to 40 °C. The Langmuir isotherm model was the best fit, with the maximum adsorption capacity achieved at 649.38 mg/g. CW-FACs were also found to be highly stable in concentrated acid, alkaline and salt solutions, as well as for spills of different oil products. Furthermore, the retention rate of the oil adsorption capacity of the CW-FACs after 6 cycles of adsorption-extraction was as high as 93.2%. Therefore, CW-FACs can be widely used, easily recycled, and reused for marine oil spill remediation, which is also a good alternative disposal solution for FACs.
Collapse
Affiliation(s)
- Juan Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Ran Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaoyang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Quanwei Song
- State Key Laboratory of Petroleum Pollution Control, Beijing, 102206, China; CNPC Safety and Environmental Protection Technology Research Institute, Beijing, 102206, China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zihao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chunshuang Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiuxia Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
14
|
Wu Q, Dong C, Chen M, Zhang Y, Cai M, Chen Y, Jin M, Wei Z. Silica enhanced activation and stability of Fe/Mn decorated sludge biochar composite for tetracycline degradation. CHEMOSPHERE 2023; 328:138614. [PMID: 37023899 DOI: 10.1016/j.chemosphere.2023.138614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/07/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
In this study, SiO2-composited biochar decorated with Fe/Mn was prepared by co-pyrolysis method. The degradation performance of the catalyst was evaluated by activating persulfate (PS) to degrade tetracycline (TC). The effects of pH, initial TC concentration, PS concentration, catalyst dosage and coexisting anions on degradation efficiency and kinetics of TC were investigated. Under optimal conditions (TC = 40 mg L-1, pH = 6.2, PS = 3.0 mM, catalyst = 0.1 g L-1), the kinetic reaction rate constant could reach 0.0264 min-1 in Fe2Mn1@BC-0.3SiO2/PS system, which was 12 times higher than that in the BC/PS system (0.00201 min-1). The electrochemical, X-ray diffractometer (XRD), Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS) analysis showed that both metal oxides and oxygen-containing functional groups provide more active sites to activate PS. The redox cycle between Fe(II)/Fe(III) and Mn(II)/Mn(III)/Mn(IV) accelerated the electron transfer and sustained the catalytic activation of PS. Radical quenching experiments and electron spin resonance (ESR) measurements confirmed that surface sulfate radical (SO4•-) play a key role in TC degradation. Three possible degradation pathways of TC were proposed based on high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) analysis, the toxicity of TC and its intermediates was analyzed by bioluminescence inhibition test. In addition to the enhanced catalytic performance, the presence of silica also improved the stability of the catalyst, as confirmed by cyclic experiment and metal ion leaching analysis. The Fe2Mn1@BC-0.3SiO2 catalyst, derived from low-cost metals and bio-waste materials, offer an environmentally friendly option to design and implement heterogenous catalyst system for pollutant removal in water.
Collapse
Affiliation(s)
- Qiong Wu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Chunying Dong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Maoxiang Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yu Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Meiqiang Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Yan Chen
- Zhejiang Industrial Environmental Design and Research Institute Co., Ltd., Zhejiang Gongshang University, Hangzhou, 310018, China.
| | - Micong Jin
- Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China; Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, 315010, China.
| | - Zongsu Wei
- Centre for Water Technology (WATEC) & Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| |
Collapse
|
15
|
Rani S, Kathuria I, Kumar A, Kumar D, Kumar A, Kumar S, Nandan B, Srivastava RK. Valorised polypropylene waste based reversible sensor for copper ion detection in blood and water. ENVIRONMENTAL RESEARCH 2023; 228:115928. [PMID: 37076032 DOI: 10.1016/j.envres.2023.115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Heavy metals and plastic pollutants are the two most disastrous challenges to the environment requiring immediate actions. In this work, a techno-commercially feasible approach to address both challenges is presented, where a waste polypropylene (PP) based reversible sensor is produced to selectively detect copper ions (Cu2+) in blood and water from different sources. The waste PP-based sensor was fabricated in the form of an emulsion-templated porous scaffold decorated with benzothiazolinium spiropyran (BTS), which produced a reddish colour upon exposure to Cu2+. The presence of Cu2+ was checked by naked eye, UV-Vis spectroscopy, and DC (Direct Current) probe station by measuring the current where the sensor's performance remained unaffected while analysing blood, water from different sources, and acidic or basic environment. The sensor exhibited 1.3 ppm as the limit of detection value in agreement with the WHO recommendations. The reversible nature of the sensor was determined by cyclic exposure of the sensor towards visible light turning it from coloured to colourless within 5 min and regenerated the sensor for the subsequent analysis. The reversibility of the sensor through exchange between Cu2+- Cu+ was confirmed by XPS analysis. A resettable and multi-readout INHIBIT logic gate was proposed for the sensor using Cu2+ and visible light as the inputs and colour change, reflectance band and current as the output. The cost-effective sensor enabled rapid detection of the presence of Cu2+ in both water and complex biological samples such as blood. While the approach developed in this study provides a unique opportunity to address the environmental burden of plastic waste management, it also allows for the possible valorization of plastics for use in enormous value-added applications.
Collapse
Affiliation(s)
- Sweety Rani
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ishana Kathuria
- Department of Chemistry, St. Stephens College, University of Delhi, North Campus, New Delhi, 110007, India
| | - Arvind Kumar
- Department of Chemistry, St. Stephens College, University of Delhi, North Campus, New Delhi, 110007, India
| | - Dheeraj Kumar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Advitiya Kumar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Satish Kumar
- Department of Chemistry, St. Stephens College, University of Delhi, North Campus, New Delhi, 110007, India
| | - Bhanu Nandan
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
16
|
Zhao Z, Li S, Zhang Y, Guo P, Zhao X, Li Y. Repurposing of steel rolling sludge: Solvent-free preparation of α-Fe 2O 3 nanoparticles and its application for As(III/V)-containing wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118286. [PMID: 37269724 DOI: 10.1016/j.jenvman.2023.118286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Steel rolling sludge (SRS) is the by-product of metallurgical industry with abundant iron content, which needs to be utilized for producing high value-added products. Herein, cost-effective and highly adsorbent α-Fe2O3 nanoparticles were prepared from SRS via a novel solvent-free method and applied to treat As(III/V)-containing wastewater. The structure of the prepared nanoparticles was observed to be spherical with a small crystal size (12.58 nm) and high specific surface area (145.03 m2/g). The nucleation mechanism of α-Fe2O3 nanoparticles and the effect of crystal water were investigated. More importantly, compared with the traditional methods of preparation cost and yield, this study was found to have excellent economic benefits. The adsorption results indicated that the adsorbent could effectively remove arsenic over a wide pH range, and the optimal performance of nano adsorbent for As(III) and As(V) removal was observed at pH 4.0-9.0 and 2.0-4.0, respectively. The adsorption process was consistent with pseudo-second-order kinetic and Langmuir isothermal model. The maximum adsorption capacity (qm) of adsorbent for As(III) and As(V) was 75.67 mg/g and 56.07 mg/g, respectively. Furthermore, α-Fe2O3 nanoparticles exhibited great stability, and qm remained at 64.43 mg/g and 42.39 mg/g after five cycles. Particularly, the As(III) was removed by forming inner-sphere complexes with the adsorbent, and it partially oxidized to As(V) during this process. In contrast, the As(V) was removed by electrostatic adsorption and reaction with -OH on the adsorbent surface. Overall, resource utilization of SRS and the treatment of As(III)/(V)-containing wastewater in this study are in line with the current developments in the environmental and waste-to-value research.
Collapse
Affiliation(s)
- Zekun Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suqin Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yabin Zhang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Penghui Guo
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Zhao
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yongkui Li
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
17
|
Dewi AK, Sharma RK, Das K, Sukul U, Lin PY, Huang YH, Lu CM, Lu CK, Chen TH, Chen CY. Biologically-induced synthetic manganese carbonate precipitate (BISMCP) for potential applications in heavy metal removal. Heliyon 2023; 9:e15919. [PMID: 37223715 PMCID: PMC10200859 DOI: 10.1016/j.heliyon.2023.e15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Heavy metal pollution of water is a burning issue of today's world. Among several strategies involved for heavy metal remediation purpose, biomineralization has shown great potential. Of late, research has been focused on developing effective mineral adsorbents with reduced time and cost consumption. In this present paper, the Biologically-Induced Synthetic Manganese Carbonate Precipitate (BISMCP) was produced based on the biologically-induced mineralization method, employing Sporosarcina pasteurii in aqueous solutions containing urea and MnCl2. The prepared adsorbent was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) and BET surface area analyzer. EDX analysis showed the elements in the crystal BISMCP were Mn, C, and O. XRD result of BISMCP determined the crystal structure, which is close to rhodochrosite (MnCO3). Spectral peaks of FTIR at 1641.79 cm-1 confirmed the appearance of C[bond, double bond]O binding, with strong stretching of CO32- in Amide I. From the six kinds of BISMCP produced, sample MCP-6 has the higher specific surface area by BET analysis at 109.01 m2/g, with pore size at 8.76 nm and higher pore volume at 0.178 cm3/g. These specifications will be suitable as an adsorbent for heavy metal removal by adsorption process. This study presents a preliminary analysis of the possibility of BISMCP for heavy metals adsorption using ICP multi-element standard solution XIII (As, Cr, Cd, Cu, Ni, and Zn). BISMCP formed from 0.1 MnCl2 and 30 ml of bacteria volume (MCP-6) produced a better adsorbent material than others concentrations, with the adsorption efficiency of total As at 98.9%, Cr at 97.0%, Cu at 94.7%, Cd at 88.3%, Zn at 48.6%, and Ni at 29.5%. Future work could be examined its efficiency adsorbing individual heavy metals.
Collapse
Affiliation(s)
- Anggraeni Kumala Dewi
- Department of Physics, National Chung Cheng University, University Road, Minhsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Koyeli Das
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Uttara Sukul
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Yi-Hsun Huang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Chung Ming Lu
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemical Engineering, National Chung Cheng University, University Road, Minhsiung, Chiayi County, 62102, Taiwan
| | - Cheng-Kang Lu
- Department of Chest Division, Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital 600566, Taiwan
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital 600566, Taiwan
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| |
Collapse
|
18
|
Efficient ciprofloxacin removal over Z-scheme ZIF-67/V-BiOIO3 heterojunctions: Insight into synergistic effect between adsorption and photocatalysis. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
19
|
Chandra D, Molla MTH, Bashar MA, Islam MS, Ahsan MS. Chitosan-based nano-sorbents: synthesis, surface modification, characterisation and application in Cd (II), Co (II), Cu (II) and Pb (II) ions removal from wastewater. Sci Rep 2023; 13:6050. [PMID: 37055426 PMCID: PMC10101992 DOI: 10.1038/s41598-023-32847-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
In contemplation of treating hazardous industrial wastewater, sodium tripolyphosphate (TPP) and vanillin (V)-modified chitosan-based magnetic nano-sorbents (TPP-CMN and V-CMN) were prepared, and the physical and surface properties of both nano-sorbents were characterised. The results of FE-SEM and XRD showed an average size of between 6.50 and 17.61 nm for Fe3O4 magnetic nanoparticles. The Physical Property Measurement System (PPMS) was carried out, and the saturation magnetisations for chitosan, Fe3O4 nanoparticles, TPP-CMN, and V-CMN were 0.153, 67.844, 7.211, and 7.772 emu.g-1, respectively. By using multi-point analysis, the BET surface areas of the synthesised TPP-CMN and V-CMN nano-sorbents were found to be 8.75 and 6.96 m2/g, respectively. The synthesised TPP-CMN and V-CMN were investigated as effective nano-sorbents to uptake Cd (II), Co (II), Cu (II), and Pb (II) ions, and the results were investigated by AAS. The adsorption process of heavy metals was investigated by the batch equilibrium technique, and the sorption capacity values of Cd (II), Co (II), Cu (II), and Pb (II) ions by TPP-CMN were 91.75, 93.00, 87.25, and 99.96 mg/g. By V-CMN, the values were 92.5, 94.00, 88.75, and 99.89 mg/g, respectively. The equilibrium times for adsorption were found to be 15 minutes for TPP-CMN and 30 minutes for V-CMN nano-sorbents. The adsorption isotherms, kinetics, and thermodynamics were studied to understand the adsorption mechanism. Furthermore, the adsorption of two synthetic dyes and two real wastewater samples was studied and obtained significant results. These nano-sorbents' simple synthesis, high sorption capability, excellent stability, and recyclability may provide highly efficient and cost-effective nano-sorbents for wastewater treatment.
Collapse
Affiliation(s)
- Dipesh Chandra
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Tamzid Hossain Molla
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Abul Bashar
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Suman Islam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Shameem Ahsan
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
20
|
Wang H, Wang W, Zhou S, Gao X. Adsorption mechanism of Cr(VI) on woody-activated carbons. Heliyon 2023; 9:e13267. [PMID: 36798761 PMCID: PMC9925964 DOI: 10.1016/j.heliyon.2023.e13267] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
To provide guidance for the selection of woody-activated carbon in the treatment of wastewater containing hexavalent chromium (Cr(VI)), the adsorption tests on two varieties of commercial woody-activated carbon powder from different manufacturers were carried out. The physicochemical properties and structural characteristics of activated carbon were studied by using elemental, chemical, and instrumental analyses. The adsorption mechanism of Cr(VI) was discussed by investigating the factors affecting the removal of hexavalent chromium. The two kinds of woody-activated carbon have microporous and mesoporous structures. Commercial woody-activated carbon No.1 (ACI) has a more extensive specific surface area and a better-developed pore structure. While ACI exhibits a higher adsorption capability when the content of Cr(VI) is high, commercial woody-activated carbon No.2 (AC) can remove hexavalent chromium fast when the concentration is low. A rise in pH value is not helpful for the materials to remove Cr(VI) from solutions. For Cr(VI) removal, the optimum pH value is 2. The adsorption of Cr(VI) by AC and ACI followed the pseudo-second-order kinetic model and Langmuir isothermal adsorption equation. The maximum adsorption value of Cr(VI) is 154.56 mg/g for AC and 241.55 mg/g for ACI. There is chemical adsorption during the Cr(VI) removal. A lot of Cr (Ⅲ) was formed by Cr(VI). The abundance of pores and the reducing ability of the materials are essential for the removal of Cr(VI).
Collapse
Affiliation(s)
- Hua Wang
- College of Chemistry and Chemical Engineering, Yulin City, 719000, China,Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin City, 719000, China,Corresponding author. College of Chemistry and Chemical Engineering, Yulin University, Chongwen Road No.51, Yulin City, 719000, Shaanxi Province, China.
| | - Wencheng Wang
- College of Chemistry and Chemical Engineering, Yulin City, 719000, China
| | - Song Zhou
- College of Chemistry and Chemical Engineering, Yulin City, 719000, China
| | - Xuchun Gao
- College of Chemistry and Chemical Engineering, Yulin City, 719000, China,Shaanxi Provincial Key Laboratory of Clean Utilization of Low-Modified Coal, Yulin City, 719000, China
| |
Collapse
|
21
|
Kovo AS, Alaya-Ibrahim S, Abdulkareem AS, Adeniyi OD, Egbosiuba TC, Tijani JO, Saheed M, Okafor BO, Adeyinka YS. Column adsorption of biological oxygen demand, chemical oxygen demand and total organic carbon from wastewater by magnetite nanoparticles-zeolite A composite. Heliyon 2023; 9:e13095. [PMID: 36793965 PMCID: PMC9922975 DOI: 10.1016/j.heliyon.2023.e13095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Herein, magnetite nanoparticles (NPs), zeolite A and magnetite-zeolite A (MAGZA) composite was developed by green methods. The produced nanomaterials were characterized and the effect of process parameters such as flow rate, adsorbent bed height and adsorbate inlet concentration was evaluated for the removal of biological oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) in a column. The characterization results demonstrated the successful synthesis of magnetite NPs, zeolite A and MAGZA composite. The performance of the MAGZA composite in the fixed-bed column was superior to zeolite A and magnetite NPs. The parametric influence indicates that an increase in bed height and a decrease in the flow rate and inlet adsorbate concentration improved the performance of the adsorption column. The adsorption column demonstrated maximum performance at a flow rate (4 mL/min), bed height (5 cm) and inlet adsorbate concentration (10 mg/L). Under these conditions, the highest percent removal of BOD, COD and TOC were 99.96, 99.88 and 99.87%. Thomas and Yoon-Nelson's model suitably fitted the breakthrough curves. After five reusability cycles, the MAGZA composite demonstrated removal percent of BOD (76.5%), COD (55.5%) and TOC (64.2%). The produced MAGZA composite effectively removed BOD, COD and TOC from textile wastewater in a continuous operating mode.
Collapse
Affiliation(s)
- Abdulsalami Sanni Kovo
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Sherifat Alaya-Ibrahim
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Olalekan David Adeniyi
- Chemical Engineering Department, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Titus Chinedu Egbosiuba
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria,Corresponding author. Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria.
| | - Jimoh Oladejo Tijani
- Chemistry Department, Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Mustapha Saheed
- Chemistry Department, Federal University of Technology, Minna, PMB 65, Minna, Niger State, Nigeria,Nanotechnology Research Group, African Centre for Excellence on Mycotoxin, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Blessing Onyinye Okafor
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli Campus, Anambra State, Nigeria
| | - Yusuff Sikiru Adeyinka
- Chemical and Petroleum Engineering Department, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
22
|
Gerzsenyi TB, Ilosvai ÁM, Szilágyi G, Szőri M, Váradi C, Viskolcz B, Vanyorek L, Szőri-Dorogházi E. A Simplified and Efficient Method for Production of Manganese Ferrite Magnetic Nanoparticles and Their Application in DNA Isolation. Int J Mol Sci 2023; 24:ijms24032156. [PMID: 36768483 PMCID: PMC9917137 DOI: 10.3390/ijms24032156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
A simplified, fast, and effective production method has been developed for the synthesis of manganese ferrite (MnFe2O4) magnetic nanoparticles (MNPs). In addition to the wide applicability of MnFe2O4 MNPs, this work also reports their application in DNA isolation for the first time. An ultrasonic-cavitation-assisted combustion method was applied in the synthesis of MnFe2O4 MNPs at different furnace temperatures (573 K, 623 K, 673 K, and 773 K) to optimize the particles' properties. It was shown that MnFe2O4 nanoparticles synthesized at 573 K consist of a spinel phase only with adequate size and zeta potential distributions and superparamagnetic properties. It was also demonstrated that superparamagnetic manganese ferrite nanoparticles bind DNA in buffer with a high NaCl concentration (2.5 M), and the DNA desorbs from the MNPs by decreasing the NaCl concentration of the elution buffer. This resulted in a DNA yield comparable to that of commercial DNA extraction products. Both the DNA concentration measurements and electrophoresis confirmed that a high amount of isolated bacterial plasmid DNA (pDNA) with adequate purity can be extracted with MnFe2O4 (573 K) nanoparticles by applying the DNA extraction method proposed in this article.
Collapse
Affiliation(s)
- Tímea B. Gerzsenyi
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Ágnes M. Ilosvai
- Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - Gergely Szilágyi
- Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - Milán Szőri
- Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - Csaba Váradi
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
| | - Béla Viskolcz
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary
| | - László Vanyorek
- Institute of Chemistry, Faculty of Materials and Chemical Engineering, University of Miskolc, 3515 Miskolc, Hungary
- Correspondence: (L.V.); (E.S.-D.)
| | - Emma Szőri-Dorogházi
- Higher Education and Industrial Cooperation Centre, University of Miskolc, 3515 Miskolc, Hungary
- Correspondence: (L.V.); (E.S.-D.)
| |
Collapse
|
23
|
Es-Said A, El Hamdaoui L, Ennoukh FE, Nafai H, Zerki N, Lamzougui G, Bchitou R. Chemometrics approach for adsorption multi-response optimization of Cu(II), Zn(II), and Cd(II) ions from phosphoric acid solution using natural clay. PHOSPHORUS SULFUR 2023. [DOI: 10.1080/10426507.2022.2164765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amine Es-Said
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Lahcen El Hamdaoui
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatima Ezzahra Ennoukh
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Hicham Nafai
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nabih Zerki
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Ghita Lamzougui
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rahma Bchitou
- Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
24
|
Huang T, Pan L, Dong J, Zhou L, Tao H, Zhang SW, Li A. A comprehensive investigation of zeolite-rich tuff functionalized with 3-mercaptopropionic acid intercalated green rust for the efficient removal of Hg II and Cr VI in a binary system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116344. [PMID: 36166867 DOI: 10.1016/j.jenvman.2022.116344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, the 3-mercaptopropionic acid (MA) was chosen to achieve the anionic intercalation into the green rust (GR) materials (MA-GR). The zeolite-rich tuff functionalized with the MA-intercalated GR (MA-GR-tuff) was subsequently synthesized and used to remove both HgII cations and CrVI anions in a binary system. MA-GR-tuff showed the best adsorption capacities to both HgII and CrVI among the adsorbent materials. The optimal combination of parameters was determined as the molar ratio of FeII to FeIII of 3.5, the molar ratio of OH- to the total iron of 3.75, the molar ratio of MA to the total iron of 2.5, and the mass ratio of the total iron to the tuff of 1.25. The pseudo-first-order kinetic model was appropriate in describing the kinetic sorption of CrVI by MA-GR-tuff. Both the pseudo-first-order kinetic model and Elovich were suitable for explaining HgII sorption. The maximum monolayer adsorption capacities of MA-GR-tuff towards CrVI and HgII were 185.19 mg/g and 72.99 mg/g, respectively. More flocs and plumes were formed in the MA-GR while the intercalation and more pores and crevices of different sizes were found in the MA-GR-tuff. Sulfhydryl complexation and the molecular sieve of tuff obviously both played a role in influencing the adsorption process. This study directly overcomes the drawback brought by the natural tuff to the treatment of a cationic-and-anionic binary system and supplies a new kind of tuff-based adsorbent for the potential use for the remediation of HM-contaminated wastewater.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Longwei Pan
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Jincheng Dong
- Suzhou Kunshan Environmental Monitoring Station, 215300, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Hui Tao
- Chongqing Water Affairs Group Co., Ltd., No. 1, Longjiawan, Yuzhong District, Chongqing, 400000, China
| | - Shu-Wen Zhang
- School of Resource Environmental and Safety Engineering, University of South China, 421001, China
| | - Aiyin Li
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
25
|
Egbosiuba TC. Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. Heliyon 2022; 8:e10114. [PMID: 36042740 PMCID: PMC9420488 DOI: 10.1016/j.heliyon.2022.e10114] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/21/2022] [Accepted: 07/25/2022] [Indexed: 12/21/2022] Open
Abstract
Direct biomass usage as a renewable fuel source and substitute for fossil fuels is discouraging due to high moisture, low energy density and low bulk density. Herein, thermogravimetric analysis (TGA) was conducted at various heating rates to determine peak decomposition temperatures for the dried cassava peels (DCP). The influence of pyrolysis temperature (300, 400, 500 and 600 °C) and heating rates (10, 20 and 30 °C/min) on the nickel nanoparticles catalyzed decomposition of DCP to produce biochar, bio-oil and biogas was investigated and characterized. The results revealed higher biochar (CBC) yield of 68.59 wt%, 62.55 wt% and 56.92 wt% at lower pyrolysis temperature of 300 °C for the different heating rates of 10, 20 and 30 °C/min. The higher carbon content of 52.39, 53.30 and 55.44 wt% was obtained at elevated temperature of 600 °C and heating rates of 10, 20 and 30 °C/min, respectively. At the pyrolysis temperature of 600 °C and heating rates of 10, 20 and 30 °C/min, the optimum yield of bio-oil (24.35, 17.69 and 18.16 wt%) and biogas (31.35, 42.03 and 46.12 wt%) were attained. A high heating value (HHV) of 28.70 MJ/kg was obtained for the biochar at 600 °C. Through the TGA, FTIR and HRSEM results, the thermal stability, hydrophobicity and structural changes of DCP and CBC samples were established. Similarly, the thermal stability of CBC samples increased with increasing pyrolysis temperature. Biochar with optimum fuel properties was produced at 600 °C due to the highest carbon content and high heating value (HHV). Improved kinematic viscosity (3.87 mm2/s) and density (0.850 g/cm3) were reported at the temperature of 300 °C and heating rate of 30 °C/min, while a higher pH (4.96), HHV (42.68 MJ/kg) and flash point (53.85 min) were presented by the bio-oil at the temperature of 600 °C and heating rate of 30 °C/min. Hence, DCP produced value-added biochar and bio-oil as renewable energy. Nickel nanoparticles successfully catalyzed the pyrolysis of CP biomass. Temperature and heating rates affected the yield of pyrolysis products. Fixed carbon content increased rapidly with temperature increase. The HHV of both biochar and bio-oil was higher than the DCP biomass. The fuel properties of biochar and bio-oil improved rapidly through NiNPs catalyzed pyrolysis.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Chemical Engineering Department, Chukwuemeka Odumegwu Ojukwu University, Uli Campus, Anambra State, Nigeria
| |
Collapse
|
26
|
A Core-Shell Amino-Functionalized Magnetic Molecularly Imprinted Polymer Based on Glycidyl Methacrylate for Dispersive Solid-Phase Microextraction of Aniline. SUSTAINABILITY 2022. [DOI: 10.3390/su14159222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A core-shell amino-functionalized glycidyl methacrylate magnetic molecularly imprinted polymer (MIP) was synthesized by the suspension polymerization/surface imprinting method and characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), mercury porosimetry, nitrogen gas adsorption–desorption, and elemental analysis. This MIP was used as the sorbent in dispersive solid-phase microextraction (DSPME) of aniline from textile wastewater prior to high-performance liquid chromatography-mass spectrometry (HPLC-MS) measurements. Since aniline is toxic and a probable human carcinogen, its determination in water is of great significance. This is a challenging task because aniline is usually present at trace levels. The effects of different DSPME variables on the preconcentration efficiency have been studied by using the Plackett–Burman screening design of experiments (DoE) followed by response surface methodology optimization using the Box-Behnken design. Thus, DoE enabled the investigation of several variables simultaneously. Under optimized conditions, aniline was effectively and selectively separated by a small amount of the DSPME sorbent and detected in real textile wastewater samples. The method detection limit of 1 ng mL−1 was attained, with good method linearity and acceptable recovery and precision. The results showed that the studied MIP could be a reliable DSPME sorbent for efficiently analyzing trace aniline in real wastewater samples.
Collapse
|
27
|
Wang D, Wu C, Zong Z, Ye J, Wu Q, Li R, Zhou B, Xu H, Cai D. Carbon Nanotubes-Based Fuel Cell for Cr(VI) Removal and Electricity Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9021-9029. [PMID: 35834193 DOI: 10.1021/acs.langmuir.2c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A fuel cell, an energy transducer, can convert chemical energy into electrical energy. In this work, graphite felt (GF) loaded with polypyrrole (PPy) and carboxylic carbon nanotubes (CNTs-COOH) was used as a cathode (GF/PPy/CNTs-COOH) in a double-chamber nonbiofuel cell (D-nBFC) to remove Cr(VI) efficiently. Therein, Na2S2O3 in an alkaline solution and Cr(VI) in a strongly acidic solution were employed as anode and cathode solutions, respectively. An agar salt bridge, consisting of saturated KCl solution, was used to transport ions between the anode and cathode. This system suggested that the removal efficiency of Cr(VI) could reach 99.6%. The maximum current, power, and power density could achieve 136.8 μA, 18.7 μW, and 20.8 mW/m2 at 90 min, respectively. Additionally, GF/PPy/CNTs-COOH also had good electrocatalytic stability and reusability after four cycles, which played an important role in the development of the D-nBFC system. Therefore, this study provides an environmentally friendly and efficient method to remove Cr(VI) and generate electricity simultaneously.
Collapse
Affiliation(s)
- Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Chuanxuan Wu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Zhiqiang Zong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Qingchuan Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ruohan Li
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Benji Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
28
|
Zhuang J, Rong N, Wang X, Chen C, Xu Z. Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties. Polymers (Basel) 2022; 14:polym14122329. [PMID: 35745905 PMCID: PMC9229974 DOI: 10.3390/polym14122329] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
A green ZnO@polynaniline/bentonite composite (G.Zn@PN/BE) was synthesized as an enhanced adsorbent for As (V) ions. Its adsorption properties were assessed in comparison with the integrated components of bentonite (BE) and polyaniline/bentonite (PN/BE) composites. The G.Zn@PN/BE composite achieved an As (V) retention capacity (213 mg/g) higher than BE (72.7 mg/g) and PN/BE (119.8 mg/g). The enhanced capacity of G.Zn@PN/BE was studied using classic (Langmuir) and advanced equilibrium (monolayer model of one energy) models. Considering the steric properties, the structure of G.Zn@PN/BE demonstrated a higher density of active sites (Nm = 109.8 (20 °C), 108.9 (30 °C), and 67.8 mg/g (40 °C)) than BE and PN/BE. This declared the effect of the integration process in inducing the retention capacity by increasing the quantities of the active sites. The number of adsorbed As (V) ions per site (1.76 up to 2.13) signifies the retention of two or three ions per site by a multi-ionic mechanism. The adsorption energies (from -3.07 to -3.26 kJ/mol) suggested physical retention mechanisms (hydrogen bonding and dipole bonding forces). The adsorption energy, internal energy, and free enthalpy reflected the exothermic, feasible, and spontaneous nature of the retention process. The structure is of significant As (V) uptake capacity in the existence of competitive anions or metal ions.
Collapse
|
30
|
Bhuyan A, Ahmaruzzaman M. Metal-organic frameworks: A new generation potential material for aqueous environmental remediation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Ismail MS, Yahya MD, Auta M, Obayomi KS. Facile preparation of amine -functionalized corn husk derived activated carbon for effective removal of selected heavy metals from battery recycling wastewater. Heliyon 2022; 8:e09516. [PMID: 35663746 PMCID: PMC9157000 DOI: 10.1016/j.heliyon.2022.e09516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 01/22/2023] Open
|
32
|
New insights into iron/nickel-carbon ternary micro-electrolysis toward 4-nitrochlorobenzene removal: Enhancing reduction and unveiling removal mechanisms. J Colloid Interface Sci 2022; 612:308-322. [PMID: 34998191 DOI: 10.1016/j.jcis.2021.12.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/11/2022]
Abstract
The ternary micro-electrolysis material iron/nickel-carbon (Fe/Ni-AC) with enhanced reducibility was constructed by introducing the trace transition metal Ni based on the iron/carbon (Fe/AC) system and used for the removal of 4-nitrochlorobenzene (4-NCB) in solution. The composition and structures of the Fe/Ni-AC were analyzed by various characterizations to estimate its feasibility as reductants for pollutants. The removal efficiency of 4-NCB by Fe/Ni-AC was considerably greater than that of Fe/AC and iron/nickel (Fe/Ni) binary systems. This was mainly due to the enhanced reducibility of 4-NCB by the synergism between anode and double-cathode in the ternary micro-electrolysis system (MES). In the Fe/Ni-AC ternary MES, zero-iron (Fe0) served as anode involved in the formation of galvanic couples with activated carbon (AC) and zero-nickel (Ni0), respectively, where AC and Ni0 functioned as double-cathode, thereby promoting the electron transfer and the corrosion of Fe0. The cathodic and catalytic effects of Ni0 that existed simultaneously could not only facilitate the corrosion of Fe0 but also catalyze H2 to form active hydrogen (H*), which was responsible for 4-NCB transformation. Besides, AC acted as a supporter which could offer the reaction interface for in-situ reduction, and at the same time provide interconnection space for electrons and H2 to transfer from Fe0 to the surface of Ni0. The results suggest that a double-cathode of Ni0 and AC could drive much more electrons, Fe2+ and H*, thus serving as effective reductants for 4-NCB reduction.
Collapse
|
33
|
Bhatt P, Pandey SC, Joshi S, Chaudhary P, Pathak VM, Huang Y, Wu X, Zhou Z, Chen S. Nanobioremediation: A sustainable approach for the removal of toxic pollutants from the environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128033. [PMID: 34999406 DOI: 10.1016/j.jhazmat.2021.128033] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
In recent years, the proportion of organic and inorganic contaminants has increased rapidly due to growing human interference and represents a threat to ecosystems. The removal of these toxic pollutants from the environment is a difficult task. Physical, chemical and biological methods are implemented for the degradation of toxic pollutants from the environment. Among existing technologies, bioremediation in combination with nanotechnology is the most promising and cost-effective method for the removal of pollutants. Numerous studies have shown that exceptional characteristics of nanomaterials such as improved catalysis and adsorption properties as well as high reactivity have been subjects of great interest. There is an emerging trend of employing bacterial, fungal and algal cultures and their components, extracts or biomolecules as catalysts for the sustainable production of nanomaterials. They can serve as facilitators in the bioremediation of toxic compounds by immobilizing or inducing the synthesis of remediating microbial enzymes. Understanding the association between microorganisms, contaminants and nanoparticles (NPs) is of crucial importance. In this review, we focus on the removal of toxic pollutants using the cumulative effects of nanoparticles with microbial technology and their applications in different domains. Besides, we discuss how this novel nanobioremediation technique is significant and contributes towards sustainability.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Satish Chandra Pandey
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Samiksha Joshi
- School of Agriculture Graphic Era Hill University Bhimtal, 263136, India
| | - Parul Chaudhary
- Department of Microbiology, College of Basic Sciences and Humanities, G.B Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Vinay Mohan Pathak
- Department of Microbiology, University of Delhi, South Campus, 110021, India; Department of Botany & Microbiology, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
34
|
Hyper-branched multifunctional carbon nanotubes carrier for targeted liver cancer therapy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Liang S, Qin Y, Gao W, Wang M. A lightweight polyurethane-carbon microsphere composite foam for electromagnetic shielding. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, we have produced a lightweight foam composite material by a simple freeze-drying method, which is composed of carboxylated multi-walled carbon nanotubes (MWCNTs), mesoporous carbon hollow microspheres (MCHMs), water-based polyurethane (WPU), and polyvinyl alcohol (PVA). MCHMs were prepared by a novel and facile method. We found that the electromagnetic shielding performance of foam composites can be adjusted by adjusting the density of foam composites, and the electromagnetic shielding performance of composites can be enhanced through the synergistic effect of hollow mesoporous carbon and MWCNTs. The composite material with a density of 232.8042 mg·cm−3 and 40 wt% MWCNT has a δ of 30.2 S·m−1 and SE of 23 dB. After adding 10 wt% MCHMs to the composite material, δ reaches 33.2 S·m−1, and SE reaches 28 dB. Both absorption losses accounted for 70%. The increase in the content of MWCNT, the increase in density, and the introduction of MCHMs all have a positive effect on the δ and SE of the composite material.
Collapse
Affiliation(s)
- Shaofeng Liang
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , Guangxi , China
| | - Yuxuan Qin
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , Guangxi , China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , Guangxi , China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes , Nanning 530000 , Guangxi , China
| | - Muqun Wang
- School of Resources, Environment and Materials, Guangxi University , Nanning 530000 , Guangxi , China
| |
Collapse
|
36
|
Egbosiuba TC, Egwunyenga MC, Tijani JO, Mustapha S, Abdulkareem AS, Kovo AS, Krikstolaityte V, Veksha A, Wagner M, Lisak G. Activated multi-walled carbon nanotubes decorated with zero valent nickel nanoparticles for arsenic, cadmium and lead adsorption from wastewater in a batch and continuous flow modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126993. [PMID: 34530269 DOI: 10.1016/j.jhazmat.2021.126993] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Nickel nanoparticles (NiNPs) supported on activated multi-walled carbon nanotubes (MWCNTs) were used as an adsorbent applied towards Pb(II), As(V) and Cd(II) remediation from industrial wastewater. The result revealed the hydrophilic surface of MWCNTs-KOH was enhanced with the incorporation of NiNPs enabling higher surface area, functional groups and pore distribution. Comparatively, the removal of Pb(II), As(V) and Cd(II) on the various adsorbents was reported as NiNPs (58.6 ± 4.1, 46.8 ± 3.7 and 40.5 ± 2.5%), MWCNTs-KOH (68.4 ± 5.0, 65.5 ± 4.2 and 50.7 ± 3.4%) and MWCNTs-KOH@NiNPs (91.2 ± 8.7, 88.5 ± 6.5 and 80.6 ± 5.8%). Using MWCNTs-KOH@NiNPs, the maximum adsorption capacities of 481.0, 440.9 and 415.8 mg/g were obtained for Pb(II), As(V) and Cd(II), respectively. The experimental data were best suited to the Langmuir isotherm and pseudo-second order kinetic model. The fitness of experimental data to the kinetic models in a fixed-bed showed better fitness to Thomas model. The mechanism of metal ion adsorption onto MWCNTs-KOH@NiNPs show a proposed electrostatic attraction, surface adsorption, ion exchange, and pore diffusion due to the incorporated NiNPs. The nanocomposite was highly efficient for 8 adsorption cycles. The results of this study indicate that the synthesized nanocomposite is highly active with capacity for extended use in wastewater treatment.
Collapse
Affiliation(s)
- Titus Chinedu Egbosiuba
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra State, Nigeria; Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Michael Chika Egwunyenga
- Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, PMB 02, Uli, Anambra State, Nigeria; Department of Chemical Engineering, Delta State Polytechnic, PMB 1030, Ogwashi-Uku, Delta State, Nigeria
| | - Jimoh Oladejo Tijani
- Department of Chemistry, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Saheed Mustapha
- Department of Chemistry, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Ambali Saka Abdulkareem
- Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Abdulsalami Sanni Kovo
- Department of Chemical Engineering, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria; Nanotechnology Research Group, Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, PMB 65, Minna, Niger State, Nigeria
| | - Vida Krikstolaityte
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Michal Wagner
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
37
|
Chen Z, An C, Wang Y, Zhang B, Tian X, Lee K. A green initiative for oiled sand cleanup using chitosan/rhamnolipid complex dispersion with pH-stimulus response. CHEMOSPHERE 2022; 288:132628. [PMID: 34687682 DOI: 10.1016/j.chemosphere.2021.132628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The released oil can affect the vulnerable shoreline environment if the oil spills happen in coastal waters. The stranded oil on shorelines is persistent, posing a long-term influence on the intertidal ecosystem after weathering. Therefore, shoreline cleanup techniques are required to remove the oil from the shoreline environment. In this study, a new shoreline cleanup initiative using chitosan/rhamnolipid (CS/RL) complex dispersion with pH-stimulus response was developed for oiled sand cleanup. The results of factorial and single-factor design revealed that the CS/RL complex dispersion maintained high removal efficiency for oiled sand with different levels of oil content in comparison to using rhamnolipid alone. However, the increase of salinity negatively affected the removal efficiency. The electrostatic screening effect of high ionic strength can hinder the formation of the CS/RL complex, and thus reduce removal efficiency. The pH-responsive characteristic of chitosan allows the easy separation of water and oil in washing effluent. The chitosan polyelectrolytes aggregated and precipitated due to the deprotonation of amino groups by adjusting the pH of the washing effluent to above 8. The microscope image demonstrated that the chitosan aggregates wrapped around the oil droplets and settled to the bottom together, thus achieving oil-water separation. Such pH-stimulus response may help achieve an easy oil-water separation after washing. These findings have important implications for developing the new strategies of oil spill response.
Collapse
Affiliation(s)
- Zhikun Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada.
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, QC, H9X 3V9, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, A1B 3X5, Canada
| | - Xuelin Tian
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON, K1A 0E6, Canada
| |
Collapse
|
38
|
Mahapatra MK, Kumar A. Taguchi optimization studies for abatement of 2‐chlorophenol using neem seed activated carbon. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manoj Kumar Mahapatra
- Department of Chemical Engineering National Institute of Technology Rourkela Sundargarh 769008 India
| | - Arvind Kumar
- Department of Chemical Engineering National Institute of Technology Rourkela Sundargarh 769008 India
| |
Collapse
|
39
|
Wang X, Shi J, Zhuang J, Chen C, Ouyang K, Xu M, Xu Z. Characterization and evaluation of adsorption potential of chitosan impregnated cellulose nanofiber / multi-walled carbon nanotubes aerogel for copper ions. NEW J CHEM 2022. [DOI: 10.1039/d1nj05244f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of aerogel materials with high preparation efficiency, no pollution, and high adsorption efficiency was still an effective solution for water pollution caused by heavy metal ions. This paper...
Collapse
|
40
|
He H, Wang J, Fei X, Wu D. Sequestration of free and chelated Ni(II) by structural Fe(II): Performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118374. [PMID: 34656684 DOI: 10.1016/j.envpol.2021.118374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Ni(II) and chelated Ni(II) in wastewater are of environmental concern. This study explores the sequestration potential of structural Fe(II) in solid phase (≡Fe(II)) on Ni(II) and EDTA-Ni(II) using freshly prepared ferrous hydroxyl complex (FHC) as the Fe(II)-bearing mineral. The 1 mM Ni(II) could be completely sequestrated in 20 min by 3 mM FHC, although the sequestrated Ni(II) was partially released after 20 min. It is calculated that up to 156 mg Ni(II)/g Fe(II) can be sequestrated by ≡Fe(II) under neutral pH and anaerobic condition. According to the characterizations of the solid products, the large surface area for Ni(II) adsorption and the high ≡Fe(II) reduction capacity for Ni(II) reduction are the main contributors to the Ni(II) sequestration. After the reaction, the FHC is transformed to stable Fe-Ni layered double hydroxides. The concomitant ions can be either promotional or inhibitory to the sequestration performance depending on the ion type. The combination of FHC and Fe(III) can effectively sequestrate EDTA-Ni(II), whereas FHC alone has a low efficiency. Fe(III) substitutes Ni(II) from the EDTA-Ni(II), benefiting the subsequent Ni(II) sequestration by ≡Fe(II). This study demonstrates that ≡Fe(II) suspension is an cost-effective option for remediating Ni(II)-containing wastewater.
Collapse
Affiliation(s)
- Hongping He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Jiaxin Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, 637141, Singapore
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
41
|
Hoang AT, Nižetić S, Cheng CK, Luque R, Thomas S, Banh TL, Pham VV, Nguyen XP. Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. CHEMOSPHERE 2022; 287:131959. [PMID: 34454224 DOI: 10.1016/j.chemosphere.2021.131959] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The concentrations of heavy metal ions found in waterways near industrial zones are often exceed the prescribed limits, posing a continued danger to the environment and public health. Therefore, greater attention has been devoted into finding the efficient solutions for adsorbing heavy metal ions. This review paper focuses on the synthesis of carbon nanotubes (CNTs) from biomass and their application in the removal of heavy metals from aqueous solutions. Techniques to produce CNTs, benefits of modification with various functional groups to enhance sorption uptake, effects of operating parameters, and adsorption mechanisms are reviewed. Adsorption occurs via physical adsorption, electrostatic interaction, surface complexation, and interaction between functional groups and heavy metal ions. Moreover, factors such as pH level, CNTs dosage, duration, temperature, ionic strength, and surface property of adsorbents have been identified as the common factors influencing the adsorption of heavy metals. The oxygenated functional groups initially present on the surface of the modified CNTs are responsible towards the adsorption enhancement of commonly-encountered heavy metals such as Pb2+, Cu2+, Cd2+, Co2+, Zn2+, Ni2+, Hg2+, and Cr6+. Despite the recent advances in the application of CNTs in environmental clean-up and pollution treatment have been demonstrated, major obstacles of CNTs such as high synthesis cost, the agglomeration in the post-treated solutions and the secondary pollution from chemicals in the surface modification, should be critically addressed in the future studies for successful large-scale applications of CNTs.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- Institute of Engineering, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Viet Nam.
| | - Sandro Nižetić
- University of Split, FESB, Rudjera Boskovica 32, 21000, Split, Croatia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, Ctra. Nnal. IV-A, Km. 396, E-14014, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198, Moscow, Russia.
| | - Sabu Thomas
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Tien Long Banh
- Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Van Viet Pham
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam
| | - Xuan Phuong Nguyen
- PATET Research Group, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
42
|
Xue W, Cao S, Zhu J, Li W, Li J, Huang D, Wang R, Gao Y. Stabilization of cadmium in contaminated sediment based on a nanoremediation strategy: Environmental impacts and mechanisms. CHEMOSPHERE 2022; 287:132363. [PMID: 34826961 DOI: 10.1016/j.chemosphere.2021.132363] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Nanomaterials have great application potential for the remediation of heavy metal contaminated sediments, but their environmental impacts are still limited. Herein, graphene oxide-supported nanoscale zero-valent iron (GNZVI) was synthesized to explore its role in mediating the immobilization of cadmium (Cd) from contaminated river sediments, with the consideration of the potential impacts on sediment enzyme activities and bacterial community. Compared to NZVI and GO, GNZVI could more effectively promote the transformation of mobile Cd into stable speciation with a maximum residual percentage increasing by 64.82% after 56 days of treatment. The activities of urease, catalase and sucrase were gradually increased and stabilized with the prolongation of treatment time, indicating that the metabolic function of sediments was recovered. 16 S rRNA gene sequencing results confirmed that the application of GNZVI increased the abundance of some Fe(III)-reducing bacteria, further stimulating the bioavailability of organic matter. Additionally, the properties of GO were gradually changed via microbial reduction and finally showed similar properties to rGO. The critical role of rGO as an electrical conductor was to promote the electron transfer process of microbial Fe(III) mineral reduction, which redistributes part of the Fe(III) mineral-associated Cd to more stable secondary iron minerals, thereby further improving the stabilization efficiency of r-GNZVI for Cd.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China.
| | - Shan Cao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Jing Zhu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Wanyao Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Jun Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225009, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China.
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng yang, 421001, PR China
| | - Yang Gao
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha, 410114, PR China
| |
Collapse
|
43
|
Chen Q, Cao X, Liu B, Nie X, Liang T, Suhr J, Ci L. Effects of functional carbon nanodots on water hyacinth response to Cd/Pb stress: Implication for phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113624. [PMID: 34467867 DOI: 10.1016/j.jenvman.2021.113624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is one of the effective, economic and green approaches to cope with the increasing worldwide heavy metal (HM) pollution. Here, we evaluate the effects of functional carbon nanodots (FCNs) against the hyperaccumulation capacity as well as the physiological and genetic responses of water hyacinth under Pb2+ or/and Cd2+ stress. The bioaccumulation efficiency, HM content and transfer factor, biomass, root development, chlorophyll content, antioxidant system and genes expression are investigated at various concentration of HMs. Based on the excellent adsorption capacity and plant growth regulation ability, FCNs and nitrogen doped FCNs (N-FCNs) cooperate with water hyacinth to improve their HMs removal efficiencies. FCNs and N-FCNs immobilize excess HMs ions in plant, smartly regulate enzymatic levels to mitigate oxidative damage, as well as regulate the microelement uptake and related gene expression, thus improve plant tolerance against HMs stress. Although Pb and Cd have antagonistic effects on bioaccumulation of water hyacinth to the single metal, FCNs and N-FCNs can cooperate with water hyacinth to raise the removal efficiency of HMs in water, and enhance plant tolerance under Pb-Cd combined stress. The promotion effects of FCNs and N-FCNs on phytoremediation are more effective than conventional carbon nanomaterials, including carbon nanotubes and graphene oxides. These findings demonstrate that the application of FCNs or N-FCNs can improve the phytoremediation efficiency in the restoration of HMs contaminated water area. This study provides important insights into the possibility of using FCNs-based nanomaterials and water hyacinth as synergistic system for remediation of Cd-Pb contaminated water area.
Collapse
Affiliation(s)
- Qiong Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China
| | - Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| | - Beibei Liu
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Xiangkun Nie
- Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Jonghwan Suhr
- Department of Mechanical Engineering, Sungkyunkwan University, Suwon, 16410, South Korea
| | - Lijie Ci
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, PR China; Research Center for Carbon Nanomaterials, Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, PR China.
| |
Collapse
|
44
|
Zheng M, Wei Y, Ren J, Dai B, luo W, Ma M, Li T, Ma Y. 2-aminopyridine functionalized magnetic core–shell Fe3O4@polypyrrole composite for removal of Mn (VII) from aqueous solution by double-layer adsorption. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Lisak G. Reliable environmental trace heavy metal analysis with potentiometric ion sensors - reality or a distant dream. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117882. [PMID: 34364114 DOI: 10.1016/j.envpol.2021.117882] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Over two decades have passed since polymeric membrane ion-selective electrodes were found to exhibit sufficiently lower detection limits. This in turn brought a great promise to measure trace level concentrations of heavy metals using potentiometric ion sensors at environmental conditions. Despite great efforts, trace analysis of heavy metals using ion-selective electrodes at environmental conditions is still not commercially available. This work will predominantly concentrate on summarizing and evaluating prospects of using potentiometric ion sensors in view of environmental determination of heavy metals in on-site and on-line analysis modes. Challenges associated with development of reliable potentiometric sensors to be operational in environmental conditions will be discussed and reasoning behind unsuccessful efforts to develop potentiometric on-site and on-line environmental ion sensors will be explored. In short, it is now clear that solely lowering the detection limit of the ion-selective electrodes does not guarantee development of successful sensors that would meet the requirement of environmental matrices over long term usage. More pressing challenges of the properties and the performance of the potentiometric sensors must be addressed first before considering extending their sensitivity to low analyte concentrations. These are, in order of importance, selectivity of the ion-selective membrane to main ion followed by the membrane resistance to parallel processes, such as water ingress to the ISM, light sensitivity, change in temperature, presence of gasses in solution and pH and finally resistance of the ion-selective membrane to fouling. In the future, targeted on-site and on-line environmental sensors should be developed, addressing specific environmental conditions. Thus, ion-selective electrodes should be developed with the intention to be suitable to the operational environmental conditions, rather than looking at universal sensor design validated in the idealized and simple sample matrices.
Collapse
Affiliation(s)
- Grzegorz Lisak
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| |
Collapse
|
46
|
Embaby MA, Abdel Moniem SM, Fathy NA, El-Kady AA. Nanocarbon hybrid for simultaneous removal of arsenic, iron and manganese ions from aqueous solutions. Heliyon 2021; 7:e08218. [PMID: 34746471 PMCID: PMC8554271 DOI: 10.1016/j.heliyon.2021.e08218] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 10/15/2021] [Indexed: 12/03/2022] Open
Abstract
Heavy metal contamination is a severe problem with serious ecological and human health effects due to its toxic effect and tendency to accumulate throughout the food chain. Batch experiments were conducted to investigate the simultaneous removal of arsenic, iron and manganese ions from aqueous solutions using Nanocarbon hybrid (NCH). Nanocarbon hybrid (NCH) of carbon xerogel decorated with 1wt% multi-walled carbon nanotubes was prepared by carbonization at 850 °C for 2 h. The TEM, SEM, EDX, FTIR, and N2 adsorption-desorption measurements were used to characterize the prepared NCH. NCH is enriched with surface oxygen functional groups and micropores as well as it have total surface area of 162 m2/g and total pore volume of 0.129 cm3/g. The adsorption of metal ions onto NCH, which confirmed by EDX, happened quickly, with 30%, 97%, and 41% of As, Fe, and Mn adsorbed in less than 10 min, however the equilibrium time was achieved in less than 30 min. The maximum adsorption capacities for As, Fe, and Mn ions onto NCH were 20, 48, and 21 mg/g, respectively. The experimental adsorption results of the three metal ions showed linearly fitting with Freundlich isotherms. In addition, the computed adsorption energies for Fe, Mn, and As ions were 4.08, 1.95, and 2.42 kJ/mol, indicating physical adsorption. NCH are easily regenerated and reusable sorbent owing to the adsorption–desorption studies. Conclusively, NCH is promising material for removing mixture of metal ions from aqueous media.
Collapse
Affiliation(s)
- Mohamed A Embaby
- Food Toxicology and Contaminants Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Shimaa M Abdel Moniem
- Water Pollution Research Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Nady A Fathy
- Surface and Catalysis Laboratory, Physical Chemistry Department, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Ahmed A El-Kady
- Food Toxicology and Contaminants Department, National Research Centre, 12622 Dokki, Giza, Egypt
| |
Collapse
|
47
|
Ahamed A, Ge L, Zhao K, Veksha A, Bobacka J, Lisak G. Environmental footprint of voltammetric sensors based on screen-printed electrodes: An assessment towards "green" sensor manufacturing. CHEMOSPHERE 2021; 278:130462. [PMID: 33845436 DOI: 10.1016/j.chemosphere.2021.130462] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Voltammetric sensors based on screen-printed electrodes (SPEs) await diverse applications in environmental monitoring, food, agricultural and biomedical analysis. However, due to the single-use and disposable characteristics of SPEs and the scale of measurements performed, their environmental impacts should be considered. A life cycle assessment was conducted to evaluate the environmental footprint of SPEs manufactured using various substrate materials (SMs: cotton textile, HDPE plastic, Kraft paper, graphic paper, glass, and ceramic) and electrode materials (EMs: platinum, gold, silver, copper, carbon black, and carbon nanotubes (CNTs)). The greatest environmental impact was observed when cotton textile was used as SM. HDPE plastic demonstrated the least impact (13 out of 19 categories), followed by ceramic, glass and paper. However, considering the end-of-life scenarios and release of microplastics into the environment, ceramic, glass or paper could be the most suitable options for SMs. Amongst the EMs, the replacement of metals, especially noble metals, by carbon-based EMs greatly reduces the environmental footprint of SPEs. Compared with other materials, carbon black was the least impactful on the environment. On the other hand, copper and waste-derived CNTs (WCNTs) showed low impacts except for terrestrial ecotoxicity and human toxicity (non-cancer) potentials. In comparison to commercial CNTs (CCNTs), WCNTs demonstrated lower environmental footprint and comparable voltammetric performance in heavy metal detections, justifying the substitution of CCNTs with WCNTs in commercial applications. In conclusion, a combination of carbon black or WCNTs EMs with ceramic, glass or paper SMs represents the most environmentally friendly SPE configurations for voltammetric sensor arrangement.
Collapse
Affiliation(s)
- Ashiq Ahamed
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Liya Ge
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Ke Zhao
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Johan Bobacka
- Laboratory of Molecular Science and Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500, Turku/Åbo, Finland
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| |
Collapse
|
48
|
Shang J, Guo Y, He D, Qu W, Tang Y, Zhou L, Zhu R. A novel graphene oxide-dicationic ionic liquid composite for Cr(VI) adsorption from aqueous solutions. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125706. [PMID: 33813290 DOI: 10.1016/j.jhazmat.2021.125706] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
A novel graphene oxide-dicationic ionic liquid composite (GO-DIL) was prepared by modifying graphene oxide (GO) with a dicationic ionic liquid (DIL), 3,3'-(butane-1,4-diyl) bis (1-methyl-1H-imidazol-3-ium) chloride ([C4(MIM)2]Cl2). GO and GO-DIL were characterized by SEM, BET, FTIR, and XPS, and the materials were used for Cr(VI) adsorption. Batch adsorption studies showed that adsorption reached equilibrium within 40 min, and the optimal pH was 3, where the electrostatic attraction between GO-DIL and Cr(VI) was maximized. The maximum theoretical Cr(VI) adsorption capacity (qm) was 271.08 mg g-1, and qm remained above 228.00 mg g-1 after five cycles. The adsorption data were fitted well by both the pseudo-first-order kinetic model and the Langmuir model. Furthermore, thermodynamics calculations revealed that adsorption was a spontaneous endothermic process. Importantly, electrostatic attraction between Cr(VI) and the protonated imidazole N+ of GO-DIL played a critical role in Cr(VI) adsorption, and Cr(VI) was reduced to Cr(III). Thus, GO-DIL is predicted to be an effective adsorbent for Cr(VI) and other heavy metal ions in wastewater.
Collapse
Affiliation(s)
- Jun Shang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanni Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Deliang He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wei Qu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yining Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
49
|
Liu L, Zhao J, Liu X, Bai S, Lin H, Wang D. Reduction and removal of As(Ⅴ) in aqueous solution by biochar derived from nano zero-valent-iron (nZVI) and sewage sludge. CHEMOSPHERE 2021; 277:130273. [PMID: 33770694 DOI: 10.1016/j.chemosphere.2021.130273] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Biochar prepared by co-pyrolysis of nano-zero-valent iron and sewage sludge (nZVISB) was used to remove As(Ⅴ) from aqueous solution. When the initial pH was 2, the initial As(Ⅴ) concentration was 20 mg L-1, the dose of nZVISB was 10 g L-1, the contact time was 24 h, and the adsorption temperature was 298K, the removal efficiency of As(Ⅴ) was greater than 99%. The isothermal removal of As(Ⅴ) followed the Freundlich model better, and the maximum adsorption capacity of As(Ⅴ) was 60.61 mg g-1. The removal process of As(Ⅴ) could be better described by pseudo-second-order kinetic model, and the rate-controlling step should be liquid film diffusion and chemical reaction. Thermodynamic analysis indicated that the removal of As(Ⅴ) was a spontaneous and endothermic process dominated by chemical adsorption. The characterizations of nZVISB before/after adsorption and the solution after adsorption suggested that the iron-containing substances (Fe0, Fe2+, FeOOH) and organics in the nZVISB had a great effect on the removal of As(Ⅴ), and the As was mainly immobilized on nZVISB by speciation of As-O-Fe.
Collapse
Affiliation(s)
- Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Jirong Zhao
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiu Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shaoyuan Bai
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| |
Collapse
|
50
|
Mobarak M, Ali RAM, Seliem MK. Chitosan/activated coal composite as an effective adsorbent for Mn(VII): Modeling and interpretation of physicochemical parameters. Int J Biol Macromol 2021; 186:750-758. [PMID: 34280442 DOI: 10.1016/j.ijbiomac.2021.07.089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/05/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Chitosan was impregnated into porous activated coal to produce a multifunctional chitosan/activated coal (Cs/Ac) composite. The resulted Cs/Ac was characterized and utilized as a cost-effective adsorbent for Mn(VII) at altered temperatures (i.e., 25, 35, and 45 °C). The adsorption results were fitted to classical as well as advanced statistical physics models. The Freundlich equation described well the achieved experimental data at all temperatures. Enhancing the Langmuir adsorption capacity from 203.26 to 224.03 mg/g with temperature indicated that Mn(VII) adsorption was an endothermic process. Steric, energetic and thermodynamics data of the double layer model with two energy sites (i.e., the best fit statistical model) were completely interpreted. The number of Mn(VII) per adsorption site (n) was between 0.76 and 0.92 suggested the presence of multi-docking and multi-interactions mechanisms. The active sites density (NM) of the Cs/Ac decreased with improving temperature. Energetically, Mn(VII) uptake by Cs/Ac was governed by physical interactions (i.e., adsorption energy <40 kJ/mol). Macroscopically, the interaction between Mn(VII) and Cs/Ac was spontaneous. Overall, modification of the Ac by the used marine biomass (Cs) produced a promising Mn(VII) adsorbent and also, the application of physical analysis offered a deep interpretation for the adsorption mechanism.
Collapse
Affiliation(s)
- Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Egypt
| | - Rabea A M Ali
- Geology Department, Faculty of Science, Beni-Suef University, 62511, Egypt
| | | |
Collapse
|