1
|
Bocelli MD, Medina DAV, Lanças FM, Dos Santos-Neto ÁJ. Automated microextraction by packed sorbent of endocrine disruptors in wastewater using a high-throughput robotic platform followed by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023; 415:6165-6176. [PMID: 37532864 DOI: 10.1007/s00216-023-04888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.
Collapse
Affiliation(s)
- Marcio David Bocelli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
2
|
Shuaibu NS, Zhao G, Chu F, Wang X. Rapid analysis of pharmaceutical and personal care products by soft microwave-based plasma ionization-linear ion trap mass spectrometer (SMPI-LTQ) in natural water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108263-108273. [PMID: 37747605 DOI: 10.1007/s11356-023-30018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
In this study, a soft microwave plasma torch (SMPT) combined with a mass spectrometer (MS) was used for the first time as an analytical method to detect and analyze various pharmaceutical and personal care products (PPCPs) in aquatic environments without the need for sample pretreatment. For this purpose, ambient SMPT was used to generate plasma for ionizing the analyte molecules. Accordingly, nine PPCPs were identified by the SMPT-MS, and their identification was verified by collision-induced dissociation (CID). The technique's performance was verified with known PPCP samples, and the limits of detection (LOD) and quantification (LOQ) obtained over a linear range of 50-1 μg/L were 1.56 to 2.81 and 2.07 to 3.62 μg/L, respectively, with the standard addition recovery rate falling between 87.14 and 115.16%. These results show that the method has excellent sensitivity and selectivity, suggesting that SMPT can rapidly and directly detect PPCPs in environmental water, making it a promising method for rapid water quality inspection.
Collapse
Affiliation(s)
- Nazifi Sani Shuaibu
- Zhejiang University College of Information Science and Electronic Engineering, Province, Zhejiang, 310027, Hangzhou, China
| | - Gaosheng Zhao
- Shanghai University School of Environmental and Chemical Engineering, Shanghai, 200444, China
| | - Fengjian Chu
- Zhejiang University College of Information Science and Electronic Engineering, Province, Zhejiang, 310027, Hangzhou, China
| | - Xiaozhi Wang
- Zhejiang University College of Information Science and Electronic Engineering, Province, Zhejiang, 310027, Hangzhou, China.
| |
Collapse
|
3
|
Miserli K, Kosma C, Konstantinou I. Determination of pharmaceuticals and metabolites in sludge and hydrochar after hydrothermal carbonization using sonication-QuEChERS extraction method and UHPLC LTQ/Orbitrap MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1686-1703. [PMID: 35922598 DOI: 10.1007/s11356-022-22215-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceuticals (PhACs) are an important group of emerging contaminants that are released continuously in the environment from wastewater treatments plants (WWTPs). They can produce biological effects even though at very low concentrations. Conventional WWTPs are not able to remove or degrade completely emerging pollutants resulting in the presence of PhACs in sewage sludge after wastewater treatment. PhACs are found in sludge at low ppb-ppt levels, and their analysis and detection is a difficult task due to the complexity of sewage sludge matrices. Hydrothermal carbonization is currently being proposed as a suitable conversion technology for sewage sludge management to recover valuable products and to be used for soil amendment. In this work, a modified quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based methodology with a dispersive solid-phase extraction (d-SPE) clean-up followed by ultra-high-performance liquid chromatography coupled with high-resolution linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ/Orbitrap MS), operated in positive ionization mode, was adopted to investigate 33 multiclass pharmaceuticals in sewage sludge and in hydrochar produced after hydrothermal carbonization. The analytical method was first optimized studying various extraction parameters and finally validated in terms of linearity, recovery, intra and inter-day precisions, expanded uncertainty (%U)/Horrat ratio at three spiking levels, matrix-effects (ME), process efficiency (PE), and limits of detection and quantification. The developed methodology fulfilled all analytical requirements and was finally applied to sludge samples from the WWTP of Ioannina city where a group of antibiotics was detected at concentrations up to 15 ng g-1 and psychiatric drugs such as amisulpride, clozapine, and citalopram were detected at higher concentration levels up to 205, 87.4 and 63.2 ng g-1, respectively. The method was also applied to hydrothermally treated sludge sample under different reaction conditions. Most of the antibiotic compounds were not detected, and several psychiatric drugs such as mirtazapine, bupropion, valsartan, diazepam, and caffeine were found at concentrations below the LOQ.
Collapse
Affiliation(s)
- Kleopatra Miserli
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Christina Kosma
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Ioannis Konstantinou
- Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
- Institute of Environment and Sustainable Development, University Research Center of Ioannina (URCI), 45110, Ioannina, Greece.
| |
Collapse
|
4
|
Kazimierowicz J, Dębowski M, Zieliński M. Effect of Pharmaceutical Sludge Pre-Treatment with Fenton/Fenton-like Reagents on Toxicity and Anaerobic Digestion Efficiency. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:ijerph20010271. [PMID: 36612592 PMCID: PMC9819895 DOI: 10.3390/ijerph20010271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 05/02/2023]
Abstract
Sewage sludge is successfully used in anaerobic digestion (AD). Although AD is a well-known, universal and widely recognized technology, there are factors that limit its widespread use, such as the presence of substances that are resistant to biodegradation, inhibit the fermentation process or are toxic to anaerobic microorganisms. Sewage sludge generated by the pharmaceutical sector is one such substance. Pharmaceutical sewage sludge (PSS) is characterized by high concentrations of biocides, including antibiotics and other compounds that have a negative effect on the anaerobic environment. The aim of the present research was to determine the feasibility of applying Advanced Oxidation Processes (AOP) harnessing Fenton's (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) reaction to PSS pre-treatment prior to AD. The method was analyzed in terms of its impact on limiting PSS toxicity and improving methane fermentation. The use of AOP led to a significant reduction of PSS toxicity from 53.3 ± 5.1% to 35.7 ± 3.2%, which had a direct impact on the taxonomic structure of anaerobic bacteria, and thus influenced biogas production efficiency and methane content. Correlations were found between PSS toxicity and the presence of Archaea and biogas yields in the Fe2+/H2O2 group. CH4 production ranged from 363.2 ± 11.9 cm3 CH4/g VS in the control PSS to approximately 450 cm3/g VS. This was 445.7 ± 21.6 cm3 CH4/g VS (1.5 g Fe2+/dm3 and 6.0 g H2O2/dm3) and 453.6 ± 22.4 cm3 CH4/g VS (2.0 g Fe2+/dm3 and 8.0 g H2O2/dm3). The differences between these variants were not statistically significant. Therefore, due to the economical use of chemical reagents, the optimal tested dose was 1.5 g Fe2+/6.0 g H2O2. The use of a Fenton-like reagent (Fe3+/H2O2) resulted in lower AD efficiency (max. 393.7 ± 12.1 cm3 CH4/g VS), and no strong linear relationships between the analyzed variables were found. It is, therefore, a more difficult method to estimate the final effects. Research has proven that AOP can be used to improve the efficiency of AD of PSS.
Collapse
Affiliation(s)
- Joanna Kazimierowicz
- Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
- Correspondence: ; Tel.: +48-571-443-143
| | - Marcin Dębowski
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| | - Marcin Zieliński
- Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
| |
Collapse
|
5
|
Portela-Monge C, Bolado S, López-Serna R, Jiménez JJ. Determination of contaminants of emerging concern in raw pig manure as a whole: difference with the analysis of solid and liquid phases separately. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2357-2367. [PMID: 36285718 DOI: 10.1039/d2em00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The content of veterinary drugs in manure is usually estimated by the amount of residues determined in its solid or liquid phase, individually, which previously required a separation step. As an alternative, a multiresidue method for the analysis of 48 veterinary drugs and other contaminants of emerging concern (CECs) in swine raw manure as a whole has been developed and in-house validated in this work. The impact of several experimental factors during ultrasound assisted extraction was assessed. Hence, the use of alumina seemed to especially decrease the matrix effect and improve the overall recovery of drugs, mainly those with a high octanol-water partition coefficient. CECs in the extracts were analyzed by ultra-high performance liquid chromatography coupled to mass spectrometry in tandem. A standard addition-matrix matched calibration was used for quantification. Application of the method to two related samples (raw manure and farm centrifuged raw manure) from a facility revealed that the concentrations of CECs determined in the raw manure by the comprehensive methodology were higher than those calculated by adding the concentrations measured in the solid and liquid phases, separately. This was attributed to the loss of CECs adsorbed on fine particles in the suspension during the sample preparation procedure of the liquid-phase. Furthermore, the decrease of residues in the raw manure when this is centrifuged in the farm to yield compost is shown.
Collapse
Affiliation(s)
- Cristina Portela-Monge
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Rebeca López-Serna
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| | - Juan José Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain.
- Institute of Sustainable Processes, Dr Mergelina s/n, 47011 Valladolid, Spain
| |
Collapse
|
6
|
Tian Y, Li J, Li X, Li J, Meng J. Sample pretreatment and analytical methodology for the determination of antibiotics in swine wastewater and activated sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83671-83685. [PMID: 35773613 DOI: 10.1007/s11356-022-21595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
An analytical method for the simultaneous extraction and determination of eight veterinary antibiotics in swine wastewater and activated sludge was developed and validated based on the instrumental determination by liquid chromatography tandem quadrupole mass spectrometry. Ultrasound-assisted extraction and solid-phase extraction were introduced into the pretreatment procedure of the two complex environmental matrices. The critical steps involved in the sample pretreatment procedure and the instrumental analysis conditions were optimized progressively. Recoveries of the optimized method were good with 75.3-118.2% in wastewater and 82.8-130.1% in sludge. The absolute deviations of methods were lower than 11.7%, presenting a high reproducibility and precision. The limits of quantification for the eight pharmaceuticals in wastewater and sludge were 5-15 ng·L-1 and 2-6 ng·g-1, showing high sensitivity of the methods. The developed method has been successfully applied to evaluate the actual concentration levels of tetracyclines, quinolones, and sulfonamides in actual swine wastewater (maximum detected concentration of 87.377 μg·L-1) and activated sludge (maximum detected concentration of 51242.3 ng·g-1).
Collapse
Affiliation(s)
- Yajie Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin, 150090, People's Republic of China.
| |
Collapse
|
7
|
Pérez-Lemus N, López-Serna R, Pérez-Elvira S, Barrado E. Analysis of 60 pharmaceuticals and personal care products in sewage sludge by ultra-high performance liquid chromatography and tandem mass spectroscopy. Microchem J 2022. [DOI: 10.1016/j.microc.2021.107148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Hsu CJ, Ding WH. Determination of benzotriazole and benzothiazole derivatives in tea beverages by deep eutectic solvent-based ultrasound-assisted liquid-phase microextraction and ultrahigh-performance liquid chromatography-high resolution mass spectrometry. Food Chem 2022; 368:130798. [PMID: 34411854 DOI: 10.1016/j.foodchem.2021.130798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/02/2021] [Accepted: 08/04/2021] [Indexed: 11/27/2022]
Abstract
Benzotriazole (BTRs) and benzothiazole (BTHs) derivatives are a group of high production volume chemicals with emerging health concern, which found in tea beverages raising potential risks for food safety and human health. The present work describes a simple method using a "green" deep eutectic solvent (DES) based-ultrasound-assisted liquid-phase microextraction (UALPME) to rapidly extract BTRs and BTHs from tea beverages, and then applying UHPLC-electrospray ionization (+)-quadrupole time-of-flight mass spectrometry for detection and quantification. To overcome the challenges related to different experimental conditions, a Factorial Multilevel Categoric Design and a Face Centered Central Composite Design were applied to screen and optimize the parameters for the DES-UALPME procedure, respectively. After optimization, the method was validated and shown to possess low limits of quantification (LOQs; 1.5-12 ng mL-1), high precision (3-13%), and satisfactory accuracy (65-107%). The developed method was then successfully applied for the analysis of some selected BTRs and BTHs in tea beverages.
Collapse
Affiliation(s)
- Che-Jui Hsu
- Department of Chemistry, National Central University, Chung-Li 320, Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University, Chung-Li 320, Taiwan.
| |
Collapse
|
9
|
Yang X, Yang Z. Simple and Rapid Detection of Ibuprofen─A Typical Pharmaceuticals and Personal Care Products─by a Liquid Crystal Aptasensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:282-288. [PMID: 34955019 DOI: 10.1021/acs.langmuir.1c02480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work established a liquid crystal (LC) aptasensor for simple and rapid detection of ibuprofen, a typical pharmaceuticals and personal care products (PPCPs) pollutant. A negatively charged DNA aptamer specific for ibuprofen and a positively charged amphiphilic surfactant, hexadecyltrimethylammonium bromide (CTAB), were incubated with the sample and then directly added onto the LC interface. In the presence of ibuprofen, the specific binding of ibuprofen with the DNA aptamer will release CTAB, which then adsorbed at the LC-aqueous interface and induced the orientational change of LCs to homeotropic orientation with a dark optical signal output. While in the absence of ibuprofen, the DNA aptamer binds with CTAB through hydrophobic and electrostatic interactions, LCs remained in the planar orientation with a bright optical signal output. This LC aptasensor also has good specificity for ibuprofen and can even detect ibuprofen drug in tap water. Moreover, the response time of the LC aptasensor is fast in minutes. Additionally, this LC aptasensor benefits in monitoring the water quality and inspires the exploration of a general platform for PPCPs detection.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Li YJ, Ding WH. Determination of benzotriazole and benzothiazole derivatives in human urine by eco-friendly deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction followed by ultrahigh performance liquid chromatography quadrupole-time-of-flight mass spectrometry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117530. [PMID: 34261225 DOI: 10.1016/j.envpol.2021.117530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Benzotriazole (BTRs) and benzothiazole (BTHs) derivatives have been classified as high production volume pollutants of emerging concern. The present work describes a rapid and simple process using an eco-friendly deep eutectic solvent (DES) based-ultrasound-assisted liquid-liquid microextraction (DES-UALLME) technique to effectively extract five BTRs and four BTHs in human urine samples, and then applying ultrahigh-performance liquid chromatography and electrospray ionization (+)-quadrupole time-of-flight mass spectrometry (UHPLC-ESI(+)-QTOF-MS) for their detection and quantification. DESs are a group of novel "green" solvents, and their applications in sample pretreatment are appropriate for the requirements for green chemistry, environmental protection and sustainable development. Furthermore, to overcome the challenges related to different experimental conditions, multivariate experimental design approaches conducted by means of a multilevel categorical design and a Box-Behnken Design were applied to screen and optimize parameters that have significant influences on the extraction efficiency of DES-UALLME. After optimization, the method was validated and shown to possess low limits of quantitation (LOQs; 0.4 - 9 ng mL-1), high precision (3-12%), and high accuracy (mean spiked recoveries; 80-101%). The developed method was then successfully applied for the analysis of BTRs and BTHs in human urine samples. Interestingly, 5,6-dimethyl-1H-benzotriazole (XTR) was detected in almost all of the urine samples, which correlates with its high production and widely applications in industry processes and consumer products in Taiwan. These target analytes could potentially be used as biomarkers to assess exposure of BTRs and BTHs in biomonitoring programs and studies.
Collapse
Affiliation(s)
- Yen-Jou Li
- Department of Chemistry, National Central University, Chung-Li, 320, Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University, Chung-Li, 320, Taiwan.
| |
Collapse
|
11
|
Hsieh CZ, Chung WH, Ding WH. Experimental design approaches to optimize ultrasound-assisted simultaneous-silylation dispersive liquid-liquid microextraction for the rapid determination of parabens in water samples. RSC Adv 2021; 11:23607-23615. [PMID: 35479786 PMCID: PMC9036600 DOI: 10.1039/d1ra04195a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples. The method involved the use of a combination of a novel ultrasound-assisted simultaneous-silylation within dispersive liquid–liquid microextraction (UASS-DLLME) with detection by gas chromatography-tandem mass spectrometry (GC-MS/MS). To overcome the challenges related to the different experimental conditions, multivariate experimental design approaches conducted by means of a multilevel categorical design and a Box–Behnken design were utilized to screen and optimize parameters that have significant influences on the efficiency of silylation and extraction. The method was then validated and shown to provide low limits of quantitation (LOQs; 1–5 ng L−1), high precision (3–11%), and satisfactory mean spiked recoveries (accuracy; 79–101%). Upon analyzing samples of surface water obtained from the field, we found that, in total, there was a relatively high concentration of the target parabens ranging from 200 to 1389 ng L−1. The sources of the elevated levels of these parabens may be from the release of untreated municipal wastewater in this region, and also due to the widespread application of parabens in personal care and food products. This work describes a rapid solvent-minimized process to effectively determine four common paraben preservatives (methyl-, ethyl-, propyl- and butyl-paraben) in surface water samples.![]()
Collapse
Affiliation(s)
- Chi-Zhong Hsieh
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| | - Wu-Hsun Chung
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905.,Department of Chemical Engineering, Army Academy ROC Chung-Li 320 Taiwan
| | - Wang-Hsien Ding
- Department of Chemistry, National Central University Chung-Li 320 Taiwan +886-3-4227664 +886-3-4227151 ext. 65905
| |
Collapse
|
12
|
Argüeso-Mata M, Bolado S, Jiménez JJ, López-Serna R. Determination of antibiotics and other veterinary drugs in the solid phase of pig manure. CHEMOSPHERE 2021; 275:130039. [PMID: 33640746 DOI: 10.1016/j.chemosphere.2021.130039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The presence of residues of veterinary pharmaceuticals in farm wastewaters such as pig slurry represents a problem that needs to be tackled to avoid further contamination of environmental waters and the development of resistant bacteria. For their monitoring and control, it is necessary the existence of reliable analytical tools. The present paper describes for the first time the development and optimization by statistical experimental design of a specifically designed analytical method for the analysis of 21 veterinary drugs, including 18 antibiotics of several families (β-lactams, tetracyclines, fluoroquinolones, sulfonamides, macrolides, among others), 1 antiparasitic, 1 analgesic and 1 hormone, in a complex environmental matrix such as the fresh solid phase of pig slurry. The resulting method, consisted of an ultrasound assisted extraction (UAE) combined with in-situ dispersive solid phase extraction (d-SPE) from a 0.3 g of freeze-dried sample aliquot followed by a preconcentration step by compact solid phase extraction (c-SPE) and subsequent instrumental analysis by ultra-high-performance-liquid-chromatography (UHPLC) coupled to mass spectrometry in tandem (MS/MS) by a triple quadrupole, was successfully validated as a very sensitive (method limit of quantification in the low ng g-1) and reliable method (relative recoveries around 100% and method repeatability featured by a general relative standard deviation below 20%). Provided raw data was intended to be processed by matrix-matched quantification approach. The resulting methodology was applied to the characterization of several pig manures from different Spanish farms sampled across breeding season between 2018 and 2019. Sample precedence showed to have a high impact in the positives, its frequency and concentration.
Collapse
Affiliation(s)
- Manuel Argüeso-Mata
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain
| | - Silvia Bolado
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, S/n, 47011, Valladolid, Spain
| | - Juan José Jiménez
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011, Valladolid, Spain; Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain
| | - Rebeca López-Serna
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011, Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, S/n, 47011, Valladolid, Spain.
| |
Collapse
|
13
|
Thaler DS, Sakmar TP. Archiving time series sewage samples as biological records of built environments. BMC Infect Dis 2021; 21:601. [PMID: 34167485 PMCID: PMC8222957 DOI: 10.1186/s12879-021-06268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
This commentary encourages the regular archiving of nucleic-acid-stabilized serial samples of wastewaters and/or sewage. Stabilized samples would facilitate retrospective reconstitution of built environments’ biological fluids. Biological time capsules would allow retrospective searches for nucleic acids from viruses such as SARS-CoV-2. Current resources for testing need not be diverted if samples are saved in case they become important in the future. Systematic storage would facilitate investigation into the origin and prevalence of viruses and other agents. Comparison of prevalence data from individual and clinical samplings with community wastewater would allow valuable comparison, contrast and correlation among different testing modalities. Current interest is focused on SARS-CoV-2, but archived samples could become valuable in many contexts including surveys for other infectious and chemical agents whose identity is not currently known. Archived time series of wastewater will take their place alongside other biological repositories and records including those from medical facilities, museums, eDNA, living cell and tissue collections. Together these will prove invaluable records of the evolving Anthropocene.
Collapse
Affiliation(s)
- David S Thaler
- Biozentrum, University of Basel, CH-4056, Basel, Switzerland. .,Program for the Human Environment, Rockefeller University, New York, NY, USA. .,Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY, USA.
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, Rockefeller University, New York, NY, USA
| |
Collapse
|