1
|
Atallah Al-Asad H, Alex J, Parniske J, Morck T. Simulation-based process optimization of full-scale advanced wastewater treatment systems using powdered activated carbon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:3008-3028. [PMID: 39673316 DOI: 10.2166/wst.2024.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024]
Abstract
This study extends a previously developed competitive modeling approach for predicting the adsorption of organic micropollutants (OMPs) on powdered activated carbon (PAC) in full-scale advanced wastewater treatment. The approach incorporates adsorption analysis for organic matter fractionation, assumes pseudo-first order kinetics and differentiates between fresh and partially loaded PAC through fraction segregation. Validation through full-scale measurement campaigns reveals successful model predictions of OMP removal, underestimating, however, diclofenac removals by 15-20%. Based on model testing, the impact of excess PAC return to the biological stage enhanced OMP removal, reaching up to 15% improvement for benzotriazole, carbamazepine and metoprolol, but no evident improvement of diclofenac removal. Intermittent PAC dosing revealed rapid process response, where organic matter concentration increased within 2 h after PAC cut-off. The simulation-based study demonstrated that during rain events, the overall OMP removal efficiency in the entire wastewater treatment plant was reduced by approximately 50% due to a shift of OMP concentration and a shortened hydraulic retention time in the biological and adsorption stages. Testing of various PAC dosing strategies revealed potential PAC savings of 10-15% compared to inflow-proportional dosing by using predefined OMP removal grades or maximum allowable effluent OMP concentrations as criteria for PAC dosing.
Collapse
Affiliation(s)
- Hana Atallah Al-Asad
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany; ifak - Institute for Automation and Communication, Werner-Heisenberg-Str. 1, Magdeburg 39106 Germany
| | - Jens Alex
- ifak - Institute for Automation and Communication, Werner-Heisenberg-Str. 1, Magdeburg 39106 Germany
| | - Janna Parniske
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany
| | - Tobias Morck
- University of Kassel, Chair of Urban Water Engineering, Kurt-Wolters-Street 3, Kassel 34125, Germany E-mail:
| |
Collapse
|
2
|
Tedesco GC, Soares BL, Fagnani E, Cristale J, Joll CA, Henry DJ. Photoelectrocatalytic degradation of organophosphate esters using tio 2 electrodes produced from 3d-printed ti substrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63910-63925. [PMID: 39514079 DOI: 10.1007/s11356-024-35465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
3D printed electrode substrates with novel geometries may significantly improve the efficacy of photoelectrocatalysis for degradation of recalcitrant pollutants such as organophosphate flame retardants (OPFRs). However, the 3D printed substrates often have an irregular topology that can lead to a less uniform arrangement of nanotubes following anodisation. This study investigated the effect of polishing 3D-printed Ti substrates prior to anodisation to form TiO2 nanotube array electrodes, and their subsequent applicability for photoelectrocatalytic treatment of OPFRs in water matrices. Polished and non-polished electrodes exhibited differences in morphology in terms of average roughness, (0.38 and 3.10 µm, respectively), leading to more uniform TiO2 nanotubes of the former. Water contact angle measurements revealed the non-polished electrode was super-hydrophilic and the polished electrode hydrophilic (water contact angles of 6.4˚ and 16.1˚, respectively). Despite these differences, the polished and non-polished electrodes exhibited very similar electrochemical responses. In fact, the purity and electrical conductivity of water matrices affected the photoelectrocatalytic performance more than the electrode morphology. The purified water (PW) matrix facilitated the highest degradation/removal of OPFRs, compared to tap water matrices. In particular, individual OPFR degradation levels in PW were 74% ± 9, 37% ± 10, 33% ± 9, 31% ± 11 and 3% ± 5 for triphenyl phosphate, tris(butyl) phosphate, tris(isobutyl) phosphate, tris(2-butoxyethyl) phosphate and tris(2-chloroisopropyl) phosphate, respectively. The removal of OPFRs was relative to their reactivity to hydroxyl radicals, which was higher for the aryl then alkyl straight-chain and then chlorinated compounds. This study reveals that polishing of electrode substrates is not required for the preparation of effective photoelectrocatalytic reactors to treat recalcitrant pollutants (e.g. OPFRs), Importantly, future development of novel high-profile 3D printed electrode will not be hindered by the requirement to polish the substrates prior to anodisation.
Collapse
Affiliation(s)
- Gustavo C Tedesco
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, WA, 6150, Australia
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Belisa L Soares
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Enelton Fagnani
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
| | - Joyce Cristale
- Faculdade de Tecnologia, Universidade Estadual de Campinas (UNICAMP), Paschoal Marmo 1888, Limeira, SP, 13484-332, Brazil
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas E Agrícolas (CPQBA), Divisão de Química Analítica, Universidade Estadual de Campinas (UNICAMP), Alexandre Cazellato, Paulínia, SP, 99913148-218, Brazil
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - David J Henry
- School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
3
|
Branco RHR, Meulepas RJW, Rijnaarts HHM, Sutton NB. Exploring long-term retention and reactivation of micropollutant biodegradation capacity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47055-47070. [PMID: 38985427 PMCID: PMC11296967 DOI: 10.1007/s11356-024-34186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The factors limiting micropollutant biodegradation in the environment and how to stimulate this process have often been investigated. However, little information is available on the capacity of microbial communities to retain micropollutant biodegradation capacity in the absence of micropollutants or to reactivate micropollutant biodegradation in systems with fluctuating micropollutant concentrations. This study investigated how a period of 2 months without the addition of micropollutants and other organic carbon affected micropollutant biodegradation by a micropollutant-degrading microbial community. Stimulation of micropollutant biodegradation was performed by adding different types of dissolved organic carbon (DOC)-extracted from natural sources and acetate-increasing 10 × the micropollutant concentration, and inoculating with activated sludge. The results show that the capacity to biodegrade 3 micropollutants was permanently lost. However, the biodegradation activity of 2,4-D, antipyrine, chloridazon, and its metabolites restarted when these micropollutants were re-added to the community. Threshold concentrations similar to those obtained before the period of no substrate addition were achieved, but biodegradation rates were lower for some compounds. Through the addition of high acetate concentrations (108 mg-C/L), gabapentin biodegradation activity was regained, but 2,4-D biodegradation capacity was lost. An increase of bentazon concentration from 50 to 500 µg/L was necessary for biodegradation to be reactivated. These results provide initial insights into the longevity of micropollutant biodegradation capacity in the absence of the substance and strategies for reactivating micropollutant biodegrading communities.
Collapse
Affiliation(s)
- Rita H R Branco
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Roel J W Meulepas
- Wetsus, European Centre of Excellence for Sustainable Water Technology, P.O. Box 1113, 8900 CC, Leeuwarden, the Netherlands
| | - Huub H M Rijnaarts
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 47, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Shi S, Wang F, Hu Y, Zhou J, Zhang H, He C. Effects of running time on biological activated carbon filters: water purification performance and microbial community evolution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21509-21523. [PMID: 38393555 DOI: 10.1007/s11356-024-32421-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Ozone-biologically activated carbon (BAC) filtration is an advanced treatment process that can be applied to remove recalcitrant organic micro-pollutants in drinking water treatment plants (DWTPs). In this study, we continuously monitored a new and an old BAC filter in a DWTP for 1 year to compare their water purification performance and microbial community evolution. The results revealed that, compared with the new filter, the use of the old BAC filter facilitated a slightly lower rate of dissolved organic carbon (DOC) removal. In the case of the new BAC filter, we recorded general increases in the biomass and microbial diversity of the biofilm with a prolongation of operating time, with the biomass stabilizing after 7 months. For both new and old BAC filters, Proteobacteria and Acidobacteria were the dominant bacterial phyla. At the genus level, the microbial community gradually shifted over the course of operation from a predominance of Herminiimonas and Hydrogenophaga to one predominated by Bradyrhizbium, Bryobacter, Hyphomicrobium, and Pedomicrobium, with Bradyrhizobium being established as the most abundant genus in the old BAC filter. Regarding spatial distribution, we detected reductions in the biomass and number of operational taxonomic units with increasing biofilm depth, whereas there was a corresponding increase in microbial diversity. However, compared with the effects of time, the influence of depth on the composition of the biofilm microbial community was considerably smaller. Furthermore, co-occurrence network analysis revealed that the microbial community network of the new filter after 11 months of operation was the most tightly connected, although its modular coefficient was the lowest of those assessed. We speculate that the positive and negative interactions within the network may be attributable to symbiotic or competitive relationships among species. Moreover, there may have been a significant negative interaction between SWB02 and Acidovorax, plausibly associated with a competition for substrates.
Collapse
Affiliation(s)
- Shuangjia Shi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yulin Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Zhou
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Haiting Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Timmers PHA, Siegers W, Ferreira ML, van der Wielen PWJJ. Bioremediation of rapid sand filters for removal of organic micropollutants during drinking water production. WATER RESEARCH 2024; 249:120921. [PMID: 38039817 DOI: 10.1016/j.watres.2023.120921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Rapid sand filtration (RSF) is used during drinking water production for removal of particles, possible harmful microorganisms, organic material and inorganic compounds such as iron, manganese, ammonium and methane. However, RSF can also be used for removal of certain organic micropollutants (OMPs). In this study, it was investigated if OMP removal in columns packed with sand from full scale RSFs could be stimulated by bioaugmentation (i.e. inoculating RSFs with sand from another RSF) and/or biostimulation (i.e. addition of nutrients, vitamins and trace-elements that stimulate microbial growth). The results showed that removal of PFOA, carbamazepine, 1-H benzotriazole, amidotrizoate and iopamidol in the columns was low (< 20 %). Propranolol and diclofenac removal was higher (50-60 %) and propranolol removal likely occurred via sorption processes, whereas for diclofenac it was unclear if removal was a combination of physical-chemical and biological processes. Moreover, bioaugmentation and biostimulation resulted in 99 % removal of gabapentin and metoprolol after 38 days and 99 % removal of acesulfame after 52 days of incubation. The bioaugmented column without biostimulation showed 99 % removal for gabapentin and metoprolol after 52 days, and for acesulfame after 80 days. In contrast, the non-bioaugmented column did not remove gabapentin, removed < 40 % metoprolol and showed 99 % removal of acesulfame only after 80 days of incubation. Removal of these OMPs was negatively correlated with ammonium oxidation and the absolute abundance of ammonia-oxidizing bacteria. 16S rRNA gene sequencing showed that OMP removal of acesulfame, gabapentin and metoprolol was positively correlated to the relative abundance of specific bacterial genera that harbor species with a heterotrophic and aerobic or denitrifying metabolism. These results show that bioaugmentation of RSF can be successful for OMP removal, where biostimulation can accelerate this removal.
Collapse
Affiliation(s)
- Peer H A Timmers
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands; Department of Microbiology, RIBES, Radboud University, Heyendaalseweg 135, AJ Nijmegen 6525, the Netherlands.
| | - Wolter Siegers
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | | | | |
Collapse
|
6
|
Chandrasekar R, Deen MA, Narayanasamy S. Performance analysis of hydrochar derived from catalytic hydrothermal carbonization in the multicomponent emerging contaminant systems: Selectivity and modeling studies. BIORESOURCE TECHNOLOGY 2024; 393:130018. [PMID: 37989419 DOI: 10.1016/j.biortech.2023.130018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
In this work, as an alternative to pyrochar, catalytic hydrothermal carbonization has been employed to synthesize hydrochar to eliminate emerging contaminants in multicomponent systems. The hydrochar has been synthesized using a single step catalytic hydrothermal carbonization at low temperature (200 °C) without any secondary activation with high specific surface area and very good adsorption efficiency for the removal of emerging contaminants. The synthesized hydrochar (HC200) was characterized using various analytical techniques and found to have porous structure with 114.84 m2.g-1 of specific surface area and also contained various oxygen-containing functionalities. The maximum adsorption efficiencies of 92.4 %, 85.4 %, and 82 % were obtained for ibuprofen, sulfamethoxazole, and bisphenol A, respectively. Humic acid, a naturally occurring organic compound had a negligible effect on the adsorption of the selected contaminants. The hydrochar's selectivity towards the emerging contaminants in binary and ternary multicomponent systems was in the order of ibuprofen > sulfamethoxazole > bisphenol A.
Collapse
Affiliation(s)
- Ragavan Chandrasekar
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Mohammed Askkar Deen
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Selvaraju Narayanasamy
- Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
7
|
Kondor AC, Vancsik AV, Bauer L, Szabó L, Szalai Z, Jakab G, Maász G, Pedrosa M, Sampaio MJ, Lado Ribeiro AR. Efficiency of the bank filtration for removing organic priority substances and contaminants of emerging concern: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122795. [PMID: 37918769 DOI: 10.1016/j.envpol.2023.122795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
With growing concerns regarding the ecological and human risks of organic micropollutants (OMPs) in water, much effort has been devoted worldwide to establishing quality standards and compiling candidate and watch lists. Although bank filtration is recognized as an efficient natural water treatment in the removal of contaminants such as OMPs, the increase in exploitation requires continuous assessment of removal efficiency. This review aims to provide a critical overview of bank filtration (BF) reports on more than a hundred priority substances (PSs) and compounds of emerging concern (CECs) listed in the relevant European Union regulations. Field- and lab-scale studies analyzing the removal efficiency and its variance of individual OMPs and biological indicators using BF and the main influencing factors and their interactions, shortcomings, and future challenges are discussed in this review. The removal efficiency of EU-relevant contaminants by BF has been comprehensively investigated for only a few pollutants listed in the environmental EU regulations: pharmaceutically active compounds, (e.g., the anti-inflammatory drug diclofenac, some antibiotics (e.g., sulfamethoxazole and trimethoprim)), a few pesticides (e.g., atrazine), and faecal indicators such as Escherichia coli. In many cases, the measured concentrations of PSs and CECs have not been published numerically, which hinders comprehensive statistical analysis. Although BF is one of the most cost-effective and efficient water treatments, present field and lab studies have demonstrated the diversity of site-specific factors affecting its efficiency. Even in the case of substances known to be removed by BF, the efficiency rates can vary with environmental and anthropogenic factors (e.g., hydrogeological parameters and the contamination level of infiltrating water) and abstraction well parameters (e.g., the depth, distance, and pumping volume). The published removal rate variations and influencing factors often reflect the research design (field or lab-scale), which can lead to ambiguities.
Collapse
Affiliation(s)
- Attila Csaba Kondor
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - Anna Viktória Vancsik
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - László Bauer
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary
| | - Lili Szabó
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Zoltán Szalai
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary
| | - Gergely Jakab
- Geographical Institute, HUN-REN Research Centre for Astronomy and Earth Sciences, Budaörsi út 45, Budapest H-1112, Hungary; HUN-REN CSFK, MTA Centre of Excellence, Budapest, Konkoly Thege Miklós út 15-17, H-1121, Hungary; Department of Environmental and Landscape Geography, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest H-1117, Hungary.
| | - Gábor Maász
- Soós Ernő Research and Development Center, University of Pannonia, Zrínyi Miklós utca 18, Nagykanizsa H-8800, Hungary
| | - Marta Pedrosa
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria José Sampaio
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana Rita Lado Ribeiro
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Ratchnashree SR, Karmegam N, Selvam M, Manikandan S, Deena SR, Subbaiya R, Vickram AS, Kim W, Govarthanan M. Advanced technologies for the determination of quantitative structure-activity relationships and degradation efficiency of micropollutants and their removal in water - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166563. [PMID: 37647970 DOI: 10.1016/j.scitotenv.2023.166563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The growing concentrations of micropollutants in aquatic ecosystems are a global water quality issue. Understanding micropollutants varied chemical composition and potency is essential to solving this complex issue. Micropollutants management requires identifying contaminants to reduce, optimal reduction targets, and the best wastewater recycling locations. Management requires appropriate technological measures. Pharmaceuticals, antibiotics, hormones, and other micropollutants can enter the aquatic environment from point and diffuse sources, with wastewater treatment plants (WWTPs) distributing them in urban areas. Micropollutants like pharmaceuticals and hormones may not be removed by conventional WWTPs. Micropollutants affect the EU, especially in densely populated areas where surface water is consumed. This review examines several technological options that can be integrated into existing treatment methods to address this issue. In this work, oxidation, activated carbon, and their combinations as potential solutions, considering their efficacy and cost were evaluated. This study illuminates micropollutants origin and physico-chemical properties, which affect distribution, persistence, and environmental impacts. Understanding these factors helps us develop targeted micropollutant mitigation strategies to protect water quality. This review can inform policy and decision-making to reduce micropollutant impacts on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- S R Ratchnashree
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636007, Tamil Nadu, India
| | - Masilamani Selvam
- Department of Biotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai 600 095, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India.
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105. Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
9
|
Hofman‐Caris R, Dingemans M, Reus A, Shaikh SM, Muñoz Sierra J, Karges U, der Beek TA, Nogueiro E, Lythgo C, Parra Morte JM, Bastaki M, Serafimova R, Friel A, Court Marques D, Uphoff A, Bielska L, Putzu C, Ruggeri L, Papadaki P. Guidance document on the impact of water treatment processes on residues of active substances or their metabolites in water abstracted for the production of drinking water. EFSA J 2023; 21:e08194. [PMID: 37644961 PMCID: PMC10461463 DOI: 10.2903/j.efsa.2023.8194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
This guidance document provides a tiered framework for risk assessors and facilitates risk managers in making decisions concerning the approval of active substances (AS) that are chemicals in plant protection products (PPPs) and biocidal products, and authorisation of the products. Based on the approaches presented in this document, a conclusion can be drawn on the impact of water treatment processes on residues of the AS or its metabolites in surface water and/or groundwater abstracted for the production of drinking water, i.e. the formation of transformation products (TPs). This guidance enables the identification of actual public health concerns from exposure to harmful compounds generated during the processing of water for the production of drinking water, and it focuses on water treatment methods commonly used in the European Union (EU). The tiered framework determines whether residues from PPP use or residues from biocidal product use can be present in water at water abstraction locations. Approaches, including experimental methods, are described that can be used to assess whether harmful TPs may form during water treatment and, if so, how to assess the impact of exposure to these water treatment TPs (tTPs) and other residues including environmental TPs (eTPs) on human and domesticated animal health through the consumption of TPs via drinking water. The types of studies or information that would be required are described while avoiding vertebrate testing as much as possible. The framework integrates the use of weight-of-evidence and, when possible alternative (new approach) methods to avoid as far as possible the need for additional testing.
Collapse
|
10
|
Zeeshan M, Schumann P, Pabst S, Ruhl AS. Transformation of potentially persistent and mobile organic micropollutants in column experiments. Heliyon 2023; 9:e15822. [PMID: 37159681 PMCID: PMC10163653 DOI: 10.1016/j.heliyon.2023.e15822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
The occurrence of potentially persistent and mobile (PM) organic micropollutants (OMP) in the aquatic environment is recognized as a severe threat to water resources and drinking water suppliers. The current study investigated long-term fate (persistency and bio-transformation) of several emerging contaminants in a simulated bank filtration (BF) for the first time. In parallel, four sand column systems were operated with groundwater and continuously spiked with an average concentration of 1 μg/L for 24 OMP. Each column system consisted of two sand columns connected in series. Presumably, biological activities in the first column were higher than in the second column, as dissolved oxygen utilization, dissolved organic matter (DOM) and UV absorbance at 254 nm (UV254) reduction rates were high in the first column. This study revealed that 9 out of 24 OMP were persistent and mobile throughout the study under oxic conditions and within a hydraulic retention time (HRT) of 12 days. However, 2 (out of 9) OMP were persistent but showed sorption behavior. 15 (out of 24) OMP displayed bio-transformation, 4 were eliminated entirely within 4.5 days of HRT. Others showed constant or improved degradation with the adaptation (or operation) time. Improved degradation with adaption was high in the bioactive sand columns. However, 8 OMP showed improved elimination at high HRT, even in low biologically active columns. In addition, no significant effect of the DOM on the eliminations of OMP was found except for 4-hydroxy-1-(2-hydroxyethyl)-2,2,6,6,-tetramethylpiperidine (HHTMP), 2-methyl-2-propene-1-sulfonic acid (MPSA) and sulfamethoxazole (SMX). The eliminations of HHTMP (Pearson's r > 0.80, p < 0.05), MPSA (Pearson's r > 0.70) and SMX (Pearson's r > 0.80) correlated with the removals of humic substances in the sand columns. Overall, adaptation time and HRT play a crucial role in the elimination of emerging OMP through BF, yet at the same time several OMP exhibit persistent behavior.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Pia Schumann
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Silke Pabst
- German Environment Agency, Section II 3.1, Schichauweg 58, 12307, Berlin, Germany
| | - Aki Sebastian Ruhl
- German Environment Agency, Section II 3.3, Schichauweg 58, 12307, Berlin, Germany
- Technische Universität Berlin, Water Treatment, KF4, Str. des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
11
|
Ye T, Liu H, Qi W, Qu J. Removal of pharmaceutical in a biogenic/chemical manganese oxide system driven by manganese-oxidizing bacteria with humic acids as sole carbon source. J Environ Sci (China) 2023; 126:734-741. [PMID: 36503798 DOI: 10.1016/j.jes.2022.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
Bioaugmented sand filtration has attracted considerable attention because it can effectively remove contaminants in drinking water without additional chemical reagent addition. In this study, a synthesized chemical manganese dioxide (MnO2)-coated quartz sand (MnQS) and biogenic manganese oxide (BioMnOx) composite system was proposed to simultaneously remove typical pharmaceutical contaminants and Mn2+. We demonstrated a manganese-oxidizing bacterium, Pseudomonas sp. QJX-1, could oxidize Mn2+ to generate BioMnOx using humic acids (HA) as sole carbon source. The coaction of MnQS, QJX-1, and the generated BioMnOx in simultaneously removing caffeine and Mn2+ in the presence of HA was evaluated. We found a synergistic effect between them. MnQS and BioMnOx together significantly increased the caffeine removal efficiency from 32.8% (MnQS alone) and 21.5% (BioMnOx alone) to 61.2%. Meanwhile, Mn2+ leaked from MnQS was rapidly oxidized by QJX-1 to regenerate reactive BioMnOx, which was beneficial for continuous contaminant removal and system stability. Different degradation intermediates of caffeine oxidized by MnQS and BioMnOx were detected by LC-QTOF-MS analysis, which implied that caffeine was oxidized by a different pathway. Overall, this work promotes the potential application of bioaugmented sand filtration in pharmaceutical removal in the presence of natural organic matter in drinking water.
Collapse
Affiliation(s)
- Tingming Ye
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Escolà Casas M, Guivernau M, Viñas M, Fernández B, Cáceres R, Biel C, Matamoros V. Use of wood and cork in biofilters for the simultaneous removal of nitrates and pesticides from groundwater. CHEMOSPHERE 2023; 313:137502. [PMID: 36495981 DOI: 10.1016/j.chemosphere.2022.137502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
About 13% and 7% of monitored groundwater stations in Europe exceed the permitted levels of nitrates (50 mg NO3- L-1) or pesticides (0.1 μg L-1), respectively. Although slow sand filtration can remove nitrates via denitrification when oxygen is limited, it requires an organic carbon source. The present study evaluates the performance of the use of wood pellets and granulated cork as carbon sources in bench-scale biofilters operated under water-saturated and water-unsaturated conditions for more than 400 days. The biofilters were monitored for nitrate (200 mg L-1) and pesticide (mecoprop, diuron, atrazine, and bromacil, each at a concentration of 5 μg L-1) attenuation, as well as for the formation of nitrite and pesticide transformation products. Microbiological characterization of each biofilter was also performed. The water-saturated wood biofilter achieved the best nitrate removal (>99%), while the cork biofilters lost all denitrification power over time (from 38% to no removal). The unsaturated biofilter columns were not effective for removing nitrates (20-30% removal). As for pesticides, all the biofilters achieved high removal rates of mecoprop and diuron (>99% and >75%, respectively). Atrazine removal was better in the wood-pellet biofilters than the cork ones (68-96% vs. 31-38%). Bromacil was only removed in the water-unsaturated cork biofilter (67%). However, a bromacil transformation product was formed there. The water-saturated wood biofilter contained the highest number of denitrifying microorganisms, with Methyloversatilis as the characteristic genus. Microbial composition could explain the high removal of pesticides and nitrates achieved in the wood-pellet biofilter. Overall, the results indicate that wood-pellet biofilters operated under water-saturated conditions are a good solution for treating groundwater contaminated with nitrates and pesticides.
Collapse
Affiliation(s)
- Mònica Escolà Casas
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| | - Miriam Guivernau
- Institute of Agrifood Research and Technology (IRTA), Sustainability in Biosystems Program, Torre Marimon, E-08140, Caldes de Montbui, Spain
| | - Marc Viñas
- Institute of Agrifood Research and Technology (IRTA), Sustainability in Biosystems Program, Torre Marimon, E-08140, Caldes de Montbui, Spain
| | - Belén Fernández
- Institute of Agrifood Research and Technology (IRTA), Sustainability in Biosystems Program, Torre Marimon, E-08140, Caldes de Montbui, Spain
| | - Rafaela Cáceres
- Institute of Agrifood Research and Technology (IRTA), Sustainability in Biosystems Program, Torre Marimon, E-08140, Caldes de Montbui, Spain
| | - Carme Biel
- Institute of Agrifood Research and Technology (IRTA), Sustainable Plant Protection Program, Ctra. de Cabrils, Km 2, E08348, Cabrils, Spain
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| |
Collapse
|
13
|
Manimegalai S, Vickram S, Deena SR, Rohini K, Thanigaivel S, Manikandan S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review. CHEMOSPHERE 2023; 312:137319. [PMID: 36410505 DOI: 10.1016/j.chemosphere.2022.137319] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Water treatment is a worldwide issue. This review aims to present current problems and future challenges in water treatments with the existing methodologies. Carbon nanotube production, characterization, and prospective uses have been the subject of considerable and rigorous research around the world. They have a large number of technical uses because of their distinct physical characteristics. Various catalyst materials are used to make carbon nanotubes. This review's primary focus is on integrated and single-treatment technologies for all kinds of drinking water resources, including ground and surface water. Inorganic non-metallic matter, heavy metals, natural organic matter, endocrine-disrupting chemicals, disinfection by-products and microbiological pollutants are among the contaminants that these treatment systems can remediate in polluted drinking water resources. Significant advances in the antibacterial and adsorption capabilities of carbon-based nanomaterials have opened up new options for excluding organic/inorganic and biological contaminants from drinking water in recent years. The advancements in multifunctional nanocomposites synthesis pave the possibility for their use in enhanced wastewater purification system design. The adsorptive and antibacterial characteristics of six main kinds of carbon nanomaterials are single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene oxide, fullerene and single-walled carbon nanohorns. This review potentially addressed the essential metallic and polymeric nanocomposites, are described and compared. Barriers to use these nanoparticles in long-term water treatment are also discussed.
Collapse
Affiliation(s)
- Sengani Manimegalai
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 600087, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Santhana Raj Deena
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Malaysia; Department of Bioinformatics, Saveetha School of Engineering, (Saveetha Institute of Medical and Technical Sciences) SIMATS, Chennai, 602 105, Tamil Nadu, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - R Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India.
| |
Collapse
|
14
|
Zhou S, Schulze T, Brack W, Seiler TB, Hollert H. Spatial and temporal variations in anti-androgenic activity and environmental risk in a small river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158622. [PMID: 36084781 DOI: 10.1016/j.scitotenv.2022.158622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The biological effects of multiple compounds have been widely investigated in aquatic environments. However, investigations of spatial and temporal variations in biological effects are rarely performed because they are time-consuming and labor-intensive. In this study, the variability of the anti-androgen, receptor-mediated activity of surface water samples was observed over 3 years using in vitro bioassays. Large-volume water samples were collected at one site upstream (Wer site) and two sites downstream (Sil and Nien sites) of a wastewater treatment plant (WWTP) outfall in the Holtemme River. Anti-AR activity was persistently present in all surface water samples over the three years. Large spatial variations in anti-androgenic activity were observed, with the lowest activity at the Wer site (mean concentration of 9.5 ± 7.2 μg flutamide equivalents/L) and the highest activity at the Sil site (mean concentration of 31.1 ± 12.0 μg flutamide equivalents/L) directly influenced by WWTP effluents. On the temporal scale, no distinct trend for anti-AR activity was observed among the seasons in all three years. The anti-androgenic activity at the upstream Wer site showed a decreasing trend from 2014 to 2016, indicating improved water quality. A novel bioanalytical-equivalent-based risk assessment method considering the frequency of risk occurrence was developed and then utilized to assess the environmental risk of anti-androgenic activity in the Holtemme River. The results revealed that the highest risk was present at the Sil site, while the risk was considerably reduced at the Nien site. The risk at the upstream Wer site was the lowest.
Collapse
Affiliation(s)
- Shangbo Zhou
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Tobias Schulze
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Werner Brack
- UFZ Helmholtz Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstraße 15, D-04318 Leipzig, Germany; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; Hygiene-Institut des Ruhrgebiets, Rotthauser Str. 21, 45879 Gelsenkirchen, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research (Biology V), Department of Ecosystem Analysis, Worringerweg 1, D-52074 Aachen, Germany; College of Environment and Ecology, Chongqing University, Chongqing 400044, China; Goethe University Frankfurt, Faculty Biological Sciences, Department Evolutionary Ecology and Environmental Toxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Microbial ecology of biofiltration used for producing safe drinking water. Appl Microbiol Biotechnol 2022; 106:4813-4829. [PMID: 35771243 PMCID: PMC9329406 DOI: 10.1007/s00253-022-12013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/24/2022]
Abstract
Abstract
Biofiltration is a water purification technology playing a pivotal role in producing safe drinking water. This technology attracts many interests worldwide due to its advantages, such as no addition of chemicals, a low energy input, and a high removal efficiency of organic compounds, undesirable taste and odours, and pathogens. The current review describes the microbial ecology of three biofiltration processes that are routinely used in drinking water treatment plants, i.e. (i) rapid sand filtration (RSF), (ii) granular activated carbon filtration (GACF), and (iii) slow sand filtration (SSF). We summarised and compared the characteristics, removal performance, and corresponding (newly revealed) mechanisms of the three biofiltration processes. Specifically, the microbial ecology of the different biofilter processes and the role of microbial communities in removing nutrients, organic compounds, and pathogens were reviewed. Finally, we highlight the limitations and challenges in the study of biofiltration in drinking water production, and propose future perspectives for obtaining a comprehensive understanding of the microbial ecology of biofiltration, which is needed to promote and optimise its further application. Key points • Biofilters are composed of complex microbiomes, primarily shaped by water quality. • Conventional biofilters contribute to address safety challenges in drinking water. • Studies may underestimate the active/functional role of microbiomes in biofilters. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12013-x.
Collapse
|
16
|
Zhou J, Wang D, Ju F, Hu W, Liang J, Bai Y, Liu H, Qu J. Profiling microbial removal of micropollutants in sand filters: Biotransformation pathways and associated bacteria. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127167. [PMID: 34536843 DOI: 10.1016/j.jhazmat.2021.127167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Although there is growing evidence that micropollutants can be microbially converted in rapid sand filters of drinking water treatment plants (DWTPs), little is known about the biotransformation pathways and associated microbial strains in this process. Here, we constructed sand filter columns filled with manganese or quartz sand obtained from full-scale DWTPs to explore the biotransformation of eight micropollutants. Under seven different empty bed contact times (EBCTs), the column experiments showed that caffeine and atenolol were easily removed (up to 92.1% and 97.6%, respectively) with adsorption and microbial biotransformation of the filters. In contrast, the removal of other six micropollutants (i.e., naproxen, carbamazepine, atrazine, trimethoprim, sulfamethoxazole, and sulfadiazine) in the filters were less than 27.1% at shorter EBCTs, but significantly increased at EBCT = 4 h, indicating the dominant role of microbial biotransformation in these micropollutants removal. Integrated analysis of metagenomic reads and transformation products of micropollutants showed a shift in caffeine oxidation and demethylation pathways at different EBCTs, simultaneous occurrence of atrazine hydrolysis and oxidation pathways, and sulfadiazine and sulfamethoxazole oxidation in the filters. Furthermore, using genome-centric analysis, we observed previously unidentified degrading strains, e.g., Piscinibacter, Hydrogenophaga, and Rubrivivax for caffeine transformation, and Methylophilus and Methyloversatilis for atenolol transformation.
Collapse
Affiliation(s)
- Jie Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Wanchao Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinsong Liang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
17
|
González-Gaya B, Lopez-Herguedas N, Bilbao D, Mijangos L, Iker AM, Etxebarria N, Irazola M, Prieto A, Olivares M, Zuloaga O. Suspect and non-target screening: the last frontier in environmental analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1876-1904. [PMID: 33913946 DOI: 10.1039/d1ay00111f] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suspect and non-target screening (SNTS) techniques are arising as new analytical strategies useful to disentangle the environmental occurrence of the thousands of exogenous chemicals present in our ecosystems. The unbiased discovery of the wide number of substances present over environmental analysis needs to find a consensus with powerful technical and computational requirements, as well as with the time-consuming unequivocal identification of discovered analytes. Within these boundaries, the potential applications of SNTS include the studies of environmental pollution in aquatic, atmospheric, solid and biological samples, the assessment of new compounds, transformation products and metabolites, contaminant prioritization, bioremediation or soil/water treatment evaluation, and retrospective data analysis, among many others. In this review, we evaluate the state of the art of SNTS techniques going over the normalized workflow from sampling and sample treatment to instrumental analysis, data processing and a brief review of the more recent applications of SNTS in environmental occurrence and exposure to xenobiotics. The main issues related to harmonization and knowledge gaps are critically evaluated and the challenges of their implementation are assessed in order to ensure a proper use of these promising techniques in the near future.
Collapse
Affiliation(s)
- B González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Basque Country, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Oh JE, Yoon Y, Zoh KD. Special issue: Current status and future prospects of micropollutants in water: Monitoring, removal, and risk. CHEMOSPHERE 2021; 263:128228. [PMID: 33297184 DOI: 10.1016/j.chemosphere.2020.128228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
|