1
|
Azabo M, Abdelhaleem A, Fujii M, Nasr M. Pontederia crassipes utilization for dual phytoremediation and adsorption in greywater treatment: a techno-economic and sustainable approach. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2113-2126. [PMID: 38967334 DOI: 10.1080/15226514.2024.2374887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. P. crassipes was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH4-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH4+-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.
Collapse
Affiliation(s)
- Morish Azabo
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Amal Abdelhaleem
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | - Manabu Fujii
- Civil and Environmental Engineering Department, Tokyo Institute of Technology, Meguro-Ku, Tokyo, Japan
| | - Mahmoud Nasr
- Environmental Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Gallardo-Bustos C, Tapia N, Vargas IT. Synthetic greywater treatment using a scalable granular activated carbon bioelectrochemical reactor. Bioelectrochemistry 2024; 159:108741. [PMID: 38810323 DOI: 10.1016/j.bioelechem.2024.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Greywater reuse has emerged as a promising solution for addressing water shortages. However, greywater needs treatment before reuse to meet the required water quality standards. Conventional wastewater treatment technologies are unsuitable for recreating highly decentralized domestic greywater. This study evaluated bioelectrochemical reactors (BERs) with granular activated carbon (GAC) as a sustainable alternative for developing decentralized and low-cost biological treatment systems. BERs using GAC as the anode material and conventional GAC biofilters (BFs) for synthetic greywater treatment were operated in batch mode for 110 days in two stages: (i) with polarized anodes at -150 mV vs. Ag/AgCl and (ii) as a microbial fuel cell with an external resistance of 1 kΩ. Anode polarization produced an electrosorption effect, increasing the ion removal of the BERs. Power production during the operation and cyclic voltammetry tests of the extracted granules revealed electrochemically active biofilm development on the BERs. Although low power density (0.193 ± 0.052 µW m-3) was observed in BERs, they showed a similar performance in sCOD removal (BER = 91.6-89.6 %; BF = 96.2-93.2 %) and turbidity removal (BER = 81-82 %; BF = 30-62 %) to BFs that used 50 % aeration. Additionally, scanning electron microscopy of sampled granules showed higher biomass formation in BER granules than in BF granules, suggesting a higher contribution of sessile (vs. planktonic) cells to the treatment. Thus, the results highlight the synergistic removal effect of the GAC-based BER. The scalable design presented in this study represents a proof-of-concept for developing BERs to use in decentralized greywater treatment systems.
Collapse
Affiliation(s)
- Carlos Gallardo-Bustos
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile; Consorcio Tecnológico del Agua (COTH(2)O), Chile
| | - Natalia Tapia
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile; Consorcio Tecnológico del Agua (COTH(2)O), Chile
| | - Ignacio T Vargas
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile; Centro de Desarrollo Urbano Sustentable (CEDEUS), Chile; Consorcio Tecnológico del Agua (COTH(2)O), Chile.
| |
Collapse
|
3
|
Betsholtz A, Falås P, Svahn O, Cimbritz M, Davidsson Å. New Perspectives on the Interactions between Adsorption and Degradation of Organic Micropollutants in Granular Activated Carbon Filters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11771-11780. [PMID: 38889182 PMCID: PMC11223462 DOI: 10.1021/acs.est.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The removal of organic micropollutants in granular activated carbon (GAC) filters can be attributed to adsorption and biological degradation. These two processes can interact with each other or proceed independently. To illustrate the differences in their interaction, three 14C-labeled organic micropollutants with varying potentials for adsorption and biodegradation were selected to study their adsorption and biodegradation in columns with adsorbing (GAC) and non-adsorbing (sand) filter media. Using 14CO2 formation as a marker for biodegradation, we demonstrated that the biodegradation of poorly adsorbing N-nitrosodimethylamine (NDMA) was more sensitive to changes in the empty bed contact time (EBCT) compared with that of moderately adsorbing diclofenac. Further, diclofenac that had adsorbed under anoxic conditions could be degraded when molecular oxygen became available, and substantial biodegradation (≥60%) of diclofenac could be achieved with a 15 min EBCT in the GAC filter. These findings suggest that the retention of micropollutants in GAC filters, by prolonging the micropollutant residence time through adsorption, can enable longer time periods for degradations than what the hydraulic retention time would allow for. For the biologically recalcitrant compound carbamazepine, differences in breakthrough between the 14C-labeled and nonradiolabeled compounds revealed a substantial retention via successive adsorption-desorption, which could pose a potential challenge in the interpretation of GAC filter performance.
Collapse
Affiliation(s)
- Alexander Betsholtz
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Per Falås
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Ola Svahn
- School
of Education and Environment, Division of Natural Sciences, Kristianstad University, Kristianstad 291 88, Sweden
| | - Michael Cimbritz
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| | - Åsa Davidsson
- Department
of Process and Life Science Engineering. Division of Chemical Engineering, Lund University, Lund 221 00, Sweden
| |
Collapse
|
4
|
Jang H, Kang S, Kim J. Identification of Membrane Fouling with Greywater Filtration by Porous Membranes: Combined Effect of Membrane Pore Size and Applied Pressure. MEMBRANES 2024; 14:46. [PMID: 38392673 PMCID: PMC10890543 DOI: 10.3390/membranes14020046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
Membrane fouling caused by complex greywater synthesized by personal care products and detergents commercially available for household applications was investigated using dead-end microfiltration (MF) and analyzed systematically by a multistage Hermia blocking model as a first attempt. The highest flux decline was associated with the smallest pore size of the membrane (0.03 μm). This effectiveness was more pronounced at higher applied pressures to the membrane. A cake layer was formed on the membrane consisting mainly of silica particles present as ingredients in greywater. Although organic rejection was low by the porous MF membrane, the organic compound contributed to membrane fouling in the filtration stage. With a 0.03 μm pore size of the membrane, dominant fouling mechanisms were classified into three stages as applied pressure increased, such as complete pore blocking, intermediate pore blocking, and cake layer formation. Specifically, during the early stage of membrane filtration at 1.5 bar, membrane fouling was determined by complete pore blocking in the 0.10 μm pore size of the membrane. However, the later stage of membrane fouling was controlled mainly by intermediate pore blocking. Regardless of the applied pressure, pore constriction or standard blocking played an important role in the fouling rate with a 0.45 μm pore size of the membrane. Our results also support that complex formation can occur due to the concentration of organic and inorganic species present in simulated greywater. Thus, strategic approaches such as periodic, chemically enhanced backwashing need to be developed and tailored to remove both organic and inorganic fouling from MF membranes treating greywater.
Collapse
Affiliation(s)
- Hoseok Jang
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Sinu Kang
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, Inha-ro 100, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Van de Walle A, Kim M, Alam MK, Wang X, Wu D, Dash SR, Rabaey K, Kim J. Greywater reuse as a key enabler for improving urban wastewater management. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100277. [PMID: 37206314 PMCID: PMC10188637 DOI: 10.1016/j.ese.2023.100277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Sustainable water management is essential to guaranteeing access to safe water and addressing the challenges posed by climate change, urbanization, and population growth. In a typical household, greywater, which includes everything but toilet waste, constitutes 50-80% of daily wastewater generation and is characterized by low organic strength and high volume. This can be an issue for large urban wastewater treatment plants designed for high-strength operations. Segregation of greywater at the source for decentralized wastewater treatment is therefore necessary for its proper management using separate treatment strategies. Greywater reuse may thus lead to increased resilience and adaptability of local water systems, reduction in transport costs, and achievement of fit-for-purpose reuse. After covering greywater characteristics, we present an overview of existing and upcoming technologies for greywater treatment. Biological treatment technologies, such as nature-based technologies, biofilm technologies, and membrane bioreactors (MBR), conjugate with physicochemical treatment methods, such as membrane filtration, sorption and ion exchange technologies, and ultraviolet (UV) disinfection, may be able to produce treated water within the allowable parameters for reuse. We also provide a novel way to tackle challenges like the demographic variance of greywater quality, lack of a legal framework for greywater management, monitoring and control systems, and the consumer perspective on greywater reuse. Finally, benefits, such as the potential water and energy savings and sustainable future of greywater reuse in an urban context, are discussed.
Collapse
Affiliation(s)
- Arjen Van de Walle
- Center for Microbial Ecology and Technology, Ghent University, 9052, Ghent, Belgium
| | - Minseok Kim
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
| | - Md Kawser Alam
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
| | - Xiaofei Wang
- Center for Microbial Ecology and Technology, Ghent University, 9052, Ghent, Belgium
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5, Incheon, Republic of Korea
| | - Smruti Ranjan Dash
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology, Ghent University, 9052, Ghent, Belgium
- Corresponding author.
| | - Jeonghwan Kim
- Department of Environmental Engineering, Program of Environmental and Polymeric Engineering, Inha University, 22212, Incheon, Republic of Korea
- Corresponding author.
| |
Collapse
|
6
|
Bani-Melhem K, Elektorowicz M, Tawalbeh M, Al Bsoul A, El Gendy A, Kamyab H, Yusuf M. Integrating of electrocoagulation process with submerged membrane bioreactor for wastewater treatment under low voltage gradients. CHEMOSPHERE 2023; 339:139693. [PMID: 37536541 DOI: 10.1016/j.chemosphere.2023.139693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Treating and reusing wastewater has become an essential aspect of water management worldwide. However, the increase in emerging pollutants such as polycyclic aromatic hydrocarbons (PAHs), which are presented in wastewater from various sources like industry, roads, and household waste, makes their removal difficult due to their low concentration, stability, and ability to combine with other organic substances. Therefore, treating a low load of wastewater is an attractive option. The study aimed to address membrane fouling in the submerged membrane bioreactor (SMBR) used for wastewater treatment. An aluminum electrocoagulation (EC) device was combined with SMBR as a pre-treatment to reduce fouling. The EC-SMBR process was compared with a conventional SMBR without EC, fed with real grey water. To prevent impeding biological growth, low voltage gradients were utilized in the EC deviceThe comparison was conducted over 60 days with constant transmembrane pressure and infinite solid retention time (SRT). In phase I, when the EC device was operated at a low voltage gradient (0.64 V/cm), no significant improvement in the pollutants removal was observed in terms of color, turbidity, and chemical oxygen demand (COD). Nevertheless, during phase II, a voltage gradient of 1.26 V/cm achieved up to 100%, 99.7%, 92%, 94.1%, and 96.5% removals in the EC-SMBR process in comparison with 95.1%, 95.4%, 85%, 91.7% and 74.2% removals in the SMBR process for turbidity, color, COD, ammonia nitrogen (NH3-N), total phosphorus (TP), respectively. SMBR showed better anionic surfactant (AS) removal than EC-SMBR. A voltage gradient of 0.64 V/cm in the EC unit significantly reduced fouling by 23.7%, while 1.26 V/cm showed inconsistent results. Accumulation of Al ions negatively affected membrane performance. Low voltage gradients in EC can control SMBR fouling if Al concentration is controlled. Future research should investigate EC-SMBR with constant membrane flux for large-scale applications, considering energy consumption and operating costs.
Collapse
Affiliation(s)
- Khalid Bani-Melhem
- Water Technology Unit (WTU), Center for Advanced Materials (CAM). Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Maria Elektorowicz
- Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Blvd de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada
| | - Muhammad Tawalbeh
- Sustainable and Renewable Energy Engineering Department, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Abeer Al Bsoul
- Al-Balqa Applied University, Al-Huson University College, Department of Chemical Engineering, Jordan
| | - Ahmed El Gendy
- Environmental Engineering Program, Department of Construction and Architectural Engineering, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia.
| |
Collapse
|
7
|
Wei T, Wang Z, Yang Y, Xiang W, Liu Y, Wu B, Cui X, Guo B, Zhou Y. Microbial niches and dynamics of antibiotic resistance genes in a bio-enhanced granular-activated carbon biofilm treating greywater. CHEMOSPHERE 2023; 331:138774. [PMID: 37100251 DOI: 10.1016/j.chemosphere.2023.138774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/30/2023] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
Accumulation and transmission of antibiotic resistance genes (ARGs) in greywater treatment systems present risks for its reuse. In this study, a gravity flow self-supplying oxygen (O2) bio-enhanced granular activated carbon dynamic biofilm reactor (BhGAC-DBfR) was developed to treat greywater. Maximum removal efficiencies were achieved at saturated/unsaturated ratios (RSt/Ust) of 1:1.1 for chemical oxygen demand (97.6 ± 1.5%), linear alkylbenzene sulfonates (LAS) (99.2 ± 0.5%), NH4+-N (99.3 ± 0.7%) and total nitrogen (85.3 ± 3.2%). Microbial communities were significantly different at various RSt/Ust and reactor positions (P < 0.05). The unsaturated zone with low RSt/Ust showed more abundant microorganisms than the saturated zone with high RSt/Ust. The reactor-top community was predominant by aerobic nitrification (Nitrospira) and LAS biodegradation (Pseudomonas, Rhodobacter and Hydrogenophaga) related genera; but reactor-bottom community was predominant by anaerobic denitrification and organics removal related genera (Dechloromonas and Desulfovibrio). Most of the ARGs (e.g., intI-1, sul1, sul2 and korB) were accumulated in the biofilm, which were closely associated with microbial communities at reactor top and stratification. The saturated zone can achieve over 80% removal of the tested ARGs at all operation Phases. Results suggested that BhGAC-DBfR can provide assistance in blocking the environment dissemination of ARGs during greywater treatment.
Collapse
Affiliation(s)
- Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziqi Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Yang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wanchen Xiang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Surrey, Surrey, GU2 7XH, United Kingdom.
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Recovering the Soybean Hulls after Peroxidase Extraction and Their Application as Adsorbent for Metal Ions and Dyes. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/8532316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This study is aimed at extending the soybean hulls’ lifetime by their utilization as an adsorbent for metal ions (Cd2+ and Cu2+) and dyes (Reactive Yellow 39 (RY 39) and Acid Blue 225 (AB 225)). ATR-FTIR spectroscopy, FE-SEM microscopy, and zeta potential measurements were used for adsorbent characterization. The effect of the solution’s pH, peroxidase extraction, adsorbent particle size, contact time, the pollutant’s initial concentration, and temperature on the soybean hulls’ adsorption potential was studied. Before peroxidase extraction, soybean hulls were capable of removing 72% Cd2+, 71% Cu2+ (at a pH of 5.00) or 81% RY 39, and 73% AB 225 (at a pH of 3.00). For further experiments, soybean hulls without peroxidase were used for several reasons: (1) due to their observed higher metal ion removal, (2) in order to reduce the waste disposal cost after the peroxidase (usually used for wastewater decolorization) extraction, and (3) since the soybean hulls without peroxidase possessed significantly lower secondary pollution than those with peroxidase. Cd2+ and Cu2+ removal was slightly increased when the smaller adsorbent fraction (710-1000 μm) was used, while the adsorbent particle size did not have an impact on dye removal. After 30 min of contact time, 92% and 88% of RY 39 and AB 225 were removed, respectively, while after the same contact time, 80% and 69% of Cd2+ and Cu2+ were removed, respectively. Adsorption of all tested pollutants follows a pseudo-second-order reaction through the fast adsorption, intraparticle diffusion, and final equilibrium stage. The maximal adsorption capacities determined by the Langmuir model were 21.10, 20.54, 16.54, and 17.23 mg/g for Cd2+, Cu2+, RY 39, and AB 225, respectively. Calculated thermodynamic parameters suggested that the adsorption of all pollutants is spontaneous and of endothermic character. Moreover, different binary mixtures were prepared, and the competitive adsorptions revealed that the soybean hulls are the most efficient adsorbent for the mixture of AB 225 and Cu2+. The findings of this study contribute to the soybean hulls’ recovery after the peroxidase extraction and bring them into the circular economy concept.
Collapse
|
9
|
Shaikh IN, Ahammed MM. Granular media filtration for on-site treatment of greywater: A review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:992-1016. [PMID: 36358042 DOI: 10.2166/wst.2022.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have put pressure on water resources and centralized wastewater treatment facilities and the need for greywater treatment at decentralized levels is increasing. This paper reviews the studies that used granular filtration for the treatment of greywater. Filter media characteristics that helps in the selection of suitable sustainable and environmental friendly materials without compromising the quality of treated greywater is first reported. The effect of type of filter media, media size and media depth along with the effect of operating conditions are discussed in detail. The choice, role and effect of different pre-treatment alternatives to granular media filtration are also presented. The efficiency of the filters to remove different physicochemical and microbial parameters was compared with different reuse guidelines and standards. Reported studies indicate that not only filter media characteristics and operating conditions but also the quality of raw greywater significantly influence the filter performance. Based on the source of greywater and desired reuse option, different granular media filtration alternatives are suggested. Operation of filters with properly selected media at optimum conditions based on the source of greywater helps filter in achieve the different reuse standards.
Collapse
Affiliation(s)
- Irshad N Shaikh
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India E-mail:
| | - M Mansoor Ahammed
- Department of Civil Engineering, Sardar Vallabhbhai National Institute of Technology, Surat 395007, India E-mail:
| |
Collapse
|
10
|
He Z, Li Y, Qi B. Recent insights into greywater treatment: a comprehensive review on characteristics, treatment technologies, and pollutant removal mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54025-54044. [PMID: 35641750 DOI: 10.1007/s11356-022-21070-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
With the rapid socio-economic and industrial development, the problem of water shortage is becoming increasingly serious. Seeking alternative water sources to reduce the need for freshwater resources is an increasing concern. Household greywater production is high and accounts for about 50-80% of domestic wastewater. In recent years, the in situ treatment and reuse of greywater have received widespread attention. Treated greywater can be used for non-potable purposes such as toilet flushing and irrigation, which can greatly reduce the pressure of freshwater resource shortage. This paper reviews the sources and characteristics of greywater and analyzes its quantity and quality. In addition, this paper outlines and summarizes various greywater treatment technologies commonly used, including physical, biological, and chemical treatment technologies, as well as combination technologies. Understanding the mechanisms of contaminant removal is essential for effective greywater treatment. While discussing different treatment technologies, we focus on the removal mechanisms of pollutants from greywater, including organics, nutrients, surfactants, and emerging contaminants. Finally, future perspectives on greywater management and reuse are presented. Through a comprehensive review, we expect that this review will help the reader to better understand the characteristics of greywater and to more rationally select the appropriate treatment technology based on the removal mechanism of pollutants.
Collapse
Affiliation(s)
- Zhiqin He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Yun Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, People's Republic of China.
| | - Benkun Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| |
Collapse
|
11
|
Gul A, Ma’amor A, Khaligh NG, Julkapli NM. Recent Advancements in the Applications of Activated Carbon for the Heavy Metals and Dyes Removal. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Lu Z, Jing Z, Huang J, Ke Y, Li C, Zhao Z, Ao X, Sun W. Can we shape microbial communities to enhance biological activated carbon filter performance? WATER RESEARCH 2022; 212:118104. [PMID: 35114529 DOI: 10.1016/j.watres.2022.118104] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A new focus on biofiltration has emerged that aims to shape microbial communities to improve treatment efficacy. It is therefore necessary to understand the linkages between microbial community structure and biofilter function. However, the assembly and interaction of microbial communities in biological activated carbon (BAC) filters are unknown. In this study, we selected one coal-based granular activated carbon (GAC), GAC-13, with simultaneously developed micropore and micro-level macropore volume used for a bench-scale BAC column experiment, and compared it with other coal-based GACs and wood-based GAC in terms of the dissolved organic carbon (DOC) removal and microbial community characteristics. The results showed that there was no difference between the DOC removal efficiency of BAC-13 and the other two coal-based BAC filters with high iodine value in the period dominated by adsorption, while the DOC removal efficiency of BAC-13 (64.7±0.6%) was significantly higher than that of other BAC filters (36.3±0.8-54.1±0.4%) with a difference of 0.3-0.7 mg/L in DOC during the steady state. The bacterial communities were strongly assembled by deterministic rather than stochastic factors, where the surface polarity of GAC had a greater effect on the microbial communities than its physical properties. The corresponding co-occurrence network revealed that microbes in the BAC filter may be more cooperative than competitive. The keystone bacterium Hyphomicrobium, which had a relatively low abundance, contributed 0.3-1% more to the most abundant functions and produced 5-21 proteins/(g·GAC) more than the dominant bacterium Sphingobium. The metaproteomic-based approach could provide more accurate information regarding the contributions of different species to metabolic functions. The pore size distribution of GAC was found to be an important factor in determining BAC filter performance; the most important pore sizes were micropores and micro-level macropores (0.2-10 μm and >100 μm in diameter), and the latter impacted the abundance of keystone species. Overall, our findings provide new insights into shaping microbial communities by optimizing pore size structure to improve BAC performance, especially the abundance of keystone species.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Huang
- Beijing Drainage Group Co. Ltd. (BDG), Beijing 100022, China
| | - Yanchu Ke
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China; Beijing Engineering Research Center of Environmental Material for Water Purification, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China.
| |
Collapse
|
13
|
Thirumal V, Yuvakkumar R, Ravi G, Dineshkumar G, Ganesan M, Alotaibi SH, Velauthapillai D. Characterization of activated biomass carbon from tea leaf for supercapacitor applications. CHEMOSPHERE 2022; 291:132931. [PMID: 34793843 DOI: 10.1016/j.chemosphere.2021.132931] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
In this study, a facile synthesis of chemical and thermal activation of biomass tea-waste materials was explored. A tea-waste biosource carbon was explored by chemical vapor deposition (CVD) method at 700 °C. The KOH-treated carbon (AC-KH) and H3PO4-treated carbon (AC-HP) were systematically studied for morphological characteristics and showed good morphological structures and a few transparent focused layered nanosheets. The elemental analysis done by scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed the presence of activated carbon. Fourier transform infrared spectroscopy (FT-IR) showed carbon-containing functional groups. The electrochemical analysis showed cyclic voltammetry (CV) curves for electric double layer capacitance (EDLC) with 3 M KOH electrolyte. The Nyquist plot obtained using electrochemical impedance spectroscopy (EIS) showed charge transfer resistance value (Rct) of 6.08 Ω. The electrochemical galvanostatic charge-discharge (GCD) study was conducted to obtain the specific capacitance (Scp) values of AC-KH, which were found to be 131.95 F/g at 0.5 A/g and also AC-HP active material was observed 55.76 F/g at 1 A/g. The AC-KH showed superior electrochemical performance when compared to AC-HP material. Hence, AC-KH is a promising active material for high-energy supercapacitor applications.
Collapse
Affiliation(s)
- V Thirumal
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - G Dineshkumar
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
| | - M Ganesan
- Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, Tamil Nadu, India
| | - Saad H Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
14
|
Li H, Yang Y, Li X, Zhou Z, Feng J, Dai Y, Li X, Ren J. Degradation of sulfamethazine by vacuum ultraviolet-activated sulfate radical-advanced oxidation: efficacy, mechanism and influences of water constituents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Effect of Hydraulic Retention Time on the Performance of a Compact Moving Bed Biofilm Reactor for Effluent Polishing of Treated Sewage. WATER 2022. [DOI: 10.3390/w14010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Treated effluent from a wastewater treatment plant can be further reused as a water resource for a water supply treatment plant. In this case, the treated sewage gathered in the study of the Class V National Water Quality Standard (NWQS) of Malaysia would be treated for use as a water resource for a water treatment plant. In a moving bed biofilm reactor (MBBR) with a 500-L working volume, organic pollutants, undesirable nutrients, and bacteria were removed without disinfectant. At 24-h hydraulic retention time (HRT), the maximum removal efficiency of 5-day biological oxygen demand, ammonia–nitrogen (NH3-N), and total phosphorus were 71%, 48%, and 12%, respectively. The biofilm thickness, which was captured using scanning electron microscopy, increased from 102.6 μm (24-h HRT) to 297.1 μm (2-h HRT). A metagenomic analysis using 16S rRNA showed an abundance of anaerobic bacteria, especially from the Proteobacteria phylum, which made up almost 53% of the total microbes. MBBR operated at 24-h HRT could improve effluent quality, as its characteristics fell into Class IIA of the NWQS of Malaysia, with the exception of the NH3-N content, which indicated that the effluent needed conventional treatment prior to being reused as potable water.
Collapse
|
16
|
Hess A, Morgenroth E. Biological activated carbon filter for greywater post-treatment: Long-term TOC removal with adsorption and biodegradation. WATER RESEARCH X 2021; 13:100113. [PMID: 34611621 PMCID: PMC8476437 DOI: 10.1016/j.wroa.2021.100113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 05/30/2023]
Abstract
Biological activated carbon (BAC) filters can be used to remove residual total organic carbon (TOC) from greywater after a membrane bioreactor. The two main TOC removal processes are adsorption to the granular activated carbon (GAC) and biological degradation. Biodegradation leads to the growth of microorganisms in the filter bed, which can lead to increased pressure loss over the filter bed. However, the roles of sorption and biodegradation in long-term TOC removal and how they complement each other are unclear. We monitored TOC removal from greywater in a BAC filter installed following a membrane bioreactor over more than 900 days. Removal performance depended on the operational time of the BAC filter, the influent TOC concentration, and in the upper part of the filter on the empty bed contact time (EBCT). Across the overall filter, the EBCT did not significantly influence TOC removal, showing that the filter was sufficiently large for the range of flow rates observed. Analysis of the long-term data revealed the equal importance of sorption and biodegradation over the whole operation period and the whole filter bed. Most of the TOC was removed in the upper part of the filter, where biodegradation was the dominant mechanism. In the lower part of the filter, sorption capacity remained and allowed high influent TOC concentrations to be buffered. The generous filter design with low average filtration rates ensured long-term TOC removal. The only maintenance needed was backwashing, which was required only after more than 800 days of operation. Backwashing effectively reduced the pressure loss but had no significant influence on the effluent water quality. Our study shows that BAC filters are a suitable post-treatment step for the treatment of greywater with highly variable flow and TOC concentrations.
Collapse
Affiliation(s)
- Angelika Hess
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Thirumal V, Dhamodharan K, Yuvakkumar R, Ravi G, Saravanakumar B, Thambidurai M, Dang C, Velauthapillai D. Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications. CHEMOSPHERE 2021; 282:131033. [PMID: 34102489 DOI: 10.1016/j.chemosphere.2021.131033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
This paper reported the successful preparation and characterization of bio-activated carbon nanosheets (ACNSs) synthesized from tamarind (tamarind indicia) fruits shells (TFSs) by employing Chemical Vapor Deposition (CVD) tubular furnace. The preparation of pure ACNSs and also potassium hydroxide (KOH) activated carbon nanosheets (K-ACNSs) were made through a pyrolysis process with Argon (Ar) gas as an inert gas at 800 °C for 2h 30min, followed by further purifications of K-ACNSs. The scanning electron microscope (SEM) images of ACNSs and K-ACNSs explored with and without pores respectively. The SEM micrographs also explored 3D-porous microstructure sheets with thickness around 18-65 nm. Raman spectroscopy explored crystallinity, SP2 order and graphitization at 1577-1589 cm-1. The major functional groups were also observed. The photoluminescence (PL) was analyzed for K-ACNSs materials and revealed carbon emission broad peak value at 521.3 nm. As prepared ACNSs and K-ACNSs active materials was applied for three-electrode materials of energy storage supercapacitor analysis of cyclic voltammeter for -0.4 - 0.15 V at scan rates of 10-100 mV/s. The electrochemical impedance spectroscopy (EIS) was performed with low Rct values of K-ACNSs as 0.65Ω when compared to pure ACNSs as 5.03Ω. Mainly, the galvanostatic charge-discharge test carried out in ACNSs and KCNSs materials was corresponded to 77 and 245.03 F/g respectively, with respect to 1 A/g current density. Finally, we promise that this reported novel tamarind bio-waste into conductive porous carbon nanosheets could develop future energy storage applications of biomass-derived carbons.
Collapse
Affiliation(s)
- V Thirumal
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - K Dhamodharan
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - B Saravanakumar
- SARP, Central Institute of Plastics Engineering & Technology (CIPET), Bhubaneswar, 751024, Odisha, India
| | - M Thambidurai
- COEB, School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Cuong Dang
- COEB, School of Electrical and Electronic Engineering, The Photonics Institute (TPI), Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
18
|
Guo N, Lv X, Yang Q, Xu X, Song H. Effective removal of hexavalent chromium from aqueous solution by ZnCl2 modified biochar: Effects and response sequence of the functional groups. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Lu Z, Li C, Jing Z, Ao X, Chen Z, Sun W. Implication on selection and replacement of granular activated carbon used in biologically activated carbon filters through meta-omics analysis. WATER RESEARCH 2021; 198:117152. [PMID: 33940501 DOI: 10.1016/j.watres.2021.117152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Biologically activated carbon (BAC) filters are widely used in China and worldwide as an essential part of advanced water treatment. However, it is unclear how to properly select the granular activated carbon (GAC) used in BAC filters and to determine when GAC should be replaced. In this study, five BAC filters, each filled with a different coconut- or coal-based GAC with different physicochemical properties, were run continuously for 400 days. The structure and function of the microbial community and the quantity of specific enzymes in the BAC filters were investigated through an integrated metagenomic/metaproteomic analysis. The results indicated that GAC adsorption still played a major role in removing organic matter once the filters reached a steady-state, which was attributed to bioregeneration, and the contribution of adsorption might be relatively greater than that of biodegradation. GAC with strong adsorption capacity and high bioregeneration potential selected bacterial communities more phylogenetically closely-related than others. The iodine value could be used as an indicator of BAC performance in terms of organic matter removal in the initial stage of the filters, which is dominated by adsorption. However, it could not be used to assess performance at a later stage when adsorption and biodegradation occurred simultaneously. Pore-size distribution characteristics could be chosen as a potential better indicator compared with the current adsorption indicators, dually representing the adsorption performance and the microbial activity, and the proportion of important pore-size of GAC that is more suitable for BAC filter is suggested. GAC with strongly polar terminal groups is more conducive to the removal of ammonium-nitrogen.
Collapse
Affiliation(s)
- Zedong Lu
- School of Environment, Tsinghua University, Beijing100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing100084, China
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing100084, China
| | - Xiuwei Ao
- School of Environment, Tsinghua University, Beijing100084, China
| | - Zhongyun Chen
- School of Environment, Tsinghua University, Beijing100084, China
| | - Wenjun Sun
- School of Environment, Tsinghua University, Beijing100084, China; Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou215163, China.
| |
Collapse
|
20
|
Li X, Ma Y, Zuo Y, Liu Z, Wang Q, Ren D, He Y, Cong H, Wu L, Zhou H. The efficient enrichment of marine peptides from the protein hydrolysate of the marine worm Urechis unicinctus by using mesoporous materials MCM-41, SBA-15 and CMK-3. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2405-2414. [PMID: 33997883 DOI: 10.1039/d1ay00616a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Peptides found in marine life have various specific activities due to their special growth environment, and there is increasing interest in the isolation and concentration of these biofunctional compounds. In this study, the protein hydrolysate of the marine worm Urechis unicinctus was prepared by enzymolysis and enriched by using mesoporous materials of silica MCM-41 and SBA-15 and carbon CMK-3. The differences in pore structures and elemental composition of these materials lead to differences in surface area and hydrophobicity. The adsorption capacities of peptides were 459.5 mg g-1, 431.3 mg g-1, and 626.3 mg g-1 for MCM-41, SBA-15 and CMK-3, respectively. Adsorption kinetics studies showed that the pseudo-second-order model fit the adsorption process better, where both external mass transfer and intraparticle diffusion affected the adsorption, while the Langmuir model better fit the adsorption of peptides on MCM-41 and SBA-15 and the Freundlich model was more suitable for CMK-3. Aqueous acetonitrile (ACN, 50/50, v/v) yielded the most extracted peptides. MALDI-TOF mass spectrometry of the extracted peptides showed that the three mesoporous materials, especially the CMK-3, gave good enrichment results. This study demonstrates the great potential of mesoporous materials in the enrichment of marine biofunctional peptides.
Collapse
Affiliation(s)
- Xinwei Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian, Liaoning 116023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Viability of a Single-Stage Unsaturated-Saturated Granular Activated Carbon Biofilter for Greywater Treatment. SUSTAINABILITY 2020. [DOI: 10.3390/su12218847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Compared with conventionally collected sewage, source-diverted greywater has a higher potential for on-site treatment and reuse due to its lower contaminant levels and large volume. A new design of granular activated carbon (GAC) biofilters was developed by incorporating unsaturated and saturated zones in a single stage to introduce an efficient, passive, and easy-to-operate technology for greywater on-site treatment at the household scale. The design was customized for its intended application considering various aspects including the reactor’s configuration, packing media, and feeding strategy. With the highest hydraulic and organic loadings of 1.2 m3 m−2 d−1 and 3.5 kg COD m−2 d−1, respectively, and the shortest retention time of 2.4 h, the system maintained an average total chemical oxygen demand removal rate of 94% with almost complete removal of nutrients throughout its 253 days of operation. The system showed a range of reduction efficacy towards five surrogates representing viruses, bacteria, and Cryptosporidium and Giardia (oo)cysts. A well-functioning biofilm was successfully developed, and its mass and activity increased over time with the highest values observed at the top layers. The key microbes within the biofilter were revealed. Feasibility of the proposed technology was investigated, and implications for design and operation were discussed.
Collapse
|