1
|
Patel AN, Lander L, Ahuja J, Bulman J, Lum JKH, Pople JOD, Hales A, Patel Y, Edge JS. Lithium-ion battery second life: pathways, challenges and outlook. Front Chem 2024; 12:1358417. [PMID: 38650673 PMCID: PMC11033388 DOI: 10.3389/fchem.2024.1358417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Net zero targets have resulted in a drive to decarbonise the transport sector worldwide through electrification. This has, in turn, led to an exponentially growing battery market and, conversely, increasing attention on how we can reduce the environmental impact of batteries and promote a more efficient circular economy to achieve real net zero. As these batteries reach the end of their first life, challenges arise as to how to collect and process them, in order to maximise their economical use before finally being recycled. Despite the growing body of work around this topic, the decision-making process on which pathways batteries could take is not yet well understood, and clear policies and standards to support implementation of processes and infrastructure are still lacking. Requirements and challenges behind recycling and second life applications are complex and continue being defined in industry and academia. Both pathways rely on cell collection, selection and processing, and are confronted with the complexities of pack disassembly, as well as a diversity of cell chemistries, state-of-health, size, and form factor. There are several opportunities to address these barriers, such as standardisation of battery design and reviewing the criteria for a battery's end-of-life. These revisions could potentially improve the overall sustainability of batteries, but may require policies to drive such transformation across the industry. The influence of policies in triggering a pattern of behaviour that favours one pathway over another are examined and suggestions are made for policy amendments that could support a second life pipeline, while encouraging the development of an efficient recycling industry. This review explains the different pathways that end-of-life EV batteries could follow, either immediate recycling or service in one of a variety of second life applications, before eventual recycling. The challenges and barriers to each pathway are discussed, taking into account their relative environmental and economic feasibility and competing advantages and disadvantages of each. The review identifies key areas where processes need to be simplified and decision criteria clearly defined, so that optimal pathways can be rapidly determined for each end-of-life battery.
Collapse
Affiliation(s)
- Anisha N. Patel
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Laura Lander
- Department of Engineering, King’s College London, London, United Kingdom
| | - Jyoti Ahuja
- Birmingham Law School, University of Birmingham, Birmingham, United Kingdom
| | - James Bulman
- Department of Mechanical Engineering, University of Bristol, Bristol, United Kingdom
| | - James K. H. Lum
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | | | - Alastair Hales
- Department of Mechanical Engineering, University of Bristol, Bristol, United Kingdom
- The Faraday Institution, Didcot, United Kingdom
| | - Yatish Patel
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Jacqueline S. Edge
- Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- The Faraday Institution, Didcot, United Kingdom
| |
Collapse
|
2
|
Fritz M, Chen X, Yang G, Lv Y, Liu M, Wehner S, Fischer CB. Gold Nanoparticles Bioproduced in Cyanobacteria in the Initial Phase Opened an Avenue for the Discovery of Corresponding Cerium Nanoparticles. Microorganisms 2024; 12:330. [PMID: 38399735 PMCID: PMC10892827 DOI: 10.3390/microorganisms12020330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.
Collapse
Affiliation(s)
- Melanie Fritz
- Department of Physics, University of Koblenz, 56070 Koblenz, Germany
| | - Xiaochen Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Guifang Yang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Resources, Fuzhou University, Fuzhou 350116, China
| | - Stefan Wehner
- Department of Physics, University of Koblenz, 56070 Koblenz, Germany
| | - Christian B. Fischer
- Department of Physics, University of Koblenz, 56070 Koblenz, Germany
- Materials Science, Energy and Nano-Engineering Department, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
3
|
Cosmidis J. Will tomorrow's mineral materials be grown? Microb Biotechnol 2023; 16:1713-1722. [PMID: 37522764 PMCID: PMC10443349 DOI: 10.1111/1751-7915.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Biomineralization, the capacity to form minerals, has evolved in a great diversity of bacterial lineages as an adaptation to different environmental conditions and biological functions. Microbial biominerals often display original properties (morphology, composition, structure, association with organics) that significantly differ from those of abiotically formed counterparts, altogether defining the 'mineral phenotype'. In principle, it should be possible to take advantage of microbial biomineralization processes to design and biomanufacture advanced mineral materials for a range of technological applications. In practice, this has rarely been done so far and only for a very limited number of biomineral types. This is mainly due to our poor understanding of the underlying molecular mechanisms controlling microbial biomineralization pathways, preventing us from developing bioengineering strategies aiming at improving biomineral properties for different applications. Another important challenge is the difficulty to upscale microbial biomineralization from the lab to industrial production. Addressing these challenges will require combining expertise from environmental microbiologists and geomicrobiologists, who have historically been working at the forefront of research on microbe-mineral interactions, alongside bioengineers and material scientists. Such interdisciplinary efforts may in the future allow the emergence of a mineral biomanufacturing industry, a critical tool towards the development more sustainable and circular bioeconomies.
Collapse
Affiliation(s)
- Julie Cosmidis
- Department of Earth SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
4
|
Abstract
Production of metals stands for 40% of all industrial greenhouse gas emissions, 10% of the global energy consumption, 3.2 billion tonnes of minerals mined, and several billion tonnes of by-products every year. Therefore, metals must become more sustainable. A circular economy model does not work, because market demand exceeds the available scrap currently by about two-thirds. Even under optimal conditions, at least one-third of the metals will also in the future come from primary production, creating huge emissions. Although the influence of metals on global warming has been discussed with respect to mitigation strategies and socio-economic factors, the fundamental materials science to make the metallurgical sector more sustainable has been less addressed. This may be attributed to the fact that the field of sustainable metals describes a global challenge, but not yet a homogeneous research field. However, the sheer magnitude of this challenge and its huge environmental effects, caused by more than 2 billion tonnes of metals produced every year, make its sustainability an essential research topic not only from a technological point of view but also from a basic materials research perspective. Therefore, this paper aims to identify and discuss the most pressing scientific bottleneck questions and key mechanisms, considering metal synthesis from primary (minerals), secondary (scrap), and tertiary (re-mined) sources as well as the energy-intensive downstream processing. Focus is placed on materials science aspects, particularly on those that help reduce CO2 emissions, and less on process engineering or economy. The paper does not describe the devastating influence of metal-related greenhouse gas emissions on climate, but scientific approaches how to solve this problem, through research that can render metallurgy fossil-free. The content is considering only direct measures to metallurgical sustainability (production) and not indirect measures that materials leverage through their properties (strength, weight, longevity, functionality).
Collapse
Affiliation(s)
- Dierk Raabe
- Max-Planck-Institut für Eisenforschung, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
| |
Collapse
|
5
|
Salunkhe NS, Koli SH, Mohite BV, Patil V, Patil SV. Xanthomonadin mediated synthesis of biocidal and photo-protective silver nanoparticles (XP-AgNPs). RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Roy S, Rhim JW. Starch/agar-based functional films integrated with enoki mushroom-mediated silver nanoparticles for active packaging applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Tu Z, Wu Q, He H, Zhou S, Liu J, He H, Liu C, Dang Z, Reinfelder JR. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155116. [PMID: 35398133 DOI: 10.1016/j.scitotenv.2022.155116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Acid mine drainage (AMD), a source of considerable environmental pollution worldwide, has prompted the development of many strategies to alleviate its effects. Unfortunately, the methods available for remedial treatment of AMD and the damage it cause are generally costly, labor-intensive, and time-consuming. Furthermore, such treatments may result in secondary pollution. Alternatively, treating the AMD problem at its source through pyrite surface passivation has become an important topic for research because it has the potential to reduce or prevent the generation of AMD and associated pollution. This review summarizes various pyrite anti-corrosion technologies, including the formation of various passivating coatings (inorganic, organic and organosilane) and carrier-microencapsulation. Several effective long-term passivators are identified, although many of them currently have important deficiencies that limit their practical application. Combining the mechanisms of existing passivation agents or new artificial materials, while considering environmental conditions, costs, and long-term passivation performance, is a feasible direction for future research.
Collapse
Affiliation(s)
- Zhihong Tu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Qi Wu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shu Zhou
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Huijun He
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Chongmin Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
8
|
The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol Res 2022; 263:127111. [DOI: 10.1016/j.micres.2022.127111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
9
|
Su Z, Li X, Xi Y, Xie T, Liu Y, Liu B, Liu H, Xu W, Zhang C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153767. [PMID: 35157862 DOI: 10.1016/j.scitotenv.2022.153767] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms play a key role in the natural circulation of various constituent elements of metal sulfides. Some microorganisms (such as Thiobacillus ferrooxidans) can promote the oxidation of metal sulfides to increase the release of heavy metals. However, other microorganisms (such as Desulfovibrio vulgaris) can transform heavy metals into metal sulfides crystals. Therefore, insight into the metal sulfides transformation mediated by microorganisms is of great significance to environmental protection. In this review, first, we discuss the mechanism and influencing factors of microorganisms transforming heavy metals into metal sulfides crystals in different environments. Then, we explore three microbe-mediated transformation forms of heavy metals to metal sulfides and their environmental applications: (1) transformation to metal sulfides precipitation for metal resource recovery; (2) transformation to metal sulfides nanoparticles (NPs) for pollutant treatment; (3) transformation to "metal sulfides-microbe" biohybrid system for clean energy production and pollutant remediation. Finally, we further provide critical views on the application of microbe-mediated metal sulfides transformation in the environmental field and discuss the need for future research.
Collapse
Affiliation(s)
- Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
10
|
Atalah J, Espina G, Blamey L, Muñoz-Ibacache SA, Blamey JM. Advantages of Using Extremophilic Bacteria for the Biosynthesis of Metallic Nanoparticles and Its Potential for Rare Earth Element Recovery. Front Microbiol 2022; 13:855077. [PMID: 35387087 PMCID: PMC8977859 DOI: 10.3389/fmicb.2022.855077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
The exceptional potential for application that metallic nanoparticles (MeNPs) have shown, has steadily increased their demand in many different scientific and technological areas, including the biomedical and pharmaceutical industry, bioremediation, chemical synthesis, among others. To face the current challenge for transitioning toward more sustainable and ecological production methods, bacterial biosynthesis of MeNPs, especially from extremophilic microorganisms, emerges as a suitable alternative with intrinsic added benefits like improved stability and biocompatibility. Currently, biogenic nanoparticles of different relevant metals have been successfully achieved using different bacterial strains. However, information about biogenic nanoparticles from rare earth elements (REEs) is very scarce, in spite of their great importance and potential. This mini review discusses the current understanding of metallic nanoparticle biosynthesis by extremophilic bacteria, highlighting the relevance of searching for bacterial species that are able to biosynthesize RRE nanoparticles.
Collapse
Affiliation(s)
| | | | | | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
11
|
Ingle PU, Biswas JK, Mondal M, Rai MK, Senthil Kumar P, Gade AK. Assessment of in vitro antimicrobial efficacy of biologically synthesized metal nanoparticles against pathogenic bacteria. CHEMOSPHERE 2022; 291:132676. [PMID: 34718020 DOI: 10.1016/j.chemosphere.2021.132676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/25/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
The microbial infections due to biofilm forming bacterial pathogens are very common in human subjects. The intensive application of antibiotics in integrated disease management strategy has led to increased multidrug resistance incommon pathogens. Thus, indicating need of developing an alternative method for the control of these multidrug resistant pathogens. Present study involves the Moringa oleifera aqueous extract mediated biological synthesis of silver (Ag nanoparticles (NPs)- Avg. size 82.5 nm; zeta potential = -27.9 mV), copper oxide (CuONPs- Avg. size 61 nm; zeta potential = -19.3 mV), iron oxide (FeONPs- Avg. size 83.3 nm; zeta potential = -9.37 mV) and alumina (AlONPs- Avg. size 87.3 nm; zeta potential = -10.9 mV) nanoparticles. Biological nanoparticles were detected by visual observation, spectrophotometric detection followed by zeta potential analysis, nanoparticle tracking analysis, Fourier transform infrared spectrometry and X-ray diffraction analysis. Nanoparticles were further evaluated for their in vitro antimicrobial potential, membrane damage effectiveness, biofilm inhibition activity by MTT assay. Nanoparticles were assessed against human pathogens viz. two Gram-positive (Bacillus subtilis MTCC 441 and Staphylococcus haemolyticus MTCC 3383) and two Gram-negative bacteria (Enterobacter aerogenes MTCC 111 and Salmonella enterica ser. Typhi MTCC 8767). The nanoparticles exhibited akin activity pattern against all pathogens studied i.e. AgNPs > CuONPs > AlONPs > FeONPs. Tested nanoparticles registered lower MIC values and more intensified growth inhibition against Gram-negative bacteria compared to their Gram-positive counterparts. These results pointed out that the M. oleifera mediated nanoparticles can be prospectivelyutilized in the development of alternative antimicrobials against diverse bacterial infections.
Collapse
Affiliation(s)
- Pramod U Ingle
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India
| | - Jayanta K Biswas
- Department of Ecological Studies, University of Kalyani, Nadia, 741235, West Bengal, India; International Centre for Ecological Engineering, University of Kalyani, Nadia, 741235, West Bengal, India.
| | - Monojit Mondal
- Department of Ecological Studies, University of Kalyani, Nadia, 741235, West Bengal, India
| | - Mahendra K Rai
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India
| | - P Senthil Kumar
- Centre of Excellence in Water Research (CEWAR), Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamilnadu, India
| | - Aniket K Gade
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati - 444602, Maharashtra, India.
| |
Collapse
|
12
|
Yanchatuña Aguayo OP, Mouheb L, Villota Revelo K, Vásquez-Ucho PA, Pawar PP, Rahman A, Jeffryes C, Terencio T, Dahoumane SA. Biogenic Sulfur-Based Chalcogenide Nanocrystals: Methods of Fabrication, Mechanistic Aspects, and Bio-Applications. Molecules 2022; 27:458. [PMID: 35056773 PMCID: PMC8779671 DOI: 10.3390/molecules27020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
Bio-nanotechnology has emerged as an efficient and competitive methodology for the production of added-value nanomaterials (NMs). This review article gathers knowledge gleaned from the literature regarding the biosynthesis of sulfur-based chalcogenide nanoparticles (S-NPs), such as CdS, ZnS and PbS NPs, using various biological resources, namely bacteria, fungi including yeast, algae, plant extracts, single biomolecules, and viruses. In addition, this work sheds light onto the hypothetical mechanistic aspects, and discusses the impact of varying the experimental parameters, such as the employed bio-entity, time, pH, and biomass concentration, on the obtained S-NPs and, consequently, on their properties. Furthermore, various bio-applications of these NMs are described. Finally, key elements regarding the whole process are summed up and some hints are provided to overcome encountered bottlenecks towards the improved and scalable production of biogenic S-NPs.
Collapse
Affiliation(s)
- Oscar P. Yanchatuña Aguayo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Katherine Villota Revelo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Paola A. Vásquez-Ucho
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (O.P.Y.A.); (K.V.R.); (P.A.V.-U.)
| | - Prasad P. Pawar
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., P.O. Box 10888, Beaumont, TX 77710, USA;
| | - Clayton Jeffryes
- Nanobiomaterials and Bioprocessing Laboratory (NABLAB), Dan F. Smith Department of Chemical Engineering, Lamar University, P.O. Box 10051, Beaumont, TX 77710, USA; (P.P.P.); (C.J.)
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Si Amar Dahoumane
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, TX 77710, USA
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
13
|
Shaheen I, Ahmad KS, Zequine C, Gupta RK, Thomas AG, Qureshi A, Malik MA, Niazi JH. Phyto-synthesized facile Pd/NiOPdO ternary nanocomposite for electrochemical supercapacitor applications. RSC Adv 2022; 12:35409-35417. [DOI: 10.1039/d2ra07292k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The natural phyto bio-factories were successfully utilized for the cost-effective synthesis of facile Pd/NiOPdO ternary nanocomposite for energy storage application with enhanced electro-active site.
Collapse
Affiliation(s)
- Irum Shaheen
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
- SUNUM Nanotechnology Research, and Application Center, Sabanci University, Orta Mah., Tuzla 34956, Istanbul, Turkey
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan
| | - Camila Zequine
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, KS 66762, USA
| | - Andrew G. Thomas
- Department of Materials, Photon Science Institute, Sir Henry Royce Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Anjum Qureshi
- SUNUM Nanotechnology Research, and Application Center, Sabanci University, Orta Mah., Tuzla 34956, Istanbul, Turkey
| | - Mohammad Azad Malik
- Department of Materials, Photon Science Institute, Sir Henry Royce Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
| | - Javed H. Niazi
- SUNUM Nanotechnology Research, and Application Center, Sabanci University, Orta Mah., Tuzla 34956, Istanbul, Turkey
| |
Collapse
|