1
|
Tao S, Zhu Y, Chen M, Shangguan W. Advances in Electrostatic Plasma Methods for Purification of Airborne Pathogenic Microbial Aerosols: Mechanism, Modeling and Application. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:596-617. [PMID: 39512392 PMCID: PMC11540111 DOI: 10.1021/envhealth.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 11/15/2024]
Abstract
The transmission of pathogenic airborne microorganisms significantly impacts public health and societal functioning. Ensuring healthy indoor air quality in public spaces is critical. Among various air purification technologies, electrostatic precipitation and atmospheric pressure nonthermal plasma are notable for their broad-spectrum effectiveness, high efficiency, cost-effectiveness, and safety. This review investigates the primary mechanisms by which these electrostatic methods collect and disinfect pathogenic aerosols. It also delves into recent advancements in enhancing their physical and chemical mechanisms for improve efficiency. Simultaneously, a thorough summary of mathematical models related to the migration and deactivation of pathogenic aerosols in electrostatic purifiers is provided. It will help us to understand the behavior of aerosols in purification systems. Additionally, the review discusses the current research on creating a comprehensive health protection system and addresses the challenges of balancing byproduct control with efficiency. The aim is to establish a foundation for future research and development in electrostatic aerosol purification and develop integrated air purification technologies that are both efficient and safe.
Collapse
Affiliation(s)
- Shanlong Tao
- Research
Center for Combustion and Environmental Technology, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yong Zhu
- School
of Mechanical and Power Engineering, East
China University of Science and Technology, Shanghai 200237, PR China
| | - Mingxia Chen
- Research
Center for Combustion and Environmental Technology, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Wenfeng Shangguan
- Research
Center for Combustion and Environmental Technology, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
2
|
Sayahi K, Sari AH, Hamidi A, Nowruzi B, Hassani F. Application of cold argon plasma on germination, root length, and decontamination of soybean cultivars. BMC PLANT BIOLOGY 2024; 24:59. [PMID: 38247007 PMCID: PMC10801988 DOI: 10.1186/s12870-024-04730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Applying cold discharge plasma can potentially alter plants' germination characteristics by triggering their physiological activities. As a main crop in many countries, soybean was examined in the present study using cultivars such as Arian, Katoul, Saba, Sari, and Williams in a cold argon plasma. This study has been motivated by the importance of plant production worldwide, considering climate change and the increasing needs of human populations for food. This study was performed to inspect the effect of cold plasma treatment on seed germination and the impact of argon plasma on microbial decontamination was investigated on soybeans. Also, the employed cultivars have not been studied until now the radicals generated from argon were detected by optical emission spectrometry (OES), and a collisional radiative model was used to describe electron density. The germination properties, including final germination percentage (FGP), mean germination time (MGT), root length, and electrical conductivity of biomolecules released from the seeds, were investigated after the plasma treatments for 30, 60, 180, 300, and 420 s. The decontamination effect of the plasma on Aspergillus flavus (A.flavus) and Fusarium solani (F.solani) was also examined. The plasma for 60 s induced a maximum FGP change of 23.12 ± 0.34% and a lowest MGT value of 1.40 ± 0.007 days. Moreover, the ultimate root length was 56.12 ± 2.89%, in the seeds treated for 60 s. The plasma exposure, however, failed to yield a significant enhancement in electrical conductivity, even when the discharge duration was extended to 180 s or longer. Therefore, the plasma duration of 180 s was selected for the blotter technique. Both fungi showed successful sterilization; their infectivity inhibition was 67 ± 4 and 65 ± 3.1%, respectively. In general, the cold plasma used for soybeans in the present study preserved their healthy qualities and reduced the degree of fungal contamination.
Collapse
Affiliation(s)
- Khadijeh Sayahi
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Sari
- Department of Physics, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Aidin Hamidi
- Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshid Hassani
- Seed and Plant Certification and Registration Research Institute (SPCRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
3
|
Hamrouni A, Moussa M, Fessi N, Palmisano L, Ceccato R, Rayes A, Parrino F. Solar Photocatalytic Activity of Ba-Doped ZnO Nanoparticles: The Role of Surface Hydrophilicity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2742. [PMID: 37887893 PMCID: PMC10609520 DOI: 10.3390/nano13202742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
Abstract
Bare zinc oxide (ZnO) and Ba-doped ZnO (BZO) samples were prepared by using a simple precipitation method. The effects of Barium doping on the structural, morphological, and optoelectronic properties, as well as on the physico-chemical features of the surface were investigated and correlated with the observed photocatalytic activity under natural solar irradiation. The incorporation of Ba2+ ions into the ZnO structure increased the surface area by ca. 14 times and enhanced the hydrophilicity with respect to the bare sample, as demonstrated by infrared spectroscopy and contact angle measurements. The surface hydrophilicity was correlated with the enhanced defectivity of the doped sample, as indicated by X-ray diffraction, Raman, and fluorescence spectroscopies. The resulting higher affinity with water was, for the first time, invoked as an important factor justifying the superior photocatalytic performance of BZO compared to the undoped one, in addition to the slightly higher separation of the photoproduced pairs, an effect that has already been reported in literature. In particular, observed kinetic constants values of 8∙10-3 and 11.3∙10-3 min-1 were determined for the ZnO and BZO samples, respectively, by assuming first order kinetics. Importantly, Ba doping suppressed photocorrosion and increased the stability of the BZO sample under irradiation, making it a promising photocatalyst for the abatement of toxic species.
Collapse
Affiliation(s)
- Abdessalem Hamrouni
- Laboratory of Catalysis and Materials for the Environment and Processes LRCMEP (LR19ES08), Faculty of Sciences of Gabès, University of Gabès, University Campus Erriadh City, Gabès 6072, Tunisia; (A.H.); (M.M.); (N.F.); (A.R.)
- Department of Chemical Engineering-Processes, National Engineering School of Gabès, Omar El Khateb Avenue, Zrig, Gabes 6029, Tunisia
| | - Marwa Moussa
- Laboratory of Catalysis and Materials for the Environment and Processes LRCMEP (LR19ES08), Faculty of Sciences of Gabès, University of Gabès, University Campus Erriadh City, Gabès 6072, Tunisia; (A.H.); (M.M.); (N.F.); (A.R.)
| | - Nidhal Fessi
- Laboratory of Catalysis and Materials for the Environment and Processes LRCMEP (LR19ES08), Faculty of Sciences of Gabès, University of Gabès, University Campus Erriadh City, Gabès 6072, Tunisia; (A.H.); (M.M.); (N.F.); (A.R.)
- Laboratoire d’Automatique et de Génie des Procédés (LAGEPP), University of Lyon, UMR 5007 CNRS, University Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Leonardo Palmisano
- Department of Engineering, University of Palermo, Viale Delle Scienze Ed. 6, 90128 Palermo, Italy;
| | - Riccardo Ceccato
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy;
| | - Ali Rayes
- Laboratory of Catalysis and Materials for the Environment and Processes LRCMEP (LR19ES08), Faculty of Sciences of Gabès, University of Gabès, University Campus Erriadh City, Gabès 6072, Tunisia; (A.H.); (M.M.); (N.F.); (A.R.)
- Department of Chemical Engineering-Processes, National Engineering School of Gabès, Omar El Khateb Avenue, Zrig, Gabes 6029, Tunisia
| | - Francesco Parrino
- Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy;
| |
Collapse
|
4
|
Liu X, Cheng G, Yang C, Wang G, Li S, Li Y, Zheng H, Hu S, Zhu Z. Ultraviolet assisted liquid spray dielectric barrier discharge plasma-induced vapor generation for sensitive determination of arsenic by atomic fluorescence spectrometry. Talanta 2023; 257:124339. [PMID: 36801565 DOI: 10.1016/j.talanta.2023.124339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
In this study, a novel sensitive method for As determination by atomic fluorescence spectrometry was developed based on UV-assisted liquid spray dielectric barrier discharge (UV-LSDBD) plasma-induced vapor generation. It was found that prior-UV irradiation greatly facilitates As vapor generation in LSDBD likely because of the increased generation of active substances and the formation of As intermediates with UV irradiation. The experimental conditions affecting the UV and LSDBD processes (such as formic acid concentration, irradiation time, the flow rates of sample, argon and hydrogen) were optimized in detail. Under the optimum conditions, As signal measured by LSDBD can be enhanced by about 16 times with UV irradiation. Furthermore, UV-LSDBD also offers much better tolerance to coexisting ions. The limit of detection was calculated to be 0.13 μg L-1 for As, and the relative standard deviation of the repeated measurements was 3.2% (n = 7). The accuracy and effectiveness of this new method were further verified by the analysis of simulated natural water reference sample and real water samples. In this work, UV irradiation was utilized for the first time as an enhancement strategy for PIVG, which opens a new approach for developing green and efficient vapor generation methods.
Collapse
Affiliation(s)
- Xing Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Guo Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Chun Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Guan Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shuyang Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yixiao Li
- Yiwu Academy of Science & Technology for Inspection & Quarantine, Yiwu 322000, China
| | - Hongtao Zheng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Appointment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China.
| |
Collapse
|
5
|
Wang X, Guan F, Huang Z, He H, Wang L, Li K. Study on low temperature plasma combined with AC/Mn + TiO 2-Al 2O 3 catalytic treatment of sewage-containing polyacrylamide. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:879-891. [PMID: 36853768 DOI: 10.2166/wst.2023.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
With the introduction of tertiary oil recovery technology, polymer oil drive technology has effectively improved the recovery rate of crude oil, but the resulting oilfield wastewater-containing polyacrylamide (PAM) is viscous and complex in composition, which brings difficulties to wastewater treatment. The treatment of this kind of wastewater has become an urgent problem to be solved, and the removal of PAM is the key. In this paper, a dielectric barrier discharge (DBD) co-catalyst was used to treat PAM-containing solutions to investigate the effect of different catalytic reaction systems on the degradation of PAM. The morphological changes of the PAM solution before and after the reaction were also studied by the environmental electron microscope scanner (ESEM), and the information of the functional groups in the solution before and after the reaction was studied by infrared spectroscopy analysis of the PAM solution. The degradation rate rose by 26.3% in comparison to that without discharge when AC/Mn + TiO2 and Al2O3 were combined and catalyzed at a mass ratio of 2:1 and a discharge period of 300 min. The degradation rate rose by 19.3 and 6.8%, respectively, in comparison to AC/Mn + TiO2 and Al2O3-catalyzed alone. It demonstrates that this catalytic system has the optimum catalytic effect.
Collapse
Affiliation(s)
- Xiaobing Wang
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Fengwei Guan
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Zhigang Huang
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Hao He
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Lu Wang
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| | - Kaifeng Li
- School of Petroleum Engineering and Natural Gas Engineering, Changzhou University, Changzhou 213016, China E-mail:
| |
Collapse
|
6
|
Polyaniline/Bi12TiO20 Hybrid System for Cefixime Removal by Combining Adsorption and Photocatalytic Degradation. CHEMENGINEERING 2023. [DOI: 10.3390/chemengineering7010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Sillenite catalysts have shown efficient photocatalytic activity for the removal of various pollutants from water in previous studies, thus enhancing their activity by combining them with other materials will be very promising for environmental applications. In this context, an interesting hybrid system containing Polyaniline (PANI) as an adsorbent and Bi12TiO20 (BTO) sillenite as a catalyst was proposed in this work. Cefixime (CFX) has been selected as a pollutant for this study, and its removal was evaluated using PANI (adsorption), PANI and BTO (combined system) and the hybrid system Bi12TiO20/Polyaniline (BTO/PANI). First, the impact of PANI adsorption was investigated on its own; after that, the solution was filtered to separate the adsorbent from the liquid in order to re-treat the solution using photocatalysis (combining adsorption with photocatalysis). At the same time, a similar technique was used involving the hybrid system BTO/PANI. The results show that the hybrid system can remove a very high Cefixime concentration of 30 mg/L, almost 100%, within only 2 h, and this is better than previous investigations. These results indicate that it is possible to combine photocatalysis and adsorption processes to control water pollution.
Collapse
|
7
|
Rostamabadi H, Rohit T, Karaca AC, Nowacka M, Colussi R, Feksa Frasson S, Aaliya B, Valiyapeediyekkal Sunooj K, Falsafi SR. How non-thermal processing treatments affect physicochemical and structural attributes of tuber and root starches? Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
8
|
Crystalline Violet Wastewater Treatment by Low-Temperature Plasma Combined with Industrial Solid Waste Red Mud. Catalysts 2022. [DOI: 10.3390/catal12080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Low-temperature plasma (LTP) technology has been successfully used to treat persistent organic pollutants in water. Efforts have been devoted to combine catalysts and LTP to improve the degradation efficiency of pollutants and energy utilization efficiency. Herein, industrial solid waste red mud as a novel catalyst was added to an LTP system to treat crystalline violet (CV) wastewater. The energy yield at 50% CV decomposition and TOC after a 30 min reaction by the plasma treatment, red mud adsorption, and red mud/plasma treatment were compared. The effects of the main operating parameters, such as red mud dosing amount, initial pH, discharge voltage, and initial concentration of CV, on the removal efficiency of CV were investigated. The best degradation of CV was achieved with a red mud dosage of 2 g, a neutral environment, and a discharge voltage of 22 kV. When the red mud was recycled three times, the removal efficiency decreased a little in the red mud/plasma system. Hydroxyl radical plays an important role in the treatment of CV. The red mud was characterized by BET, SEM, XRD, and FT-IR, and the structure of the red mud was not greatly affected after being used in the red mud/plasma system.
Collapse
|
9
|
Guesmi A, Cherif MM, Baaloudj O, Kenfoud H, Badawi AK, Elfalleh W, Hamadi NB, Khezami L, Assadi AA. Disinfection of corona and myriad viruses in water by non-thermal plasma: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55321-55335. [PMID: 35661305 PMCID: PMC9165927 DOI: 10.1007/s11356-022-21160-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 05/06/2023]
Abstract
Nowadays, in parallel to the appearance of the COVID-19 virus, the risk of viruses in water increases leading to the necessity of developing novel disinfection methods. This review focuses on the route of virus contamination in water and introduces non-thermal plasma technology as a promising method for the inactivation of viruses. Effects of essential parameters affecting the non-thermal discharge for viral inactivation have been exposed. The review has also illustrated a critical discussion of this technology with other advanced oxidation processes. Additionally, the inactivation mechanisms have also been detailed based on reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
- Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Mohamed Majdi Cherif
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hamza Kenfoud
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Ahmad K Badawi
- Civil Engineering Department, El-Madina Higher Institute for Engineering and Technology, Giza, 12588, Egypt
| | - Walid Elfalleh
- Energy, Water, Environment and Process Laboratory, (LR18ES35), National Engineering School of Gabes, University of Gabes, 6072, Gabes, Tunisia
| | - Naoufel Ben Hamadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh, 11432, Saudi Arabia.
| | | |
Collapse
|
10
|
Thirumdas R. Inactivation of viruses related to foodborne infections using cold plasma technology. J Food Saf 2022. [DOI: 10.1111/jfs.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rohit Thirumdas
- Department of Food Process Technology College of Food Science & Technology, PJTSAU Hyderabad Telangana India
| |
Collapse
|
11
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
12
|
Zhang C, Li C, Chen G, Ji F, Shen Y, Peng J, Zhang J. In situ synthesis of a hybrid Fe(Co)/MXene/ZSM-5 catalyst for phenol abatement. NEW J CHEM 2021. [DOI: 10.1039/d1nj02810c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MXene (Ti3C2) was introduced to develop the multifunctional photocatalyst Metal/MXene/ZSM-5 to enhance the catalytic efficiency of the ZSM-5 based catalyst.
Collapse
Affiliation(s)
- Changquan Zhang
- Harbin Institute of Technology, Shenzhen, 518055, China
- Shenzhen Environmental Technology Group Co. Ltd, Shenzhen, 518049, China
| | - Chaolin Li
- Harbin Institute of Technology, Shenzhen, 518055, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Gang Chen
- Shenzhen Environmental Technology Group Co. Ltd, Shenzhen, 518049, China
| | - Fei Ji
- Shenzhen Environmental Technology Group Co. Ltd, Shenzhen, 518049, China
| | - Yiyong Shen
- Shenzhen Environmental Technology Group Co. Ltd, Shenzhen, 518049, China
| | - Juan Peng
- Shenzhen Environmental Technology Group Co. Ltd, Shenzhen, 518049, China
| | - Jiaolong Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, 523808, China
| |
Collapse
|