1
|
Oladimeji T, Oyedemi M, Emetere M, Agboola O, Adeoye J, Odunlami O. Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon 2024; 10:e40370. [PMID: 39654720 PMCID: PMC11625160 DOI: 10.1016/j.heliyon.2024.e40370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
The incidence of water pollution in developing countries is high due to the lack of regulatory policies and laws that protect water bodies from anthropogenic activities and industrial wastewater. Industrial wastewater contains significant amounts of heavy metals that are detrimental to human health, aquatic organisms, and the ecosystem. The focus of this review was to evaluate the sources and treatment methods of wastewater, with an emphasis on technologies, advantages, disadvantages, and innovation. It was observed that conventional methods of wastewater treatment (such as flotation, coagulation/flocculation, and adsorption) had shown promising results but posed certain limitations, such as the generation of high volumes of sludge, relatively low removal rates, inefficiency in treating low metal concentrations, and sensitivity to varying pH. Recent technologies like nanotechnology, photocatalysis, and electrochemical coagulation have significant advantages over conventional methods for removing heavy metals, including higher removal rates, improved energy efficiency, and greater selectivity for specific contaminants. However, the high costs associated with these advanced methods remain a major drawback. Therefore, we recommend that future developments in wastewater treatment technology focus on reducing both costs and waste generation.
Collapse
Affiliation(s)
- T.E. Oladimeji
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M. Oyedemi
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - M.E. Emetere
- Department of Physics, Bowen University, Osun State, Nigeria
- Department of Mechanical Engineering Science, University of Johannesburg, South Africa
| | - O. Agboola
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| | - J.B. Adeoye
- Department of Chemical and Energy Engineering, Curtin University, Malaysia
| | - O.A. Odunlami
- Department of Chemical Engineering, Covenant University, Ota, Ogun state, Nigeria
| |
Collapse
|
2
|
Noorin S, Paul T, Ghosh A, Yee JJ, Park SH. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11137. [PMID: 39323177 DOI: 10.1002/wer.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
Rising concerns over water scarcity, driven by industrialization and urbanization, necessitate the need for innovative solutions for wastewater treatment. This study focuses on developing an eco-friendly and cost-effective biochar-zeolite composite (BZC) adsorbent using waste materials-spent coffee ground biochar (CGB) and steel slag zeolite (SSZ). Initially, the biochar was prepared from spent coffee ground, and zeolite was prepared from steel slag; their co-pyrolysis resulted in novel adsorbent material. Later, the physicochemical characteristics of the BZC were examined, which showed irregular structure and well-defined pores. Dye removal studies were conducted, which indicate that BZC adsorption reach equilibrium in 2 h, exhibiting 95% removal efficiency compared to biochar (43.33%) and zeolite (74.58%). Moreover, the removal efficiencies of the novel BZC composite toward dyes methyl orange (MO) and crystal violet (CV) were found to be 97% and 99.53%, respectively. The kinetic studies performed with the dyes and phosphate with an adsorbent dosage of 0.5 g L-1 suggest a pseudo-second-order model. Additionally, the reusability study of BZC proves to be effective through multiple adsorption and regeneration cycles. Initially, the phosphate removal remains high but eventually decreases from 92% to 70% in the third regeneration cycle, highlighting the robustness of the BZC. In conclusion, this study introduces a promising, cost-effective novel BZC adsorbent derived from waste materials as a sustainable solution for wastewater treatment. Emphasizing efficiency, reusability, and potential contributions to environmentally conscious water treatment, the findings highlight the composite's significance in addressing key challenges for the removal of toxic pollutants from the aqueous solutions. PRACTITIONER POINTS: A novel biochar-zeolite composite (BZC) material has been synthesized. Excellent removal of dyes by BZC (~95%) was achieved as compared to their counterparts The kinetic studies performed suggest a pseudo-second-order model. BZC proves to be highly effective for multiple adsorption studies. Excellent reusability showed potential as a robust adsorbent.
Collapse
Affiliation(s)
- Shazia Noorin
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
| | - Tanushree Paul
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
- Department of Civil Engineering, Dong-A University, Busan, Republic of Korea
| | - Arnab Ghosh
- University Core Research Center for Disaster-Free Safe Ocean City Construction, Dong-A University, Busan, Republic of Korea
| | - Jurng-Jae Yee
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
| | - Sung Hyuk Park
- Department of ICT Integrated Safe Ocean Smart Cities Engineering, Dong-A University, Busan, Republic of Korea
- Department of Civil Engineering, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
3
|
Zhang H, Li S, Zhang C, Ren X, Zhou M. A critical review of ozone-based electrochemical advanced oxidation processes for water treatment: Fundamentals, stability evaluation, and application. CHEMOSPHERE 2024; 365:143330. [PMID: 39277044 DOI: 10.1016/j.chemosphere.2024.143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
In recent years, electrochemical advanced oxidation processes (EAOPs) combined with ozonation have been widely utilized in water/wastewater treatment due to their excellent synergistic effect, high treatment efficiency, and low energy consumption. A comprehensive summary of these ozone-based EAOPs is still insufficient, though some reviews have covered these topics but either focused on a specific integrated process or provided synopses of EAOPs or ozone-based AOPs. This review presents an overview of the fundamentals of several ozone-based EAOPs, focusing on process optimization, electrode selection, and typical reactor designs. Additionally, the service life of electrodes and improvement strategies for the stability of ozone-based EAOPs that are ignored by previous reviews are discussed. Furthermore, four main application fields are summarized, including disinfection, emerging contaminants treatment, industrial wastewater treatment, and resource recovery. Finally, the summary and perspective on ozone-based EAOPs are proposed. This review provides an overall summary that would help to gain insight into the ozone-based EAOPs to improve their environmental applications.
Collapse
Affiliation(s)
- Hanyue Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shasha Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chaohui Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xueying Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Li Y, Li C, Jia Y, Wang Z, Liu Y, Zhang Z, DuanChen X, Ikhlaq A, Kumirska J, Siedlecka EM, Ismailova O, Qi F. Accurate prediction and intelligent control of COD and other parameters removal from pharmaceutical wastewater using electrocoagulation coupled with catalytic ozonation process. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11099. [PMID: 39155047 DOI: 10.1002/wer.11099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
In this study, we employed the response surface method (RSM) and the long short-term memory (LSTM) model to optimize operational parameters and predict chemical oxygen demand (COD) removal in the electrocoagulation-catalytic ozonation process (ECOP) for pharmaceutical wastewater treatment. Through RSM simulation, we quantified the effects of reaction time, ozone dose, current density, and catalyst packed rate on COD removal. Then, the optimal conditions for achieving a COD removal efficiency exceeding 50% were identified. After evaluating ECOP performance under optimized conditions, LSTM predicted COD removal (56.4%), close to real results (54.6%) with a 0.2% error. LSTM outperformed RSM in predictive capacity for COD removal. In response to the initial COD concentration and effluent discharge standards, intelligent adjustment of operating parameters becomes feasible, facilitating precise control of the ECOP performance based on this LSTM model. This intelligent control strategy holds promise for enhancing the efficiency of ECOP in real pharmaceutical wastewater treatment scenarios. PRACTITIONER POINTS: This study utilized the response surface method (RSM) and the long short-term memory (LSTM) model for pharmaceutical wastewater treatment optimization. LSTM predicted COD removal (56.4%) closely matched experimental results (54.6%), with a minimal error of 0.2%. LSTM demonstrated superior predictive capacity, enabling intelligent parameter adjustments for enhanced process control. Intelligent control strategy based on LSTM holds promise for improving electrocoagulation-catalytic ozonation process efficiency in pharmaceutical wastewater treatment.
Collapse
Affiliation(s)
- Yujie Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Chen Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yunhan Jia
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zhenbei Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yatao Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zitan Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Xingyu DuanChen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, Lahore, Pakistan
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Ewa Maria Siedlecka
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Oksana Ismailova
- Uzbekistan-Japan Innovation Center of Youth, Tashkent State Technical University, Tashkent, Uzbekistan
- Turin Polytechnic University, Tashkent, Uzbekistan
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Li J, Li T, Sun D, Guan Y, Zhang Z. Treatment of agricultural wastewater using microalgae: A review. ADVANCES IN APPLIED MICROBIOLOGY 2024; 128:41-82. [PMID: 39059843 DOI: 10.1016/bs.aambs.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The rapid development of agriculture has led to a large amount of wastewater, which poses a great threat to environmental safety. Microalgae, with diverse species, nutritional modes and cellular status, can adapt well in agricultural wastewater and absorb nutrients and remove pollutants effectively. Besides, after treatment of agricultural wastewater, the accumulated biomass of microalgae has broad applications, such as fertilizer and animal feed. This paper reviewed the current progresses and further perspectives of microalgae-based agricultural wastewater treatment. The characteristics of agricultural wastewater have been firstly introduced; Then the microalgal strains, cultivation modes, cellular status, contaminant metabolism, cultivation systems and biomass applications of microalgae for wastewater treatment have been summarized; At last, the bottlenecks in the development of the microalgae treatment methods, as well as recommendations for optimizing the adaptability of microalgae to wastewater in terms of wastewater pretreatment, microalgae breeding, and microalgae-bacterial symbiosis systems were discussed. This review would provide references for the future developments of microalgae-based agricultural wastewater treatment.
Collapse
Affiliation(s)
- Jiayi Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Tong Li
- School of Life Sciences, Hebei University, Baoding, P.R. China
| | - Dongzhe Sun
- College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China
| | - Yueqiang Guan
- School of Life Sciences, Hebei University, Baoding, P.R. China.
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, P.R. China; College of Life Sciences, Hebei Normal University, Shijiazhuang, P.R. China.
| |
Collapse
|
6
|
Bhatt P, Brown PB, Huang JY, Hussain AS, Liu HT, Simsek H. Algae and indigenous bacteria consortium in treatment of shrimp wastewater: A study for resource recovery in sustainable aquaculture system. ENVIRONMENTAL RESEARCH 2024; 250:118447. [PMID: 38341075 DOI: 10.1016/j.envres.2024.118447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Shrimp production facilities produce large quantities of wastewater, which consists of organic and inorganic pollutants. High concentrations of these pollutants in shrimp wastewater cause serious environmental problems and, therefore, a method of treating this wastewater is an important research topic. This study investigated the impact of algae and indigenous bacteria on treating shrimp wastewater. A total of four different microalgae cultures, including Chlorococcum minutus, Porphyridum cruentum, Chlorella vulgaris and Chlorella reinhardtii along with two cyanobacterial cultures, Microcystis aeruginosa and Fishcherella muscicola were used with indigenous bacterial cultures to treat shrimp wastewater. The highest soluble chemical oxygen demand (sCOD) removal rate (95%) was observed in the samples that were incubated using F. muscicola. Total dissolved nitrogen was degraded >90% in the C. vulgaris, M. aeruginosa, and C. reinhardtii seeded samples. Dissolved organic nitrogen removal was significantly higher for C. vulgaris (93%) as compared to other treatments. Similarly, phosphate degradation was very successful for all the algae-bacteria consortium (>99%). Moreover, the degradation kinetics were calculated, and the lowest half-life (t1/2) for sCOD (5 days) was recorded for the samples seeded with M. aeruginosa. Similarly, treatment with F. muscicola and C. reinhardtii showed the lowest t1/2 of NH3-N (2.9 days) and phosphate (2.7 days) values. Overall, the results from this study suggest that the symbiotic relationship between indigenous bacteria and algae significantly enhanced the process of shrimp wastewater treatment within 21 days of incubation. The outcome of this study supports resource recovery in the aquaculture sector and could be beneficial to treat a large-scale shrimp facility's wastewater worldwide.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Paul B Brown
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, W. Lafayette, IN, USA
| | - Aya S Hussain
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA; Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Henry T Liu
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA.
| |
Collapse
|
7
|
Brião GDV, da Costa TB, Antonelli R, Costa JM. Electrochemical processes for the treatment of contaminant-rich wastewater: A comprehensive review. CHEMOSPHERE 2024; 355:141884. [PMID: 38575083 DOI: 10.1016/j.chemosphere.2024.141884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Global water demand and environmental concerns related to climate change require industries to develop high-efficiency wastewater treatment methods to remove pollutants. Likewise, toxic pollutants present in wastewater negatively affect the environment and human health, requiring effective treatment. Although conventional treatment processes remove carbon and nutrients, they are insufficient to remove pharmaceuticals, pesticides, and plasticizers. Electrochemical processes effectively remove pollutants from wastewater through the mineralization of non-biodegradable pollutants with consequent conversion into biodegradable compounds. Its advantages include easy operation, versatility, and short reaction time. In this way, this review initially provides a global water scenario with a view to the future. It comprises global demand, treatment methods, and pollution of water resources, addressing various contaminants such as heavy metals, nutrients, organic compounds, and emerging contaminants. Subsequently, the fundamentals of electrochemical treatments are presented as well as electrochemical treatments, highlighting the latest studies involving electrocoagulation, electroflocculation, electroflotation, capacitive deionization and its derivatives, eletrodeionization, and electrochemical advanced oxidation process. Finally, the challenges and perspectives were discussed. In this context, electrochemical processes have proven promising and effective for the treatment of water and wastewater, allowing safe reuse practices and purification with high contaminant removal.
Collapse
Affiliation(s)
- Giani de Vargas Brião
- Center of Research on Science and Technology of BioResources, São Carlos Institute of Chemistry, University of São Paulo, Trabalhador São Carlense Ave, 400, São Carlos 13566-590, SP, Brazil
| | | | - Raissa Antonelli
- Department of Chemical Engineering, University of São Paulo, Prof. Luciano Gualberto Ave, tr. 3, 380, São Paulo 05508-010, SP, Brazil
| | - Josiel Martins Costa
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom.
| |
Collapse
|
8
|
Meng G, Yu F, Wang Y, Li X, Gao X, Bai Z, Tang Y, Wei J. Heterogeneous electro-Fenton treatment of coking wastewater using Fe/AC/Ni cathode: optimization of electrode and reactor organic loading. ENVIRONMENTAL TECHNOLOGY 2024; 45:2180-2195. [PMID: 36602885 DOI: 10.1080/09593330.2023.2165971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
A self-developed iron-loaded activated carbon-based nickel foam electrode (Fe/AC/Ni cathode) was used to construct electro-Fenton reaction system to treat coking wastewater. To meet the gap between laboratory beaker experiments and field trials for practical applications, we proposed and validated a method for obtaining organic loads, the essential parameters used in the design of electrochemical systems for wastewater treatment. The three influencing factors most relevant to organic loading, the effective surface area of cathode, chemical oxygen demand (COD) concentration of influent, and treatment time, were selected and investigated for their effects on the COD removal rate of coking wastewater by single-factor experiments and further optimized by response surface method. The appropriate electrode area load (La) and reactor volume load (Lv) were calculated by their corresponding intrinsic relationships with the three factors. The optimum application conditions were effective surface area of cathode 28.5 cm2, COD concentration of influent 1.76 kg·m-3, and treatment time 160.43 min. Under these conditions, the maximum COD removal rate was 98.51%. The La and Lv were 8.905 mgCOD·cm-2·h-1 and 0.634 kgCOD·m-3·h-1, respectively. The characterization experiment results showed that the Fe/AC/Ni cathode had a significant effect on the treatment of refractory organic contaminants in coking wastewater.
Collapse
Affiliation(s)
- Guangcai Meng
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Fuzhi Yu
- Ansteel Beijing Research Institute Co., Ltd., Beijing, People's Republic of China
| | - Yanqiu Wang
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Xiao Li
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Xinyu Gao
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Zhongteng Bai
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Yin Tang
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| | - Junguang Wei
- School of chemical engineering, University of Science and Technology Liaoning, Anshan, People's Republic of China
| |
Collapse
|
9
|
Shahedi A, Darban AK, Jamshidi-Zanjani A, Homaee M, Taghipour F. Effect of ozonation and UV-LED combination on simultaneous removal of toxic elements during electrocoagulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5847-5865. [PMID: 38129726 DOI: 10.1007/s11356-023-31600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Cyanide and heavy metals pose significant risks as contaminants in certain industrial effluents. This study aims to concurrently eliminate cyanide and specific heavy metals from synthetic wastewater resembling gold processing effluent, employing an improved electrocoagulation method incorporating ozone and UV-LED. The investigation delves into the effects of pH, electrode type, current density, reaction time, and ozonation. The findings revealed notable removal efficiencies: 98% for cyanide, 76% for nickel, 85% for copper, and 84% for zinc when utilizing a stainless steel electrode as the cathode. Optimal removal rates were achieved at 94% for cyanide, 93% for copper, 92% for zinc, and 83% for nickel, employing the UV-LED-ozone technique with an ozonation flow rate of 4 mg/s at pH = 10. Notably, when Al-Gr-SS-Fe electrodes and a current of 15 mA/cm2 were applied, these removal efficiencies were observed. Therefore, the most favorable conditions for the concurrent removal of pollutants from synthetic wastewater involved maintaining a pH of 10, utilizing SS-Fe as anode and Al-Gr as cathode electrodes, and employing a current density of 15 mA/cm2. The addition of ozonation with a flow rate of 4 mg/s, along with UV-LED, further enhanced the removal process. In summary, it can be inferred that the enhanced electrocoagulation method outperformed conventional electrocoagulation, leading to increased elimination of cyanide and selected heavy metals.
Collapse
Affiliation(s)
- Ahmad Shahedi
- Department of Mineral Processing, Faculty of Engineering, Tarbiat Modares University, Tehran, 14115, Iran
| | - Ahmad Khodadadi Darban
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, 14115, Iran
| | - Ahmad Jamshidi-Zanjani
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, 14115, Iran.
| | - Mehdi Homaee
- Department of Mining and Environmental Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran, 14115, Iran
| | - Fariborz Taghipour
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Chalaris M, Gkika DA, Tolkou AK, Kyzas GZ. Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119627-119653. [PMID: 37962753 DOI: 10.1007/s11356-023-30891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Metallurgy is pivotal for societal progress, yet it yields wastewater laden with hazardous compounds. Adhering to stringent environmental mandates, the scientific and industrial sectors are actively researching resilient treatment and disposal solutions for metallurgical effluents. The primary origins of organic pollutants within the metallurgical sector include processes such as coke quenching, steel rolling, solvent extraction, and electroplating. This article provides a detailed analysis of strategies for treating steel industry waste in wastewater treatment. Recent advancements in membrane technologies, adsorption, and various other processes for removing hazardous pollutants from steel industrial wastewater are comprehensively reviewed. The literature review reveals that advanced oxidation processes (AOPs) demonstrate superior effectiveness in eliminating persistent contaminants. However, the major challenges to their industrial-scale implementation are their cost and scalability. Additionally, it was discovered that employing a series of biological reactors instead of single-step biological processes enhances command over microbial communities and operating variables, thus boosting the efficacy of the treatment mechanism (e.g., achieving a chemical oxygen demand (COD) elimination rate of over 90%). This review seeks to conduct an in-depth examination of the current state of treating metallurgical wastewater, with a particular emphasis on strategies for pollutant removal. These pollutants exhibit distinct features influenced by the technologies and workflows unique to their respective processes, including factors such as their composition, physicochemical properties, and concentrations. Therefore, it is of utmost importance for customized treatment and disposal approaches, which are the central focus of this review. In this context, we will explore these methods, highlighting their advantages and characteristics.
Collapse
Affiliation(s)
- Michail Chalaris
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece.
| | - Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - Athanasia K Tolkou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
11
|
Mosur Nagarajan A, Subramanian A, Prasad Gobinathan K, Mohanakrishna G, Sivagami K. Electrochemical-based approaches for the treatment of pharmaceuticals and personal care products in wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118385. [PMID: 37392690 DOI: 10.1016/j.jenvman.2023.118385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/15/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
In recent times, emerging contaminants (ECs) like pharmaceuticals and personal care products (PPCPs) in water and wastewater have become a major concern in the environment. Electrochemical treatment technologies proved to be more efficient to degrade or remove PPCPs present in the wastewater. Electrochemical treatment technologies have been the subject of intense research for the past few years. Attention has been given to electro-oxidation and electro-coagulation by industries and researchers, indicating their potential to remediate PPCPs and mineralization of organic and inorganic contaminants present in wastewater. However, difficulties arise in the successful operation of scaled-up systems. Hence, researchers have identified the need to integrate electrochemical technology with other treatment technologies, particularly advanced oxidation processes (AOPs). Integration of technologies addresses the limitation of indiviual technologies. The major drawbacks like formation of undesired or toxic intermediates, s, energy expenses, and process efficacy influenced by the type of wastewater etc., can be reduced in the combined processes. The review discusses the integration of electrochemical technology with various AOPs, like photo-Fenton, ozonation, UV/H2O2, O3/UV/H2O2, etc., as an efficient way to generate powerful radicals and augment the degradation of organic and inorganic pollutants. The processes are targeted for PPCPs such as ibuprofen, paracetamol, polyparaben and carbamezapine. The discussion concerns itself with the various advantages/disadvantages, reaction mechanisms, factors involved, and cost estimation of the individual and integrated technologies. The synergistic effect of the integrated technology is discussed in detail and remarks concerning the prospects subject to the investigation are also stated.
Collapse
Affiliation(s)
- Aditya Mosur Nagarajan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; Faculty of Process and Systems Engineering, Otto-von-Guericke-Universität, Magdeburg, Germany
| | - Aishwarya Subramanian
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Krishna Prasad Gobinathan
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India; School of Process Engineering, Technische Universität Hamburg, Hamburg, Germany
| | - Gunda Mohanakrishna
- Center for Energy and Environment (CEE), School of Advanced Sciences, KLE Technological University, Hubli, India.
| | - Krishnasamy Sivagami
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
12
|
Nghia NT, Tuyen BTK, Quynh NT, Thuy NTT, Nguyen TN, Nguyen VD, Tran TKN. Response Methodology Optimization and Artificial Neural Network Modeling for the Removal of Sulfamethoxazole Using an Ozone-Electrocoagulation Hybrid Process. Molecules 2023; 28:5119. [PMID: 37446780 DOI: 10.3390/molecules28135119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Removing antibiotics from water is critical to prevent the emergence and spread of antibiotic resistance, protect ecosystems, and maintain the effectiveness of these vital medications. The combination of ozone and electrocoagulation in wastewater treatment provides enhanced removal of contaminants, improved disinfection efficiency, and increased overall treatment effectiveness. In this work, the removal of sulfamethoxazole (SMX) from an aqueous solution using an ozone-electrocoagulation (O-EC) system was optimized and modeled. The experiments were designed according to the central composite design. The parameters, including current density, reaction time, pH, and ozone dose affecting the SMX removal efficiency of the OEC system, were optimized using a response surface methodology. The results show that the removal process was accurately predicted by the quadric model. The numerical optimization results show that the optimum conditions were a current density of 33.2 A/m2, a time of 37.8 min, pH of 8.4, and an ozone dose of 0.7 g/h. Under these conditions, the removal efficiency reached 99.65%. A three-layer artificial neural network (ANN) with logsig-purelin transfer functions was used to model the removal process. The data predicted by the ANN model matched well to the experimental data. The calculation of the relative importance showed that pH was the most influential factor, followed by current density, ozone dose, and time. The kinetics of the SMX removal process followed the first-order kinetic model with a rate constant of 0.12 (min-1). The removal mechanism involves various processes such as oxidation and reduction on the surface of electrodes, the reaction between ozone and ferrous ions, degradation of SMX molecules, formation of flocs, and adsorption of species on the flocs. The results obtained in this work indicate that the O-EC system is a potential approach for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Nguyen Trong Nghia
- Faculty of Chemical and Environmental Technology, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen 17817, Vietnam
| | - Bui Thi Kim Tuyen
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Ngo Thi Quynh
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Nguyen Thi Thu Thuy
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Thi Nguyet Nguyen
- Faculty of Chemical and Environmental Technology, Hung Yen University of Technology and Education, Khoai Chau District, Hung Yen 17817, Vietnam
| | - Vinh Dinh Nguyen
- Faculty of Chemistry, TNU-University of Sciences, Thai Nguyen City 25000, Vietnam
| | - Thi Kim Ngan Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
13
|
Pankaj B, Huang JY, Brown P, Shivaram KB, Yakamercan E, Simsek H. Electrochemical treatment of aquaculture wastewater effluent and optimization of the parameters using response surface methodology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121864. [PMID: 37225080 DOI: 10.1016/j.envpol.2023.121864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
The electrocoagulation (EC) and electrooxidation (EO) processes are employed widely as treatment processes for industrial, agricultural, and domestic wastewater. In the present study, EC, EO, and a combination of EC + EO were evaluated as methods of removing pollutants from shrimp aquaculture wastewater. Process parameters for electrochemical processes, including current density, pH, and operation time were studied, and response surface methodology was employed to determine the optimum condition for the treatment. The effectiveness of the combined EC + EO process was assessed by measuring the reduction of targeted pollutants, including dissolved inorganic nitrogen species, total dissolved nitrogen (TDN), phosphate, and soluble chemical oxygen demand (sCOD). Using EC + EO process, more than 87% reduction was achieved for inorganic nitrogen, TDN, and phosphate, while 76.2% reduction was achieved for sCOD. These results demonstrated that the combined EC + EO process provided better treatment performance in removing the pollutants from shrimp wastewater. The kinetic results suggested that the effects of pH, current density, and operation time were significant on the degradation process when using iron and aluminum electrodes. Comparatively, iron electrodes were effective at reducing the half-life (t1/2) of each of the pollutants in the samples. The application of the optimized process parameters on shrimp wastewater could be used for large-scale treatment in aquaculture.
Collapse
Affiliation(s)
- Bhatt Pankaj
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Jen-Yi Huang
- Department of Food Science, Purdue University, W. Lafayette, IN, USA
| | - Paul Brown
- Department of Forestry and Natural Resources, Purdue University, W. Lafayette, IN, USA
| | - Karthik B Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA
| | - Elif Yakamercan
- Department of Environmental Engineering, Bursa Technical University, Bursa, Turkey
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, W. Lafayette, IN, USA.
| |
Collapse
|
14
|
Shahedi A, Darban AK, Jamshidi-Zanjani A, Homaee M. An overview of the application of electrocoagulation for mine wastewater treatment. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:522. [PMID: 36988769 DOI: 10.1007/s10661-023-11044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
One of the challenges of the twenty-first century is related to the discharge and disposal of mine effluents and wastewater resulting from mine dewatering, precipitation, and surface runoff in mines, especially acidic effluents that contain a variety of toxic and heavy metals and are the main sources of surface and groundwater pollution. Various physical, chemical, and biological methods have been developed and used to treat mine effluents. All proposed methods have their own disadvantages that make their use challenging. One of the new methods used for wastewater treatment is the electrical coagulation process, which has attracted the attention of researchers in recent years due to its advantages such as simplicity, environmental friendliness, and low cost. The present review focused on the applications of electrocoagulation for mine wastewater treatment as well as metals recovery. In addition, the main mechanisms, advantages, and weaknesses of electrocoagulation were reviewed.
Collapse
Affiliation(s)
- Ahmad Shahedi
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Khodadadi Darban
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran.
- Agrohydrology Research Group, Tarbiat Modares University, Tehran, Iran.
| | - Ahmad Jamshidi-Zanjani
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
- Agrohydrology Research Group, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Homaee
- Department of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
- Agrohydrology Research Group, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
Jaramillo-Fierro X, León R. Effect of Doping TiO 2 NPs with Lanthanides (La, Ce and Eu) on the Adsorption and Photodegradation of Cyanide-A Comparative Study. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061068. [PMID: 36985962 PMCID: PMC10055693 DOI: 10.3390/nano13061068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
Free cyanide is a highly dangerous compound for health and the environment, so treatment of cyanide-contaminated water is extremely important. In the present study, TiO2, La/TiO2, Ce/TiO2, and Eu/TiO2 nanoparticles were synthesized to assess their ability to remove free cyanide from aqueous solutions. Nanoparticles synthesized through the sol-gel method were characterized by X-ray powder diffractometry (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier-transformed infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and specific surface area (SSA). Langmuir and Freundlich isotherm models were utilized to fit the adsorption equilibrium experimental data, and pseudo-first-order, pseudo-second-order, and intraparticle diffusion models were used to fit the adsorption kinetics experimental data. Cyanide photodegradation and the effect of reactive oxygen species (ROS) on the photocatalytic process were investigated under simulated solar light. Finally, reuse of the nanoparticles in five consecutive treatment cycles was determined. The results showed that La/TiO2 has the highest percentage of cyanide removal (98%), followed by Ce/TiO2 (92%), Eu/TiO2 (90%), and TiO2 (88%). From these results, it is suggested that La, Ce, and Eu dopants can improve the properties of TiO2 as well as its ability to remove cyanide species from aqueous solutions.
Collapse
Affiliation(s)
- Ximena Jaramillo-Fierro
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Ricardo León
- Maestría en Química Aplicada, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| |
Collapse
|
16
|
Hu Q, He L, Lan R, Feng C, Pei X. Recent advances in phosphate removal from municipal wastewater by electrocoagulation process: A review. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Borba FH, Hahn CL, Mayer I, Seibert D, Guimarães RE, Inticher JJ, Zorzo CF, Kreutz GK. New hybrid strategy of the photo-Fered-Fenton process assisted by O 3 for the degradation of wastewater from the pretreatment of biodiesel production. CHEMOSPHERE 2022; 306:135470. [PMID: 35753413 DOI: 10.1016/j.chemosphere.2022.135470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
The present work aims to fill a scientific gap regarding the treatment of wastewater from the enzymatic pretreatment of biodiesel production (WEPBP), as well as the identification of organic contaminants present in this complex matrix. Different treatment strategies were proposed for the removal of total organic carbon (TOC) and chemical oxygen demand (COD) from WEPBP. The interesting combination of O3/H2O2/UV-Vis and electrocoagulation (EC) process was studied in two setups, with the EC process applied prior to O3/H2O2/UV-Vis and vice versa. Further, the innovative hybrid system based on the photo-Fered-Fenton process with O3 addition (PEF-Fere-O3) was preliminarily studied for WEPBP treatment. The hybrid system provided the best results for the WEPBP treatment when the reactor was operated at pH of 4.5, 65 mg O3 L-1 and 10000 mg H2O2 L-1, UV-Vis was used as the irradiation source, and the current intensity of 3.0 A. Removals of 45% of TOC and 68.7% of COD were reached within 45 min. Oleic acid, linoleic acid, and Diisooctyl phthalate (DIOP) were the main organic contaminants identified in the WEPBP as determined by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Acute toxicity assays with the bio indicator Artemia salina were carried out in untreated and treated WEPBP samples, indicating that the PEF-Fere-O3 treatment decreased the amount of contaminants present in the WEPBP as well as reduced the toxicity levels and increased biodegradability index, suggesting its great potential for the treatment of complex industrial wastewaters.
Collapse
Affiliation(s)
- Fernando H Borba
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil.
| | - Cláudia L Hahn
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Ildemar Mayer
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Daiana Seibert
- Postgraduate Program of Chemical Engineering, State University of Maringa, UEM, Av. Colombo, 5790 Maringa, CEP: 87020-900, Paraná, PR, Brazil
| | - Raíssa E Guimarães
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Jonas J Inticher
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Camila F Zorzo
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| | - Gustavo K Kreutz
- Postgraduate Program of Environment and Sustainable Technologies, Federal University of Fronteira Sul, Rua Jacob Reinaldo Haupenthal 1580, CEP: 97900-00, Cerro Largo, RS, Brazil
| |
Collapse
|
18
|
AlJaberi FY, Alardhi SM, Ahmed SA, Salman AD, Juzsakova T, Cretescu I, Le PC, Chung WJ, Chang SW, Nguyen DD. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency? ENVIRONMENTAL RESEARCH 2022; 214:113890. [PMID: 35870500 DOI: 10.1016/j.envres.2022.113890] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Considerable amounts of domestic and industrial wastewater that should be treated before reuse are discharged into the environment annually. Electrocoagulation is an electrochemical technology in which electrical current is conducted through electrodes, it is mainly used to remove several types of wastewater pollutants, such as dyes, toxic materials, oil content, chemical oxygen demand, and salinity, individually or in combination with other processes. Electrocoagulation technology used in hybrid systems along with other technologies for wastewater treatment are reviewed in this work, and the articles reviewed herein were published from 2018 to 2021. Electrocoagulation is widely employed in integrated systems with other electrochemical technologies or conventional methods for effective removal of different pollutants with less cost and sometimes over shorter durations of operation. It has also been observed that the hybrid effects besides increasing the removal efficiency can overcome the disadvantages of using electrocoagulation alone, such as less sludge formation, high cost of operation and increased life of the used electrodes, and stable flux of water with longer periods of operation. More than 20 types of other technologies have been combined efficiently with electrocoagulation.
Collapse
Affiliation(s)
- Forat Yasir AlJaberi
- Chemical Engineering Department, College of Engineering, Al-Muthanna University, Al-Muthanna, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Materials Research Center, University of Technology, Baghdad, Iraq
| | - Shaymaa A Ahmed
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Ali Dawood Salman
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary; Department of Chemical and Petroleum Refining Engineering, College of Oil and Gas Engineering, Basra University, Iraq
| | - Tatjána Juzsakova
- Research Group for Surfaces and Nanostructures, University of Pannonia, Veszprém, Hungary
| | - Igor Cretescu
- Department of Environmental Engineering and Management, Gheorghe Asachi Technical University of Iasi, Romania
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, 54 Nguyen Luong Bang, Danang 550000, Vietnam.
| | - W Jin Chung
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - S Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea
| | - D Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, Republic of Korea; Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, HCM City 755414, Vietnam.
| |
Collapse
|
19
|
Asaithambi P, Yesuf MB, Govindarajan R, Hariharan NM, Thangavelu P, Alemayehu E. Distillery industrial wastewater(DIW) treatment by the combination of sono(US), photo(UV) and electrocoagulation(EC) process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115926. [PMID: 35940007 DOI: 10.1016/j.jenvman.2022.115926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The color and Chemical Oxygen Demand (COD) reduction in distillery industrial effluent (DIW) was investigated utilizing photo (UV), sono (US), electrocoagulation (EC), UV + US, UV + EC, US + EC, and US + UV + EC technologies. The empirical study demonstrated that the UV + US + EC process removed almost 100% of color and 95.63% of COD from DIW while consuming around 6.97 kWh m-3 of electrical energy at the current density of 0.175 A dm-2, COD of 3600 mg L-1, UV power of 32 W, US power of 100 W, electrode pairings of Fe/Fe, inter-electrode distance of 0.75 cm, pH of 7, and reaction time of 4 h, respectively. The values found were much greater than those produced using UV, US, EC, UV + US, UV + EC, and US + EC methods. The influence of various control variables such as treatment time (1-5 h), current density (0.075-2.0 A dm-2), COD (1800-6000 mg L-1), inter-electrode distance (0.75-3.0 cm), electrode pairings (Fe/Fe, Fe/Al, Al/Fe, Al/Al), UV (8-32 W), and US (20-100 W) on the color and COD reduction were investigated to determine the optimum operating conditions. It was observed that, an increase in treatment time, current density, UV and US power, decrease in the COD, and inter-electrode distance with Fe/Fe electrode combination improved the COD removal efficiency. The UV and US + EC processes' synergy index was investigated and reported. The results showed that, the US + UV + EC treatment combination was effective in treating industrial effluent and wastewater.
Collapse
Affiliation(s)
- Perumal Asaithambi
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Po Box - 378, Ethiopia.
| | - Mamuye Busier Yesuf
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Po Box - 378, Ethiopia
| | - Rajendran Govindarajan
- Department of Chemical Engineering, Hindustan Institute of Technology and Science, Rajiv Gandhi Salai, Padur, Chennai, 603103, Tamilnadu, India.
| | - N M Hariharan
- Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam, Chennai, 600123, Tamil Nadu, India
| | - Perarasu Thangavelu
- Department of Chemical Engineering, AC Tech Campus, Anna University, Chennai, 600 025, Tamil Nadu, India
| | - Esayas Alemayehu
- Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, Po Box - 378, Ethiopia; Africa Center of Excellence for Water Management, Addis Ababa University, Addis Ababa, Po Box-1176, Ethiopia
| |
Collapse
|
20
|
A Review of Hybrid Process Development Based on Electrochemical and Advanced Oxidation Processes for the Treatment of Industrial Wastewater. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/1105376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Nowadays, increased human activity, industrialization, and urbanization result in the production of enormous quantities of wastewater. Generally, physicochemical and biological methods are employed to treat industrial effluent and wastewater and have demonstrated high efficacy in removing pollutants. However, some industrial effluent and wastewater contain contaminants that are extremely difficult to remove using standard physicochemical and biological processes. Previously, electrochemical and hybrid advanced oxidation processes (AOP) were considered a viable and promising alternative for achieving an adequate effluent treatment strategy in such instances. These processes rely on the production of hydroxyl radicals, which are highly reactive oxidants that efficiently break down contaminants found in wastewater and industrial effluent. This review focuses on the removal of contaminants from industrial effluents and wastewater through the integration of electrochemical and advanced oxidation techniques. These processes include electrooxidation, electrocoagulation/electroflocculation, electroflotation, photo-Fenton, ozone-photo-Fenton, sono-photo-Fenton, photo-electro-Fenton, ozone/electrocoagulation, sono-electrocoagulation, and peroxi/photo/electrocoagulation. The data acquired from over 150 published articles, most of which were laboratory experiments, demonstrated that the hybrid process is more effective in removing contaminants from industrial effluent and wastewater than standalone processes.
Collapse
|
21
|
Das PP, Sharma M, Purkait MK. Recent progress on electrocoagulation process for wastewater treatment: A review. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Purifying cyanide-bearing wastewaters by electrochemical precipitate process using sacrificial Zn anode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Parashuram L, Prashanth MK, Krishnaiah P, Kumar CBP, Alharti FA, Kumar KY, Jeon BH, Raghu MS. Nitrogen doped carbon spheres from Tamarindus indica shell decorated with vanadium pentoxide; photoelectrochemical water splitting, photochemical hydrogen evolution & degradation of Bisphenol A. CHEMOSPHERE 2022; 287:132348. [PMID: 34624585 DOI: 10.1016/j.chemosphere.2021.132348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
At present energy and environmental remediation are of highest priority for the well defined sustainability. Multifunctional materials that solve both the issues are on high demand. In the present work, a simple method has been followed to extract carbon spheres fromTamarindus indica(commonly known astamarind fruit) shelland doped with nitrogen (N-CS). Vanadium pentoxide nanoflakes were decorated aroundN-CS and the resultant is labeled as V2O5/N-CS nanocomposite. The spectroscopic, microscopic, elemental mapping and x-ray photoelectron spectroscopic characterization confirm the nitrogen doping and formation of hybrid material. N-CS, V2O5, and V2O5/N-CS nanocompositehave been evaluated for their efficiency to evolve hydrogen and for degradation of Bisphenol A (BPA) under visible light. In addition, electrocatalytic hydrogen evolution in presence of light has also been evaluated. The DRS spectrum proves the decrease in the bandgap of V2O5 upon its decoration around N-CS material. In a photochemical experiment, the V2O5/N-CS nanocomposite evolved 18,600 μmolg-1 of H2.Electrochemical hydrogen evolution has also been evaluated in presence of light and obtained the onset potential of -60mV with 52 mV dec-1 Tafel slope value. Scavenger studies indicate superoxide radicals and hydroxyl radicals are the active species responsible for the degradation of BPA. BPA degradation pathway has been predicted with the support of LC-MS results of the intermediates. All these results indicate the synthesized nanocomposite could be an efficient, stable multifunctional material for photocatalytic applications.
Collapse
Affiliation(s)
- L Parashuram
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India
| | - M K Prashanth
- Department of Chemistry, BNM Institute of Technology, Banashankari, Bangalore, 560070, India
| | - Prakash Krishnaiah
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - C B Pradeep Kumar
- Department of Chemistry, Malnad College of Engineering, Hassan. 573202, India
| | - Fahad A Alharti
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, 562112, India.
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Outer Ring Road, Bangalore, 560103, India.
| |
Collapse
|
24
|
Tamang M, Paul KK. Advances in treatment of coking wastewater - a state of art review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:449-473. [PMID: 35050895 DOI: 10.2166/wst.2021.497] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coking wastewater poses a serious threat to the environment due to the presence of a wide spectrum of refractory substances such as phenolic compounds, polycyclic aromatic hydrocarbons and heterocyclic nitrogenous compounds. These toxic substances are difficult to treat using conventional treatment methods alone. In recent years much attention has been given to the effective treatment of coking wastewater. Thus, this review seeks to provide a brief overview of recent developments that have taken place in the treatment of coking wastewater. In addition, this article addresses the complexity and the problems associated with treatment followed by a discussion on biological methods with special focus on bioaugmentation. As coking wastewater is refractory in nature, some of the studies have been related to improving the biodegradability of wastewater. The final section focuses on the integrated treatment methods that have emerged as the best solution for tackling the highly unmanageable coking wastewater. Attention has also been given to emerging microwave technology which has tremendous potential for treatment of coking wastewater.
Collapse
Affiliation(s)
- Markus Tamang
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| | - Kakoli Karar Paul
- Civil Engineering Department, National Institute of Technology, Rourkela, India E-mail:
| |
Collapse
|
25
|
Agarkoti C, Thanekar PD, Gogate PR. Cavitation based treatment of industrial wastewater: A critical review focusing on mechanisms, design aspects, operating conditions and application to real effluents. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113786. [PMID: 34649311 DOI: 10.1016/j.jenvman.2021.113786] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/28/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Acoustic cavitation (AC) and hydrodynamic cavitation (HC) coupled with advanced oxidation processes (AOPs) are prominent techniques used for industrial wastewater treatment though most studies have focused on simulated effluents. The present review mainly focuses on the analysis of studies related to real industrial effluent treatment using acoustic and hydrodynamic cavitation operated individually and coupled with H2O2, ozone, ultraviolet, Fenton, persulfate and peroxymonosulfate, and other emerging AOPs. The necessity of using optimum loadings of oxidants in the various AOPs for obtaining maximum COD reduction of industrial effluent have been demonstrated. The review also presents critical analysis of designs of various HCRs that have been or can be used for the treatment of industrial effluents. The impact of operating conditions such as dilution, inlet pressure, ultrasonic power, pH, and operating temperature have been also discussed. The economic aspects of the industrial effluent treatment have been analyzed. HC can be considered as cost-efficient approach compared to AC on the basis of the lower operating costs and better transfer efficiencies. Overall, HC combined with AOPs appears to be an effective treatment strategy that can be successfully implemented at industrial-scale of operation.
Collapse
Affiliation(s)
- C Agarkoti
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P D Thanekar
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India
| | - P R Gogate
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 40019, India.
| |
Collapse
|
26
|
Ahangarnokolaei MA, Ayati B, Ganjidoust H. Simultaneous and sequential combination of electrocoagulation and ozonation by Al and Fe electrodes for DirectBlue71 treatment in a new reactor: Synergistic effect and kinetics study. CHEMOSPHERE 2021; 285:131424. [PMID: 34329133 DOI: 10.1016/j.chemosphere.2021.131424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/13/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, the simultaneous combination of electrocoagulation and ozonation (EC-O3) was optimized in a new reactor for Direct Blue 71 treatment and compared to electrocoagulation (EC), ozonation (O3), and their sequential combination (EC→O3) by considering the performance criteria (dye and naphthalene ring removal efficiency), economic assessment (energy and anode consumption), chemical degradability, mineralization rate, and kinetic study. Applying a middle wall in the reactor improved coagulation under ozone-induced rapid mixing on the first side and flocculation under flow-induced slow mixing on the other side which reduced the floc breakage at high ozone dosages. Dye, COD, and TOC removal rate was in the following order: EC(Al)-O3>EC(Fe)-O3>EC(Al)→O3>EC(Fe)→O3>EC(Al)>EC(Fe)>O3. The synergistic effect of simultaneous combined process on dye, COD, and TOC removal were obtained 1.97, 1.42, and 1.69 for EC(Al)-O3 and 1.37, 1.14, and 1.26 for EC(Fe)-O3, respectively, which showed more ozone activation in the presence of Al ions compared to Fe ions. Also, ozone-induced corrosion for Al electrode was less than Fe electrode, which reduced anode consumption and operation cost. Finally, EC(Al)-O3 due to best performance and EC(Fe)→O3 due to optimal use of EC for decolorization and O3 for oxidation, with dye, COD, and TOC removal efficiency, energy and anode consumption, and operation cost equal to 99, 51, and 62%, 18.6 kWh m-3, 0.05 kg m-3 and 0.21 $ m-3, respectively, for EC(Al)-O3 and 99, 44.5, and 51%, 6.7 kWh m-3, 0.2 kg m-3 and 0.14 $ m-3, respectively, for EC(Fe)→O3, are suggested as suitable options for dye wastewater treatment.
Collapse
Affiliation(s)
- M A Ahangarnokolaei
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran.
| | - B Ayati
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran.
| | - H Ganjidoust
- Department of Environmental Engineering, Civil & Environmental Engineering Faculty, Tarbiat Modares University, P.O. Box 14115-397, Tehran, Iran.
| |
Collapse
|
27
|
Behnami A, Croué JP, Aghayani E, Pourakbar M. A catalytic ozonation process using MgO/persulfate for degradation of cyanide in industrial wastewater: mechanistic interpretation, kinetics and by-products. RSC Adv 2021; 11:36965-36977. [PMID: 35494351 PMCID: PMC9043633 DOI: 10.1039/d1ra07789a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cyanide-laden wastewaters generated from mining and electroplating industries are extremely toxic and it is of vital importance to treat them prior to discharge to receiving water resources. The present study aims to oxidize cyanide using an ozonation process catalyzed by MgO and persulfate (PS). A MgO nanocatalyst was synthesized using the sol-gel method and characterized. The results show that the synthesized catalyst had a BET surface area of 198.3 m2 g-1 with a nanocrystalline particle size of 7.42 nm. In the present study, the effects of different operational parameters were investigated, and it was found that the MgO/O3/PS process is able to oxidize 100 mg L-1 of cyanide after 30 min under optimum operational conditions. Cyanide degradation mechanisms in the MgO/O3/PS process were completely investigated and the main radical species were identified using scavenging experiments. It was found that sulfate and hydroxyl radicals both contributed to the cyanide degradation in the MgO/O3/PS process. Cyanide degradation by-products were also tracked and it was found that cyanate and ammonium species are primarily generated during the oxidation, but increase of reaction time allowed their conversion to much less toxic compounds such as nitrate and bicarbonate. Cyanide degradation was also conducted in real industrial wastewater containing 173 mg L-1 of cyanide. Although there was a reduction in cyanide removal rate, the MgO/O3/PS process was able to completely oxidize cyanide within 70 min. Finally, it can be concluded that the ozonation process catalyzed by MgO and persulfate is an efficient and reliable advanced oxidation process for removal of cyanide from industrial wastewater.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences Maragheh Iran +98 4132726363
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux, IC2MP UMR 7285 CNRS, Université de Poitiers France
| | - Ehsan Aghayani
- Research Center for Environmental Contaminant, Abadan University of Medical Sciences Abadan Iran
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences Maragheh Iran +98 4132726363
| |
Collapse
|
28
|
|
29
|
Lu J, Zhang P, Li J. Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 296:113259. [PMID: 34256295 DOI: 10.1016/j.jenvman.2021.113259] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Water shortage and quality deterioration are plaguing people all over the world. Providing sustainable and affordable treatment solutions to these problems is a need of the hour. Electrocoagulation (EC) technology is a burgeoning alternative for effective water treatment, which offers the virtues such as compact equipment, easy operation, and low sludge production. Compared to other water purification technologies, EC shows excellent removal efficacy for a wide range of contaminants in water and has great potential for addressing limitations of conventional water purification technologies. This review summarizes the latest development of principle, characteristics, and reactor design of EC. The design of key parameters including reactor shape, power supply type, current density, as well as electrode configuration is further elaborated. In particular, typical water treatment systems powered by renewable energy (solar photovoltaic and wind turbine systems) are proposed. Further, this review provides an overview on expanded application of EC in the removal of some newly concerned pollutants in recent years, including arsenite, perfluorinated compounds, pharmaceuticals, oil, bacteria, and viruses. The removal efficiency and mechanisms of these pollutants are also discussed. Finally, future research trend and focus are further recommended. This review can bridge the large knowledge gap for the EC application that is beneficial for environmental researchers and engineers.
Collapse
Affiliation(s)
- Jianbo Lu
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China.
| | - Peng Zhang
- School of Civil Engineering, Yantai University, Yantai, Shandong, 264005, China
| | - Jie Li
- School of Economics and Management, Yantai University, Yantai, Shandong, 264005, China
| |
Collapse
|
30
|
Electrocoagulation Process: An Approach to Continuous Processes, Reactors Design, Pharmaceuticals Removal, and Hybrid Systems—A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9101831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The electrocoagulation (EC) process has been widely studied in recent years to remove a wide range of contaminants present in different types of water: fluorides, arsenic, heavy metals, organic matter, colorants, oils, and recently, pharmaceutical compounds. However, most of the studies have been aimed at understanding the process factors that have the most significant effect on efficiency, and these studies have been mainly on a batch process. Therefore, this review is focused on elucidating the current state of development of this process and the challenges it involves transferring to continuous processes and the recent exploration of its potential use in the removal of pharmaceutical contaminants and its implementation with other technologies.
Collapse
|
31
|
Jin X, Xie X, Zhang S, Yang C, Xu L, Shi X, Jin P, Wang XC. Insights into the electro-hybrid ozonation-coagulation process-Significance of connection configurations and electrode types. WATER RESEARCH 2021; 204:117600. [PMID: 34488141 DOI: 10.1016/j.watres.2021.117600] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
The electro-hybrid ozonation-coagulation process (E-HOC) integrates electrocoagulation (EC) and ozonation simultaneously in a single unit. Nevertheless, the performance of the EC process is highly dependent on the polar connection configuration (monopolar vs. bipolar connection) and the type of generated coagulants (single-coagulant vs. dual-coagulants). In this study, the removal efficiency of the E-HOC process with different connection configurations and types of coagulants was assessed. The E-HOC process with bipolar connection (BE-HOC) exhibited higher removal efficiency for wastewater treatment plant (WWTP) effluent organic matter and ibuprofen (IBP) compared with the E-HOC process with monopolar connection (ME-HOC). Furthermore, dual-coagulant generation (released from both Al and Fe electrodes) in the BE-HOC process greatly improved the WWTP effluent organic matter and IBP removal efficiency. Lower energy consumption was observed for the BE-HOC process compared with the ME-HOC process. It was found that ozonation promoted the polymerization reactions during coagulant hydrolyzis in the E-HOC process. Compared with the ME-HOC process, the BE-HOC configuration and dual-coagulant mode further facilitated polymeric hydrolyzed coagulant species formation, thereby improving ozone catalytic and coagulation performance. According to trapping experiments and EPR analysis, •OH formation was enhanced in the BE-HOC process and dual-coagulant mode. In addition, more active reaction sites of generated hydrolyzed coagulant species were observed with bipolar connection and in the dual-coagulant generation mode based on X-ray photoelectron spectroscopy (XPS) analysis.
Collapse
Affiliation(s)
- Xin Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Xinyue Xie
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Shaohua Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Chao Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| | - Lu Xu
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Xuan Shi
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Pengkang Jin
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China.
| | - Xiaochang C Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi Province 710055, China
| |
Collapse
|
32
|
Preparation and characterization of zeolite from waste Linz-Donawitz (LD) process slag of steel industry for removal of Fe3+ from drinking water. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Silpcharu K, Soonthonhut S, Sukwattanasinitt M, Rashatasakhon P. Fluorescent Sensor for Copper(II) and Cyanide Ions via the Complexation-Decomplexation Mechanism with Di(bissulfonamido)spirobifluorene. ACS OMEGA 2021; 6:16696-16703. [PMID: 34235342 PMCID: PMC8246698 DOI: 10.1021/acsomega.1c02744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/10/2021] [Indexed: 05/27/2023]
Abstract
A novel spirobifluorene derivative bearing two bissulfonamido groups is successfully synthesized by Sonogashira coupling. This compound exhibits a strong fluorescence quenching by Cu(II) ion in a 50% mixture between acetonitrile and 20 mM pH 7.0 N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) buffer with a detection limit of 98.2 nM. However, this sensor also shows ratiometric signal shifts from blue to yellow in the presence of Zn(II), Pb(II), and Hg(II) ions. The static quenching mechanism is verified by the signal reversibility using ethylenediaminetetraacetic acid (EDTA) and the Stern-Volmer plots at varying temperatures. The Cu(II)-spirobifluorene complex shows a highly selective fluorescence enhancement upon the addition of CN- ion with the detection limit of 390 nM. The application of this complex for quantitative analysis of spiked CN- ion in real water samples resulted in good recoveries.
Collapse
Affiliation(s)
- Komthep Silpcharu
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Siraporn Soonthonhut
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Mongkol Sukwattanasinitt
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paitoon Rashatasakhon
- Department
of Chemistry, Faculty of Science, Chulalongkorn
University, Bangkok 10330, Thailand
- Nanotec-CU
Center of Excellence on Food and Agriculture, Department of Chemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
34
|
Patel S, Mondal S, Majumder SK, Das P, Ghosh P. Treatment of a Pharmaceutical Industrial Effluent by a Hybrid Process of Advanced Oxidation and Adsorption. ACS OMEGA 2020; 5:32305-32317. [PMID: 33376867 PMCID: PMC7758896 DOI: 10.1021/acsomega.0c04139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/12/2020] [Indexed: 05/05/2023]
Abstract
In the present study, a combined approach of ozone-based advanced oxidation and adsorption by activated char was employed for the treatment of a pharmaceutical industrial effluent. Ozone is a selective oxidant, but the addition of H2O2 generated in situ hydroxyl radicals, which is a non-selective stronger oxidant than ozone. The effluent obtained from the pharmaceutical industry mainly contained anti-cancer drugs, anti-psychotic drugs, and some pain killers. The peroxone process had 75-88.5% chemical oxygen demand (COD) reduction efficiency at pH 5-11 in 3 h. Adsorption by activated char further reduced the COD to 85.4-92.7% for pH 5-11 in 2.5 h. All other water quality parameters were significantly decreased (>73% removal) during ozonation. The primary operational parameters (system pH and H2O2 concentration) were also varied, and their effects were analyzed. The pseudo-first-order rate constants for ozonation were calculated, and they were found to be in the range of 1.42 × 10-4 to 3.35 × 10-4 s-1 for pH 5-11. The kinetic parameters for adsorption were calculated for the pseudo-first-order, pseudo-second-order, and Elovich models. The fit of the pseudo-first-order kinetic model to the experimental data was the best.
Collapse
Affiliation(s)
- Surabhi Patel
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati 781039, Assam, India
| | - Somen Mondal
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati 781039, Assam, India
| | - Subrata Kumar Majumder
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati 781039, Assam, India
| | - Papita Das
- Department
of Chemical Engineering, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Pallab Ghosh
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|