1
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
2
|
Zhu K, Song Y, He Z, Wang P, Wang X, Liu G. Effect of Seminal Plasma on the Freezability of Boar Sperm. Animals (Basel) 2024; 14:3656. [PMID: 39765560 PMCID: PMC11672632 DOI: 10.3390/ani14243656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Seminal plasma is an important component of semen and has a significant effect on sperm function. However, the relationship between seminal plasma and sperm freezing capacity has not been fully studied. PURPOSE Exploring metabolites and proteins related to the boar sperm freezing capacity in seminal plasma, by metabolomic and proteomic approaches, and directly verifying the protective effect of seminal plasma on the cryopreservation of boar sperm using high and low freezability seminal plasma as base freezing extender. METHODS Semen samples were collected from 30 different boars, 11 high and 11 low freezing-resistant boars were selected after freezing 2~4 times, and seminal plasma was selected at the same time. Sperm motility and movement parameters were analyzed using a CASA system. Reproductive hormones (Testosterone, progesterone, estradiol, prolactin, prostaglandin F2α, luteinoid hormone) in seminal plasma were detected by ELISA. Analysis of proteins and metabolites in high and low freezing-resistant seminal plasma by proteomics and metabolomics techniques. RESULTS The six reproductive hormones tested were not significantly associated with sperm freezing resistance. A total of 13 differentially expressed metabolites (DEMs) and 38 differentially expressed proteins (DEPs) were identified, while a total of 348 metabolites and 1000 proteins were identified. These DEMs were related to energy metabolism, drugs, or environmental pollutants, while the DEPs were mainly involved in the cytoskeletal dynamics and cell adhesion processes. There were 33 metabolites and 70 proteins significantly associated with mean progress motility (PM) at 10 min and 2 h after thawing. The 70 related proteins were associated with cell division and cycle regulation in gene ontology (GO) terms, as well as KEGG pathways, thermogeneration, and pyruvate metabolism. Using highly freezable boar SP as a base freezing extender made no difference from using lowly freezable boar SP, and both were not as good as the commercial control. CONCLUSION There were significant differences in seminal plasma with different freezability, but the similarity was much greater than the difference. The protection effect of seminal plasma is not remarkable, and it does not exhibit superior cryoprotective properties compared to commercial semen cryoelongators. SIGNIFICANCE This study provides a deeper understanding of how seminal plasma composition affects sperm freezabilty. It provides potential biomarkers and targets for improving sperm cryopreservation techniques.
Collapse
Affiliation(s)
- Kuanfeng Zhu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (K.Z.); (Z.H.)
| | - Yukun Song
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 101205, China; (Y.S.); (P.W.)
| | - Zhi He
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (K.Z.); (Z.H.)
| | - Peng Wang
- Beijing Jingwa Agricultural Science & Technology Innovation Center, Beijing 101205, China; (Y.S.); (P.W.)
| | - Xuguang Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (K.Z.); (Z.H.)
| | - Guoshi Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830091, China; (K.Z.); (Z.H.)
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Yang X, Huang J, Wang J, Sun H, Li J, Wang Z, Song Q. The protective effect of glucose selenol on cadmium-induced testicular toxicity in male rat. Reprod Toxicol 2024; 129:108679. [PMID: 39121979 DOI: 10.1016/j.reprotox.2024.108679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/13/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to investigate the protective effects of glucose selenol on cadmium (Cd)-induced testicular toxicity. Twenty-four male Sprague-Dawley (SD) rats were randomly divided into four groups. Cd was administered orally at a dose of 40 mg/L or in combination with orally administered glucose selenol at doses of 0.15 mg/L and 0.4 mg/L for 30 days. The results showed that sperm quality decreased and testicular tissue was damaged in the Cd group; Glucose selenol significantly attenuated the negative effects by improving sperm quality and reducing testicular damage. Transcriptome sequencing analysis showed that Cd stress affected spermatogenesis, sperm motility, oxidative stress, blood-testis barrier and protein metabolism. Four clusters were obtained using the R Mfuzz package, which clustered highly expressed genes under different administrations, and 36 items were enriched. Notably, protein phosphorylation was enriched in the Cd group and is considered to play a key role in the response to Cd stress. We identified fifty-six target selenium (Se) and Cd co-conversion differentially expressed genes (DEGs), including three genes relating to spermatogenesis (Dnah8, Spata31d1b, Spata31d1c). In addition, the obtained DEGs were used to construct a protein-protein interaction network, co-processed with Se and Cd, and 5 modules were constructed. Overall, the analyses of rat testicular physiology and gene expression levels offer new insights into the reproductive toxicity of Cd in rats, and provide potential application prospects for glucose selenol in alleviating the impact of Cd-induced testicular damage.
Collapse
Affiliation(s)
- Xinyi Yang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Jinzhou Huang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - JinJin Li
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, Hunan 410006, China.
| | - Qisheng Song
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Zhang Q, Yang Y, Liu J, Wu Y, Liu Y, Zhang J. Testicular dysfunction and "its recovery effect" after cadmium exposure. Food Chem Toxicol 2024; 188:114656. [PMID: 38615797 DOI: 10.1016/j.fct.2024.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
In recent years, with the acceleration of industrialization, the decline of male fertility caused by heavy metal pollution has attracted much attention. However, whether the inhibition of testicular function after cadmium exposure is reversible remains to be studied. In this study, we constructed rat models of cadmium exposure and dis-exposure, and collected relative samples to observe the changes of related indicators. The results showed that cadmium exposure could reduce the fertility, inhibit the hypothalamic-pituitary-testis axis and activate hypothalamic-pituitary-adrenal axis function, the testicular GR/PI3K-AKT/AMPK signal was abnormal, cell proliferation was inhibited and apoptosis was enhanced. Four weeks after the exposure was stopped, the fertility was still decreased, testicular testosterone synthesis and spermatogenesis were inhibited, cell proliferation was inhibited and apoptosis was enhanced, but all of them were reversed. After eight weeks of cadmium exposure, the above indicators were observed to return to normal. At the same time, by giving different concentrations of corticosterone to spermatogonium, we confirmed that corticosterone may regulate the proliferation and apoptosis of spermatogonium through GR/PI3K-AKT/AMPK signal. In this study, the reproductive toxicity of cadmium, a metal environmental pollutant, was analyzed in depth to provide a new theoretical and experimental basis for ensuring male reproductive health.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - YanLing Yang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Juan Liu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - YuJiao Wu
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China
| | - Yi Liu
- WuHan University, WuHan, Hubei, 430070, China.
| | - Jing Zhang
- Department of Clinical Pharmacy, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, 445000, China.
| |
Collapse
|
5
|
Panga MJ, Zhao Y. Male Reproductive Toxicity of Antifouling Chemicals: Insights into Oxidative Stress-Induced Infertility and Molecular Mechanisms of Zinc Pyrithione (ZPT). Antioxidants (Basel) 2024; 13:173. [PMID: 38397771 PMCID: PMC10886347 DOI: 10.3390/antiox13020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc pyrithione (ZPT), a widely utilized industrial chemical, is recognized for its versatile properties, including antimicrobial, antibacterial, antifungal, and antifouling activities. Despite its widespread use, recent research has shed light on its toxicity, particularly towards the male reproductive system. While investigations into ZPT's impact on male reproduction have been conducted, most of the attention has been directed towards marine organisms. Notably, ZPT has been identified as a catalyst for oxidative stress, contributing to various indicators of male infertility, such as a reduced sperm count, impaired sperm motility, diminished testosterone levels, apoptosis, and degenerative changes in the testicular tissue. Furthermore, discussions surrounding ZPT's effects on DNA and cellular structures have emerged. Despite the abundance of information regarding reproductive toxicity, the molecular mechanisms underlying ZPT's detrimental effects on the male reproductive system remain poorly understood. This review focuses specifically on ZPT, delving into its reported toxicity on male reproduction, while also addressing the broader context by discussing other antifouling chemicals, and emphasizing the need for further exploration into its molecular mechanisms.
Collapse
Affiliation(s)
| | - Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Huo Y, Ma F, Li T, Lei C, Liao J, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Exposure to copper activates mitophagy and endoplasmic reticulum stress-mediated apoptosis in chicken (Gallus gallus) cerebrum. ENVIRONMENTAL TOXICOLOGY 2023; 38:392-402. [PMID: 36350156 DOI: 10.1002/tox.23701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
A large amount of copper (Cu) used in production activities can lead to the enrichment of Cu in the environment, which can cause toxicity to animals. However, the toxicity mechanism of Cu on the cerebrum is still uncertain. Hence, a total of 240 chickens were separated into four groups in this study to reveal the potential connection between mitophagy and endoplasmic reticulum (ER) stress-mediated apoptosis in the chicken cerebrum in the case of excess Cu exposure. The cu exposure situation was simulated by diets containing various levels of copper (11 mg/kg, control group; 110 mg/kg, group I; 220 mg/kg, group II and 330 mg/kg, group III) for 49 days. The results of histology showed that vacuolar degeneration was observed in the treated groups, and the mitochondria swell and autophagosomes formation were found under excess Cu treatment. Additionally, the expression of mitophagy (PINK1, Parkin, LC3I, LC3II and p62) and ER stress (GRP78, PERK, ATF6, IRE1α, XBP1, CHOP, and JNK) indexes were significantly upregulated under excess Cu exposure. Furthermore, the mRNA and protein expression of Bcl-2 were decreased, while Bak1, Bax, Caspase12, and Caspase3 were increased compared to the control group. In summary, this study demonstrated that an overdose of Cu could induce mitophagy and ER stress-mediated apoptosis in the chicken cerebrum. These findings revealed an important potential connection between Cu toxicity and cerebrum damage, which provided a new insight into Cu neurotoxicity.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tingyu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Liu Y, Chen Q, Li Y, Bi L, Jin L, Peng R. Toxic Effects of Cadmium on Fish. TOXICS 2022; 10:622. [PMID: 36287901 PMCID: PMC9608472 DOI: 10.3390/toxics10100622] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Large amounts of enriched cadmium (Cd) in the environment seriously threatens the healthy and sustainable development of the aquaculture industry and greatly restricts the development of the food processing industry. Studying the distribution and toxic effects of Cd in fish, as well as the possible toxic effects of Cd on the human body, is very significant. A large number of studies have shown that the accumulation and distribution of Cd in fish are biologically specific, cause tissue differences, and seriously damage the integrity of tissue structure and function, the antioxidant defense system, the reproductive regulation system, and the immune system. The physiological, biochemical, enzyme, molecular, and gene expression levels change with different concentrations and times of Cd exposure, and these changes are closely related to the target sites of Cd action and tissues in fish. Therefore, the toxic effects of Cd on fish occur with multiple tissues, systems, and levels.
Collapse
|
8
|
Sun M, Liu JQ, Du XL, Liu SQ, Wang L. Cloning and expression analysis of Shvasa and the molecular regulatory pathways implicated in Cd-induced reproductive toxicity in the freshwater crab Sinopotamon henanense. CHEMOSPHERE 2022; 288:132437. [PMID: 34627817 DOI: 10.1016/j.chemosphere.2021.132437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd), a widespread, severely toxic heavy metal, can cause serious reproductive toxicity in animals. However, the molecular pathways associated with Cd-induced effects remain unknown. In this study, we first cloned the vasa gene (Shvasa) and characterized the VASA protein (ShVASA) in Sinopotamon henanense. We then investigated the molecular mechanisms of Cd-induced reproductive toxicity. Shvasa was specifically expressed in the ovary and testis. ShVASA was abundant in early ovarian development and significantly less abundant in mature ovaries. During oogenesis, ShVASA was abundant and evenly distributed in the cytoplasm of the oogonium and previtellogenic oocytes, but gradually accumulated in the nuclear periphery of vitellogenic and mature oocytes. As Cd concentration increased, ShVASA abundance decreased gradually in proliferation-stage ovaries, and increased gradually in mature ovaries. Notably, at the small and large growth stages, ShVASA was upregulated following exposure to 14.5 mg/L Cd and downregulated following exposure to 29 mg/L Cd. In contrast to the unexposed control, ShVASA accumulated around the nuclear periphery in Cd-exposed previtellogenic oocytes and scattered gradually into the cytoplasm in Cd-exposed vitellogenic and mature oocytes. Shvasa RNA interference (RNAi) downregulated Shnanos and Shpiwi, but simultaneous Cd exposure and Shvasa RNAi significantly upregulated Shnanos and downregulated Shpiwi. These data suggested that Cd disrupted Shvasa expression and function, as well as the functions of Shnanos and Shpiwi, leading to severe reproductive toxicity in S. henanense.
Collapse
Affiliation(s)
- Min Sun
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jun Qing Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiao Lin Du
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Si Qi Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
9
|
Li X, Ru S, Tian H, Zhang S, Lin Z, Gao M, Wang J. Combined exposure to environmentally relevant copper and 2,2'-dithiobis-pyridine induces significant reproductive toxicity in male guppy (Poecilia reticulata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149131. [PMID: 34346372 DOI: 10.1016/j.scitotenv.2021.149131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Metal pyrithiones (MePTs), the most widely used biocides in antifouling paints (AFs) coated on the hulls, are usually used in combination with Cu-containing substances. In the aquatic environment, 2,2'-dithiobis-pyridine ((PS)2), the main degradation product of MePTs, and Cu usually coexist. However, their combined impacts on aquatic organisms are unclear. This study exposed male guppy (Poecilia reticulata) to an environmentally realistic concentration of Cu (10 μg/L) alone or Cu (10 μg/L) combined with 20, 200, and 2000 ng/L (PS)2 to explore their combined reproductive toxicity. The results showed that co-exposure to Cu and (PS)2 increased Cu accumulation in the fish body in a dose-dependent manner and induced obvious spermatozoon apoptosis and necrosis, which was mediated by the peroxidation and caspase activation. Compared to Cu alone, co-exposure to Cu and 200, 2000 ng/L (PS)2 significantly decreased the testosterone level and collapsed spermatogenesis, and depressed male's sexual interest and mating behavior were observed in three co-exposure groups. Moreover, co-exposure to Cu and (PS)2 increased the disturbance on cyp19a and cyp19b transcription and suppressed the "display" reproductive behavior. Eventually, co-exposure to Cu and (PS)2 caused male reproductive failure. Therefore, the concurrence of Cu and (PS)2 induced significant reproductive toxicity in male guppies and would threaten the sustainability of fish populations. Considering the extensive usage of MePTs products in the AFs, their ecological risk warrants more evaluation.
Collapse
Affiliation(s)
- Xuefu Li
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Shaoguo Ru
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Hua Tian
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Suqiu Zhang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China
| | - Zhenxian Lin
- School of Biology and Brewing Engineering, Taishan University, 525 Dongyue Street, Tai'an 271000, Shandong Province, China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China
| | - Jun Wang
- Colleges of Marine Life Sciences, Ocean University of China, Qingdao 266003, Shandong Province, China.
| |
Collapse
|
10
|
Molecular strategies to enhance stability and catalysis of extremophile-derived α-amylase using computational biology. Extremophiles 2021; 25:221-233. [PMID: 33754213 DOI: 10.1007/s00792-021-01223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022]
Abstract
α-Amylase is the most significant glycoside hydrolase having applications in various industries. It cleaves the α,1-4 glucosidic linkages of polysaccharides like starch, glycogen to yield a small polymer of glucose in α-anomeric configuration. α-Amylase is produced by all the three domains of life but microorganisms are preferred sources for industrial-scale production due to several advantages. Enormous studies and research have been done in this field in the past few decades. Still, it is requisite to work on enzyme stability and catalysis, as it loses its functionality in extreme. As the enzyme loses its structural and catalytic property under extreme environmental conditions, it is mandatory to confer some potential strategies for enhancing enzyme behaviour in such conditions. This limitation of an enzyme can be overcome up to some extent by extremophiles. They serve as an excellent source of α-amylase with outstanding features. This review is an attempt to encapsulate some structure-based strategies for improving enzyme behaviour thereby enabling researchers to selectively amend any of the strategies as per requirement during upstream and downstream processing for higher enzyme yield and stability. Thus, it will provide some cutting-edge strategies for tailoring α-amylase producing organism and enzyme with the help of several computational biology tools.
Collapse
|