1
|
Guerra M, Marangio L, Pizzi A, Rizzetto P. Environmental monitoring of the Capo Frasca military training site (West Sardinia): Operability and environmental protection balanced plan. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:2060-2075. [PMID: 38752671 DOI: 10.1002/ieam.4943] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/01/2024] [Accepted: 04/17/2024] [Indexed: 10/18/2024]
Abstract
Military activities in training areas can contaminate soil and groundwater through different persistent pollutants. This article reports the design of the operating procedure to assess and monitor the environmental impact of training activities carried out at the Capo Frasca military firing range (PCF) on the west coast of Sardinia. The procedure includes two steps: (i) a baseline investigation of soil to detect the impact of previous training activities at PCF, and (ii) the development of a post-training monitoring plan. Results of the baseline investigations revealed that the activities conducted at PCF over many decades have not significantly affected the soil quality. Energetic compounds (ECs) were found below the limit of detection (LOD), and some low exceedances of the screening values (SVs) for Cd, Cu, and Ni were recorded in small areas that coincided with parts of two operational areas. A human health risk assessment (HHRA) identified no relevant issues. Results of baseline investigation allowed the planning of a light, noninvasive post-training monitoring plan based on two levels, L1 and L2, where L1 involves only manual sampling of topsoil (0-0.2 m). If L1 reveals contamination, a more in-depth and extensive L2 follow-up monitoring will be implemented. Results of post-training monitoring are not yet available. This environmental investigation protocol is intended to be a practical tool for regulatory provisions and is expected to be useful and effective for firing range management. This investigation also emphasized that, compared with the international state-of-the-art, environmental surveys in Italian military ranges require the improvement of ECs set to be analyzed, lowering EC LOD, and establishing ECs SVs. In Sardinia, many military areas, including PCF, are considered areas of significant natural interest. Therefore, it is deemed beneficial to move beyond HHRA and undertake the ecological risk assessment. Integr Environ Assess Manag 2024;20:2060-2075. © 2024 SETAC.
Collapse
Affiliation(s)
- Maurizio Guerra
- Italian Institute for Environmental Protection and Research-Geological Survey, Rome, Italy
| | - Luigi Marangio
- Italian Institute for Environmental Protection and Research-Geological Survey, Rome, Italy
| | - Andrea Pizzi
- Logistic Headquarter of the Italian Air Force, Rome, Italy
| | - Paolo Rizzetto
- General Secretariat of Defense-Directorate of Public Works and State Property, Rome, Italy
| |
Collapse
|
2
|
Slabe VA, Warner KS, Duran Z, Pilliod DS, Ortiz PA, Schmidt D, Szabo S, Katzner TE. Lead exposure of a fossorial rodent varies with the use of ammunition across the landscape. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176406. [PMID: 39304143 DOI: 10.1016/j.scitotenv.2024.176406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Exposure to heavy metals has been documented in a wide range of wildlife species, but infrequently in ground squirrels. This is despite their tendency to be targets of recreational shooters and the accumulation of lead ammunition in the soil environments they inhabit. We analyzed lead and copper concentrations in liver (nPb = 116, nCu = 101) and femur (nPb = 116, nCu = 116) of Piute ground squirrels (Urocitellus mollis) and in soil (n = 75) on public lands in southwestern Idaho to understand how lead exposure may vary across a gradient of intensities and histories of shooting activity. The liver and femur of squirrels from areas used for recreational shooting for >30 years had elevated lead concentrations relative to areas where shooting was rare or did not occur (our negative control), but as expected, lower than areas used for military target training for >70 years (our positive control). Lead concentration in soils were higher in areas used for military target training than in those used for recreational shooting. There were no differences in copper concentrations in biological or soil samples among sites. These data suggest that ground squirrels can be influenced by the history of lead use in their local environment, and they illustrate another pathway by which human activity can influence toxicant exposure to wildlife.
Collapse
Affiliation(s)
- Vincent A Slabe
- Conservation Science Global, Inc., Bozeman, MT, USA; The Peregrine Fund, Boise, ID, USA.
| | | | - Zoe Duran
- Idaho Army National Guard, Boise, ID, USA
| | - David S Pilliod
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - Patricia A Ortiz
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | - Diane Schmidt
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| | | | - Todd E Katzner
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID, USA
| |
Collapse
|
3
|
Tan Y, El-Kersh K, Watson SE, Wintergerst KA, Huang J, Cai L. Cardiovascular Effects of Environmental Metal Antimony: Redox Dyshomeostasis as the Key Pathogenic Driver. Antioxid Redox Signal 2023; 38:803-823. [PMID: 36424825 PMCID: PMC10402706 DOI: 10.1089/ars.2022.0185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Significance: Cardiovascular diseases (CVDs) are the leading cause of death worldwide, which may be due to sedentary lifestyles with less physical activity and over nutrition as well as an increase in the aging population; however, the contribution of pollutants, environmental chemicals, and nonessential metals to the increased and persistent CVDs needs more attention and investigation. Among environmental contaminant nonessential metals, antimony has been less addressed. Recent Advances: Among environmental contaminant nonessential metals, several metals such as lead, arsenic, and cadmium have been associated with the increased risk of CVDs. Antimony has been less addressed, but its potential link to CVDs is being gradually recognized. Critical Issues: Several epidemiological studies have revealed the significant deleterious effects of antimony on the cardiovascular system in the absence or presence of other nonessential metals. There has been less focus on whether antimony alone can contribute to the pathogenesis of CVDs and the proposed mechanisms of such possible effects. This review addresses this gap in knowledge by presenting the current available evidence that highlights the potential role of antimony in the pathogenesis of CVDs, most likely via antimony-mediated redox dyshomeostasis. Future Directions: More direct evidence from preclinical and mechanistic studies is urgently needed to evaluate the possible roles of antimony in mitochondrial dysfunction and epigenetic regulation in CVDs. Antioxid. Redox Signal. 38, 803-823.
Collapse
Affiliation(s)
- Yi Tan
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
| | - Karim El-Kersh
- Division of Pulmonary Critical Care and Sleep Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sara E. Watson
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
| | - Kupper A. Wintergerst
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- Division of Endocrinology, Department of Pediatrics, Norton Children's Hospital, University of Louisville, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Anesthesiology and Perioperative Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Cardiovascular and Thoracic Surgery, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Lu Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Wendy Novak Diabetes Institute, Norton Children's Hospital, Louisville, Kentucky, USA
- The Center for Integrative Environmental Health Sciences, University of Louisville School of Medicine, Louisville, Kentucky, USA
- Department of Radiation Oncology; University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Gancitano G, Reiter RJ. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022; 11:biomedicines11010005. [PMID: 36672513 PMCID: PMC9855431 DOI: 10.3390/biomedicines11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.
Collapse
Affiliation(s)
- Giuseppe Gancitano
- 1st Carabinieri Paratrooper Regiment “Tuscania”, Italian Ministry of Defence, 57127 Livorno, Italy
- Correspondence:
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
5
|
Ma X, Li Q, Li R, Zhang W, Sun X, Li J, Shen J, Han W. Removal performance and mechanisms of Pb(II) and Sb(V) from water by iron-doped phosphogypsum: single and coexisting systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87413-87425. [PMID: 35804235 DOI: 10.1007/s11356-022-21862-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The serious environmental risks caused by Pb(II) and Sb(V) co-contamination increase the need for their efficient and simultaneous removal. In this study, the remediation feasibility by Fe-doped phosphogypsum (FPG) was elucidated for single systems with Pb or Sb pollutant and coexisting systems with both from water. As for single systems, Fe doping effectively enhanced the Pb(II) removal performance by phosphogypsum (PG) at low Pb(II) concentrations of below 100 mg/L via the combination of precipitation and complexation. The optimal removal rate of Sb(V) by FPG increased by 2.08-3.31 times as compared to that of by PG (10-120 mg/L), mainly due to the strong affinity of iron hydroxyl (≡Fe-O-H) towards Sb(V). Compared with the single systems, the coexistence greatly enhanced the Pb(II) and Sb(V) removal performance by FPG, and the interaction behavior between Pb(II) and Sb(V) on the FPG was concentration dependent. Briefly, the sorption of FPG controlled the elimination of low coexisting concentrations of Pb(II) and Sb(V), whereas the co-precipitation process between Pb(II) and Sb(V) predominated with high ions concentration. The significant synergistic effects were found during the removal of Pb(II) and Sb(V) on FPG in the coexisting system, which mainly attributed to precipitation, bridging complexation and electrostatic attraction. Considering the advantages such as facile preparation, low cost and high removal capacity, FPG is a promising material to uptake Pb(II) and/or Sb(V) from contaminated water.
Collapse
Affiliation(s)
- Xinyue Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiao Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Rui Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China.
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Jiangsu, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
6
|
Zhang Y, O'Loughlin EJ, Kwon MJ. Antimony redox processes in the environment: A critical review of associated oxidants and reductants. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128607. [PMID: 35359101 DOI: 10.1016/j.jhazmat.2022.128607] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The environmental behavior of antimony (Sb) has recently received greater attention due to the increasing global use of Sb in a range of industrial applications. Although present at trace levels in most natural systems, elevated Sb concentrations in aquatic and terrestrial environments may result from anthropogenic activities. The mobility and toxicity of Sb largely depend on its speciation, which is dependent to a large extent on its oxidation state. To a certain extent, our understanding of the environmental behavior of Sb has been informed by studies of the environmental behavior of arsenic (As), as Sb and As have somewhat similar chemical properties. However, recently it has become evident that the speciation of Sb and As, especially in the context of redox reactions, may be fundamentally different. Therefore, it is crucial to study the biogeochemical processes impacting Sb redox transformations to understand the behavior of Sb in natural and engineered environments. Currently, there is a growing body of literature involving the speciation, mobility, toxicity, and remediation of Sb, and several reviews on these general topics are available; however, a comprehensive review focused on Sb environmental redox chemistry is lacking. This paper provides a review of research conducted within the past two decades examining the redox chemistry of Sb in aquatic and terrestrial environments and identifies knowledge gaps that need to be addressed to develop a better understanding of Sb biogeochemistry for improved management of Sb in natural and engineered systems.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | | | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. ENVIRONMENTAL RESEARCH 2021; 201:111568. [PMID: 34174260 DOI: 10.1016/j.envres.2021.111568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Igor P Bobrovnitsky
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
8
|
Ahado SK, Nwaogu C, Sarkodie VYO, Borůvka L. Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ. TOXICS 2021; 9:181. [PMID: 34437499 PMCID: PMC8402386 DOI: 10.3390/toxics9080181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
A healthy soil is a healthy ecosystem because humans, animals, plants, and water highly depend upon it. Soil pollution by potentially toxic elements (PTEs) is a serious concern for humankind. The study is aimed at (i) assessing the concentrations of PTEs in soils under a long-term heavily industrialized region for coal and textiles, (ii) modeling and mapping the spatial and vertical distributions of PTEs using a GIS-based ordinary kriging technique, and (iii) identifying the possible sources of these PTEs in the Jizerské Mountains (Jizera Mts.) using a positive matrix factorization (PMF) model. Four hundred and forty-two (442) soil samples were analyzed by applying the aqua regia method. To assess the PTE contents, the level of pollution, and the distribution pattern in soil, the contamination factor (CF) and the pollution load index load (PLI) were applied. ArcGIS-based ordinary kriging interpolation was used for the spatial analysis of PTEs. The results of the analysis revealed that the variation in the coefficient (CV) of PTEs in the organic soil was highest in Cr (96.36%), followed by Cu (54.94%) and Pb (49.40%). On the other hand, the mineral soil had Cu (96.88%), Cr (66.70%), and Pb (64.48%) as the highest in CV. The PTEs in both the organic soil and the mineral soil revealed a high heterogeneous variability. Though the study area lies within the "Black Triangle", which is a historic industrial site in Central Europe, this result did not show a substantial influence of the contamination of PTEs in the area. In spite of the rate of pollution in this area being very low based on the findings, there may be a need for intermittent assessment of the soil. This helps to curtail any excessive accumulation and escalation in future. The results may serve as baseline information for pollution assessment. It might support policy-developers in sustainable farming and forestry for the health of an ecosystem towards food security, forest safety, as well as animal and human welfare.
Collapse
Affiliation(s)
- Samuel Kudjo Ahado
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (S.K.A.); (V.Y.O.S.); (L.B.)
| | - Chukwudi Nwaogu
- Department of Environmental Management, Federal University of Technology, Owerri, P.M.B. 1526, Owerri 460114, Nigeria
- Department of Forest Protection and Entomology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Vincent Yaw Oppong Sarkodie
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (S.K.A.); (V.Y.O.S.); (L.B.)
| | - Luboš Borůvka
- Department of Soil Science and Soil Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; (S.K.A.); (V.Y.O.S.); (L.B.)
| |
Collapse
|