1
|
Ighalo JO, Kurniawan SB, Khongthaw B, Buhari J, Chauhan PK, Georgin J, Pfingsten Franco DS. Bisphenol A (BPA) toxicity assessment and insights into current remediation strategies. RSC Adv 2024; 14:35128-35162. [PMID: 39529868 PMCID: PMC11552486 DOI: 10.1039/d4ra05628k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol A (BPA) raises concerns among the scientific community as it is one of the most widely used compounds in industrial processes and a component of polycarbonate plastics and epoxy resins. In this review, we discuss the mechanism of BPA toxicity in food-grade plastics. Owing to its proliferation in the aqueous environment, we delved into the performance of various biological, physical, and chemical techniques for its remediation. Detailed mechanistic insights into these removal processes are provided. The toxic effects of BPA unravel as changes at the cellular level in the brain, which can result in learning difficulties, increased aggressiveness, hyperactivity, endocrine disorders, reduced fertility, and increased risk of dependence on illicit substances. Bacterial decomposition of BPA leads to new intermediates and products with lower toxicity. Processes such as membrane filtration, adsorption, coagulation, ozonation, and photocatalysis have also been shown to be efficient in aqueous-phase degradation. The breakdown mechanism of these processes is also discussed. The review demonstrates that high removal efficiency is usually achieved at the expense of high throughput. For the scalable application of BPA degradation technologies, removal efficiency needs to remain high at high throughput. We propose the need for process intensification using an integrated combination of these processes, which can solve multiple associated performance challenges.
Collapse
Affiliation(s)
- Joshua O Ighalo
- Department of Chemical Engineering, Nnamdi Azikiwe University P. M. B. 5025 Awka Nigeria
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - Banlambhabok Khongthaw
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Junaidah Buhari
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia Bangi 43600 Selangor Malaysia
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University Solan Himachal Pradesh 173229 India
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC Calle 58 # 55-66 Barranquilla Atlántico Colombia
| | | |
Collapse
|
2
|
Wlizło K, Siwulski M, Kowalska-Krochmal B, Wiater A. Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments. Int J Mol Sci 2024; 25:11388. [PMID: 39518940 PMCID: PMC11546519 DOI: 10.3390/ijms252111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol A is a plastic component, which shows endocrine activity that is detrimental to humans and aquatic ecosystems. The elimination of BPA from the environment is one of the solutions for BPA contaminant management. Adsorption is a cost-effective, easy-to-use method generating low harmful byproducts; nevertheless, contaminant sorbent treatment is a challenge that still needs to be addressed. Fungal fruiting bodies biomass is rarely studied sorbent but is promising due to its high polysaccharide content and availability. Our preliminary studies showed BPA sorption (100 mg/L) by 50 cultivated and wild fungi. The cultivated species: Clitocybe maxima (82%), Pholiota nameko (77%), and Pleurotus columbinus (74%), and wild fungi Cantharellus cibarius (75%) and Lactarius deliciosus (72%) were the most efficient. The biomass was able to sorb BPA over a broad range of temperature and pH levels, with an optimum at 20 °C and pH 7. Although saturation of sorbents was rapid, the regeneration process using ethanol was effective and allowed to recover up to 75% of sorbents' initial efficiency. A single use of 1 g of sorbent would allow the treatment of 8.86 to 10.1 m3 of wastewater effluent, 16.5 to 18.7 m3 of surface water, and 411 to 469 m3 of drinking water, assuming the concentrations of BPA reported in the literature.
Collapse
Affiliation(s)
- Kamila Wlizło
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Marek Siwulski
- Department of Vegetable Crops, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594 Poznań, Poland;
| | - Beata Kowalska-Krochmal
- Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Medical University of Silesian Piasts in Wroclaw, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| |
Collapse
|
3
|
Zhao G, Wang C, Kang M, Hao L, Liu W, Wang Z, Shi X, Wu Q. Construction of magnetic azo-linked porous polymer for highly-efficient enrichment and separation of phenolic endocrine disruptors from environmental water and fish. Food Chem 2024; 445:138698. [PMID: 38350198 DOI: 10.1016/j.foodchem.2024.138698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Developing effective methods for highly sensitive detection of phenolic endocrine disruptors (EDCs) is especially urgent. Herein, a magnetic hydroxyl-functional porous organic polymer (M-FH-POP) was facilely synthesized by green diazo-couple reaction using basic fuchsin and hesperetin as monomer for the first time. M-FH-POP delivered superior adsorption performance for phenolic EDCs. The adsorption mechanism was hydrogen bonds, hydrophobic interaction and π-π interplay. With M-FH-POP as adsorbent, a magnetic solid phase extraction method was established for extracting trace phenolic EDCs (bisphenol A, 4-tert-butylphenol, bisphenol F and bisphenol B) in water and fish before ultra-high performance liquid chromatography tandem mass spectrometry analysis. The method displayed low detection limit (S/N = 3) of 0.05-0.15 ng mL-1 for water and 0.08-0.3 ng g-1 for fish. The spiked recoveries were 88.3 %-109.8 % with the relative standard deviations of 2.4 %-6.4 %. The method offers a new strategy for sensitive determination of phenolic EDCs in water and fish samples.
Collapse
Affiliation(s)
- Guijiao Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Min Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
4
|
Zhuang Y, Li S, Rene ER, Dong S, Ma W. Green synthesis of magnetic azo-linked porous organic polymers with recyclable properties for enhanced Bisphenol-A adsorption from aqueous solutions. ENVIRONMENTAL RESEARCH 2024; 249:118427. [PMID: 38325780 DOI: 10.1016/j.envres.2024.118427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Porous organic polymers (POPs) present superior adsorption performance to steroid endocrine disruptors. However, the effective recovery and high cost have been a big limitation for their large-scale applications. Herein, magnetic azo-linked porous polymers (Fe3O4@SiO2/ALP-p) were designed and prepared in a green synthesis approach using low-price materials from phloroglucinol and pararosaniline via a diazo-coupling reaction under standard temperature and pressure conditions, which embedded with Fe3O4@SiO2 nanoparticles to form three-dimensional interlayer network structure with flexible-rigid interweaving. The saturated adsorption capacity to bisphenol-A (BPA) was 485.09 mg/g at 298 K, which increased by 1.4 times compared with ALP-p of relatively smaller mass density. This enhanced adsorption was ascribed to increment from surface adsorption and pore filling with 2.3 times of specific surface area and 2.6 times of pore volume, although the total organic functional groups decreased with Fe3O4@SiO2 amendment. Also, the adsorption rate increased by about 1.1 and 1.5-fold due to enhancement in the initial stage of surface adsorption and subsequent stage pore diffusion, respectively. Moreover, this adsorbent could be used in broad pH (3.0-7.0) and salinity adaptability (<0.5 mol/L). The loss of adsorption capacity and magnetic recovery were lower than 1.1% and 0.8% in each operation cycle because of the flexible-rigid interweave. This excellent performance was contributed by synergistic effects from physisorption and chemisorption, such as pore filling, electrostatic attraction, π-π stacking, hydrogen bonding, and hydrophobic interaction. This study offered a cost-effective, high-performing, and ecologically friendly material along with a green preparation method.
Collapse
Affiliation(s)
- Yuqi Zhuang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Sinuo Li
- College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Shuoyu Dong
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Wang C, Zhao B, Wang Q, Zhang S, Wu Q, Shi X. Green construction of magnetic azo porous organic polymer for highly efficient enrichment and detection of phenolic endocrine disruptors. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133050. [PMID: 38000282 DOI: 10.1016/j.jhazmat.2023.133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Porous organic polymers (POPs) are prominent sorbents for effective extraction of endocrine disrupting chemicals (EDCs). However, green and sustainable construction of functional POPs is still challenging. Herein, we developed a magnetic azo POP (Mazo-POP) for the first time using hydroxy-rich natural kaempferol and low-toxic basic fuchsin as monomers through a diazo coupling reaction. The Mazo-POP exhibited excellent extraction capabilities for EDCs with a phenolic structure. Consequently, it was used as a magnetic sorbent for extracting phenolic EDCs from water and fish samples, followed by ultrahigh-performance liquid chromatography-tandem mass spectrometric detection. The Mazo-POP based analytical method afforded a good linearity of 0.06-100 ng mL-1 and 0.3-500 ng g-1 for water and fish samples respectively, with detection limits (S/N = 3) of 0.02-0.5 ng mL-1 and 0.1-1.5 ng g-1, respectively. The method recovery was from 85.2% to 109% and relative standard deviation was less 5.3%. Moreover, the effective adsorption was mainly contributed by hydrogen bond, π-π interaction, pore filling and hydrophobic interaction. This work not only provides an efficient method for sensitive determination of phenolic EDCs, but also highlights the significance of green preparation of environmentally friendly sorbents for enriching/adsorbing pollutants.
Collapse
Affiliation(s)
- Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States
| | - Bin Zhao
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, Hebei, China.
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, United States.
| |
Collapse
|
6
|
Yu J, Hasi QM, Guo Y, Song L, Yin M, Ma L, Han Z, Xiao C, Zhang Y, Chen L. Porphyrin-Based Conjugated Microporous Polymer Loaded with Nanoscale Zerovalent Iron for the Degradation of Organic Pollutants under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4739-4750. [PMID: 38373152 DOI: 10.1021/acs.langmuir.3c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The degradation of organic dye from waterbodies is of great significance for clean production and environmental remediation. Herein, two porphyrin-based conjugated microporous polymers (CMPs) loaded with nanoscale zerovalent iron (named as Por-CMPs-1-2@nZVI) were successfully fabricated by Sonogashira-Hagihara coupling reactions and the liquid-phase method. The as-synthesized Por-CMPs-1-2@nZVI composites were characterized by various means of analysis, and it was confirmed that Por-CMPs-1-2 loaded with nZVI had good photocatalytic performance. Calculated by ultraviolet-visible spectrum, the band-gap energies of Por-CMPs-1@nZVI and Por-CMPs-2@nZVI were 1.45 and 1.32 eV, respectively, indicating that both can be activated by visible light. The photodegradation of organic dye experiments demonstrated that Por-CMPs-2@nZVI degraded 98.0% of 10 ppm Methylene Blue (MB) within 150 min, which is higher than that of Por-CMPs-1-2 and Por-CMPs-1@nZVI. The experiment of active substance capture and mechanism of ESR confirmed that superoxide anion and hydroxyl radical were the primary valid substances in the photodegradation process of MB. In addition, the preparation of membrane materials was shown to be a successful strategy to realize engineered scale-up production.
Collapse
Affiliation(s)
- Jiale Yu
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Qi-Meige Hasi
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Yuyan Guo
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Lingyan Song
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Min Yin
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Lina Ma
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Zhichao Han
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Chaohu Xiao
- Center of Experiment, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China
| | - Yuhan Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| | - Lihua Chen
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu 730030, P. R. China
| |
Collapse
|
7
|
Gkika DA, Ladomenou K, Bououdina M, Mitropoulos AC, Kyzas GZ. Adsorption and photocatalytic applications of porphyrin-based materials for environmental separation processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168293. [PMID: 37926255 DOI: 10.1016/j.scitotenv.2023.168293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As society progresses and industrializes, the issue of water pollution, caused by a wide array of organic and inorganic pollutants, poses significant risks to both human well-being and the environment. Given its distinctive characteristics, water pollution has become a paramount concern for society, necessitating immediate attention. Numerous studies have been conducted on wastewater treatment, primarily focusing on two key approaches: adsorption and photocatalytic degradation. Adsorption offers unparalleled advantages, including its simplicity, high removal efficiency, and cost-effectiveness. Conversely, photocatalysis harnesses abundant, clean, and non-polluting sunlight, addressing the critical issue of energy scarcity. Porphyrins, which are macrocyclic tetrapyrrole derivatives found widely in nature, have attracted growing interest in recent years. These lipophilic pigments exhibit remarkable chemical stability and have retained their major structural features for up to 1.1 billion years. As such, they are considered vital indicators of life and have been extensively studied, from the remnants of extinct organisms to gain insights into the principles of evolution. Porphyrins are often associated with a central metal ion within their ring system and can be modified through various substituents, including additional rings or ring opening, resulting in a wide range of functionalities. This comprehensive review summarizes recent advancements in the field of porphyrins. It begins by introducing the structures and preparation methods of porphyrins. Subsequently, it delves into notable applications of porphyrins in the context of pollutant adsorption in water and their environmentally friendly photocatalytic degradation.
Collapse
Affiliation(s)
- Despina A Gkika
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Kalliopi Ladomenou
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - Athanasios C Mitropoulos
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, International Hellenic University, 654 04 Kavala, Greece.
| |
Collapse
|
8
|
Ajay Rakkesh R, Naveen TB, Durgalakshmi D, Balakumar S. Covalent organic frameworks: Pioneering remediation solutions for organic pollutants. CHEMOSPHERE 2024; 346:140655. [PMID: 37949178 DOI: 10.1016/j.chemosphere.2023.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Covalent Organic Frameworks (COFs) have emerged as a promising class of crystalline porous materials with customizable structures, high surface areas, and tunable functionalities. Their unique properties make them attractive candidates for addressing environmental contamination caused by pharmaceuticals, pesticides, industrial chemicals, persistent organic pollutants (POPs), and endocrine disruptors (EDCs). This review article provides a comprehensive overview of recent advancements and applications of COFs in removing and remedying various environmental contaminants. We delve into the synthesis, properties, and performance of COFs and their potential limitations and future prospects.
Collapse
Affiliation(s)
- R Ajay Rakkesh
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India.
| | - T B Naveen
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India
| | - D Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600 025, TN, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600 025, TN, India
| |
Collapse
|
9
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
10
|
Zhou S, Luo X, Zhang Y, Liu Y, Wang X, Hao X, Zhang Y, Wang D, Gu P, Liu G. Post-cationic modification of a porphyrin-based conjugated microporous polymer for enhanced removal performance of bisphenol A. Chem Commun (Camb) 2023; 59:14399-14402. [PMID: 37974497 DOI: 10.1039/d3cc05017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A porphyrin-based conjugated microporous polymer photocatalyst named LDPO-2 was synthesized by a post-modification approach, which improved its hydrophilicity and visible light absorption ability. LDPO-2 achieved >99.5% removal efficiency for bisphenol A (BPA, 10 ppm) within 12 min of exposure to visible light, and the photocatalytic mechanism and potential degradation pathways were well investigated. LDPO-2 also exhibited impressive removal efficiency against BPA analogues, proving its practical applications in real-water treatment scenarios.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yuxi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xin Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqiong Hao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Ye Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
- Key Laboratory of Organic Synthesis of Jiangsu Province, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
11
|
Li H, Gong X, Meng D, Wu F, Zhang J, Ren D. Effective adsorption of bisphenol A from aqueous solution using phosphoric acid-assisted hydrochar. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123083-123097. [PMID: 37980323 DOI: 10.1007/s11356-023-30951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
Sycamore leaf biochar (PSAC) was prepared by a two-step phosphoric acid-assisted hydrothermal carbonization combined with a short-time activation method. The characterization results showed that the introduction of phosphoric acid molecules and thermal activation resulted in a substantial increase in the specific surface area (994.21 m2/g) and microporous capacity (0.307 cm3/g) of PSAC. The batch adsorption results showed that the adsorption process of PSAC on bisphenol A (BPA) was best described by the pseudo-second-order kinetic model and Sips isothermal model, with a maximum adsorption capacity of 247.42 mg/g. The adsorption of BPA onto PSAC was determined to be a spontaneous endothermic process. The equilibrium adsorption capacity of PSAC exhibited an upward trend with increasing initial BPA concentration and temperature while decreasing with higher adsorbent dosage and pH value. Coexisting cations and humic acids in water have little impact on the adsorption performance of PSAC for BPA. The adsorption mechanism of BPA by PSAC was mainly governed by pore filling and hydrogen bonding interactions, π-π interactions, and intraparticle diffusion. Furthermore, PSAC demonstrated good reusability by its sustained adsorption capacity of BPA, which remained at 82.6% of the initial adsorption capacity even after four adsorption-desorption cycles. These findings highlight the potential of utilizing low-cost sycamore leaf biochar as an effective adsorbent for the removal of the endocrine disruptor BPA.
Collapse
Affiliation(s)
- Hao Li
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Re-Sources, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Xiangyi Gong
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Dekang Meng
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Fengying Wu
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
| | - Dajun Ren
- School of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
12
|
Mishra A, Goel D, Shankar S. Bisphenol A contamination in aquatic environments: a review of sources, environmental concerns, and microbial remediation. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1352. [PMID: 37861868 DOI: 10.1007/s10661-023-11977-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
The production of polycarbonate, a high-performance transparent plastic, employs bisphenol A, which is a prominent endocrine-disrupting compound. Polycarbonates are frequently used in the manufacturing of food, bottles, storage containers for newborns, and beverage packaging materials. Global production of BPA in 2022 was estimated to be in the region of 10 million tonnes. About 65-70% of all bisphenol A is used to make polycarbonate plastics. Bisphenol A leaches from improperly disposed plastic items and enters the environment through wastewater from plastic-producing industries, contaminating, sediments, surface water, and ground water. The concentration BPA in industrial and domestic wastewater ranges from 16 to 1465 ng/L while in surface water it has been detected 170-3113 ng/L. Wastewater treatment can be highly effective at removing BPA, giving reductions of 91-98%. Regardless, the remaining 2-9% of BPA will continue through to the environment, with low levels of BPA commonly observed in surface water and sediment in the USA and Europe. The health effects of BPA have been the subject of prolonged public and scientific debate, with PubMed listing more than 17,000 scientific papers as of 2023. Bisphenol A poses environmental and health hazards in aquatic systems, affecting ecosystems and human health. While several studies have revealed its presence in aqueous streams, environmentally sound technologies should be explored for its removal from the contaminated environment. Concern is mostly related to its estrogen-like activity, although it can interact with other receptor systems as an endocrine-disrupting chemical. Present review article encompasses the updated information on sources, environmental concerns, and sustainable remediation techniques for bisphenol A removal from aquatic ecosystems, discussing gaps, constraints, and future research requirements.
Collapse
Affiliation(s)
- Anuradha Mishra
- Department of Applied Chemistry, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Divya Goel
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India
| | - Shiv Shankar
- Department of Environmental Science, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University (GBU), Govt. of Uttar Pradesh, Greater Noida, Uttar Pradesh, 201 312, India.
| |
Collapse
|
13
|
Wang K, Qin X, Chai K, Wei Z, Deng F, Liao B, Wu J, Shen F, Zhang Z. Efficient recovery of bisphenol A from aqueous solution using K 2CO 3 activated carbon derived from starch-based polyurethane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67758-67770. [PMID: 37115443 DOI: 10.1007/s11356-023-27273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are increasingly polluting water, making it of practical value to develop novel desirable adsorbents for removing these pollutants from wastewater. Here, a simple cross-linking strategy combined with gentle chemical activation was demonstrated to prepare starch polyurethane-activated carbon (STPU-AC) for adsorbing BPA in water. The adsorbents were characterized by various techniques such as FTIR, XPS, Raman, BET, SEM, and zeta potential, and their adsorption properties were investigated comprehensively. Results show that STPU-AC possesses a large surface area (1862.55 m2·g-1) and an abundance of functional groups, which exhibited superior adsorption capacity for BPA (543.4 mg·g-1) and favorable regenerative abilities. The adsorption of BPA by STPU-AC follows a pseudo-second-order kinetic model and a Freundlich isotherm model. The effect of aqueous solution chemistry (pH and ionic strength) and the presence of other contaminants (phenol, heavy metals, and dyes) on BPA adsorption was also analyzed. Moreover, theoretical studies further demonstrate that hydroxyl oxygen and pyrrole nitrogen are the primary adsorption sites. We found that the efficient recovery of BPA was associated with pore filling, hydrogen-bonding interaction, hydrophobic effects, and π-π stacking. These findings demonstrate the promising practical application of STPU-AC and provide a basis for the rational design of starch-derived porous carbon.
Collapse
Affiliation(s)
- Ke Wang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xingzhen Qin
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Kungang Chai
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fan Deng
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Bingyu Liao
- Guangxi Xiangsheng Household Materials Technology Co., Ltd., Chongzuo, 532200, Guangxi, China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fang Shen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Zhi Zhang
- Guangxi Xiangsheng Household Materials Technology Co., Ltd., Chongzuo, 532200, Guangxi, China
| |
Collapse
|
14
|
Photocatalytic degradation of bisphenol A over Co-BiOCl/biochar hybrid catalysts: Properties, efficiency and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Zhang C, Li S, Wu J, Ping T, Ma L, Wang K, Lian K. Developing a hydroxyl-functionalized magnetic porous organic polymer combined with HPLC-MS/MS for determining 31 amide herbicides in fruit wine. Food Chem 2022; 403:134442. [DOI: 10.1016/j.foodchem.2022.134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
16
|
Wheat straw derived biochar with hierarchically porous structure for bisphenol A removal: Preparation, characterization, and adsorption properties. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Gu J, Yang J, Dou Z, Tang J, Zhu J, Chen J, Liu Q, Fei Z, Chen X, Zhang Z, Cui M, Qiao X. Ultra-high surface area porous carbon from catechol rectification residue with excellent adsorption capacity for various organic pollutants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
19
|
Shao L, Liu N, Wang L, Sang Y, Wan H, Zhan P, Zhang L, Huang J, Chen J. Facile preparation of oxygen-rich porous polymer microspheres from lignin-derived phenols for selective CO 2 adsorption and iodine vapor capture. CHEMOSPHERE 2022; 288:132499. [PMID: 34626649 DOI: 10.1016/j.chemosphere.2021.132499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Lignin is a natural O-containing aromatic amorphous polymers from the residues of biorefinery and industrial papermaking, it can derive lots of aromatic phenol chemicals used as industrial raw materials by an efficient depolymerization, and then produce synthetic polymers. Here, we selected six aromatic units from the liquid products of lignin depolymerization, and tried to prepare diversified O-rich hyper-cross-linked polymers (HCPs) by one-pot Friedel-Crafts alkylation reaction for CO2 and iodine vapor capture. HCP1, HCP2, and HCP3 microspheres possessed similar porous structure with Brunauer-Emmett-Teller (BET) surface areas (SBET) of 14.1-20.6 m2/g and high O content (26.34-30.68 wt%), while HCP4, HCP5, and HCP6 were composed of many bulks with 3D networks structure, and showed larger SBET of 15.4-246.9 m2/g and relatively low O content (18.48-26.38 wt%). The results indicated that the chemical position and quantities of substituent groups (methoxy and alkyl) into lignin-derived units had evident impact on their morphology and textural parameters. These HCPs exhibited considerable CO2 uptake (64.1 mg/g) and selectivity (35.2) at 273 K, and high iodine vapor uptake (192.3 wt%). Moreover, the performance analysis implied that the SBET and pore volume of these HCPs had not played the dominated roles in the CO2 and I2 adsorption, while their pore size distribution, O-functional groups, and electron density will be more important for the capture of the both. This study will offer a facile synthesis of O-rich polymer microsphere adsorbents based on the green and sustainable lignin.
Collapse
Affiliation(s)
- Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Na Liu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lizhi Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yafei Sang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Huan'ai Wan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jienan Chen
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
20
|
Jiang X, Liu Z, Ma L, Tao Y, Luo Y. Facile synthesis of porous porphyrin-based polymers by solvent-crosslinking method. NEW J CHEM 2021. [DOI: 10.1039/d1nj03480d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three solvents were employed as crosslinkers to synthesise porous porphyrin-based polymers via Friedel–Crafts alkylation reaction.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Zhihong Liu
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Libo Ma
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Yu Tao
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Yali Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|