1
|
Xiao J, Hu Y, Wang H, Zhang L, Meng T, Liu Y, Shi Y, Cao H. Inhalation Exposure to Airborne Prothioconazole Caused by Unmanned Aerial Vehicles Application and Potential Lung Health Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39750061 DOI: 10.1021/acs.jafc.4c08157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The use of unmanned aerial vehicle (UAV) has greatly improved pesticide effectiveness and control efficiency; however, the risk of inhalation exposure to pesticides caused by spray drift requires urgent attention. This study is the first to investigate residue distribution and inhalation exposure risk of airborne prothioconazole and its metabolite prothioconazole-desthio during UAV application. The maximum detected unit exposure of prothioconazole and prothioconazole-desthio in airborne particulate matter was 0.40 and 20.09 ng/m3, respectively. For exposure risk assessment, in vivo inhalation bioavailability (BAin vivo) was incorporated to adjust the inhalation exposure level, and the corresponding values measured were 37.58 and 73.99%, respectively. Moreover, we observed pesticide accumulation in rat lungs and its cause of histological damage via oxidative stress following 10-day exposure. The margin of exposure for propiconazole and prothioconazole-desthio was calculated to be within an acceptable level; however, the values might be overestimated by 40 and 70% without considering inhalation bioavailability.
Collapse
Affiliation(s)
- Jinjing Xiao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Yingmei Hu
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Han Wang
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Li Zhang
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Tingting Meng
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Yuying Liu
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| | - Yanhong Shi
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haiqun Cao
- Joint Research Center for Food Nutrition and Health of IHM, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agri-Products Quality and Biosafety, (Anhui Agricultural University), Ministry of Education, Hefei, Anhui 230036, China
| |
Collapse
|
2
|
Zupančič M, Miler M, Žibret G. The relationship between the inhalation bioaccessibility of potentially toxic elements in road dust from a heavily polluted industrial area and the source of their pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124810. [PMID: 39181302 DOI: 10.1016/j.envpol.2024.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
One of the sources of chronic exposure to potentially toxic elements (PTE), especially in polluted environments, is the inhalation of resuspended road dust (RD). The aim of this study is to assess the inhalation bioaccessibility of PTE in RD from highly polluted environments from mining/smelting industries and traffic, and to identify any correlations between the bioaccessibility fraction of PTE and the physicochemical characteristics of the particles. RD from the studied area contains extremely high total concentrations of Cr, V, and Mn, which are likely due to pollution from the smelting industry. Additionally, elevated total concentrations of other elements associated with traffic emissions including Zn, Cu, Pb, Sb, and Sn were also measured. The bioaccessibility of PTE was assessed using two synthetic extraction solutions - Gamble's solution (GS) and Artificial Lysosomal Fluid (ALF). The majority of elements showed negligible bioaccessibility in GS. However, quite high inhalation bioaccessibility was observed for Zn, Pb, Sb, Cd, and Mn in the ALF solution, with a mean bioaccessible fraction of 49, 51.5, 41, 50, and 40% respectively. The highest bioavailable fraction was measured for Cd (97%) in a sample collected near a steel production facility and for Pb (95%) in a sample collected near the highway. These results indicate that increased mobility of the elements in inhaled particles occurs only in the case of phagocytosis. The lowest inhalation bioavailability was measured for Cr (mean is 3%). Differential individual particle analysis revealed that about 60% of phases, mostly major (Cr,Ti,V)-bearing metallic alloys, silicates, oxides and sulphides, are stable in ALF solution, while 40% of phases, mostly (Fe,Ca,Mn)-bearing oxides, silicates, sulphides, metals and metallic alloys originating from steel production, ferrochrome, ferrosilicon and vanadium production and from traffic emissions have been heavily corroded or completely dissolved. The study provides valuable information to further assess health hazards from various emission sources.
Collapse
Affiliation(s)
- Marija Zupančič
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Miloš Miler
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia
| | - Gorazd Žibret
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Meng T, Fang K, Li T, Qi W, Zhang L, Hu Y, Liu Y, Shi Y, Cao H, Xiao J. Implications of inhalation bioaccessibility for the exposure assessment of drifting airborne pesticides caused by field spraying. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177254. [PMID: 39477104 DOI: 10.1016/j.scitotenv.2024.177254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/07/2024]
Abstract
Pesticide contamination in ambient air due to spray drifting has received extensive attention. Quantifying the associated health risk highlights the importance of incorporating bioaccessibility into inhalation exposure assessments rather than using the total inhaled concentration of airborne pesticides. In this study, we measured the inhalation unit exposure (UE) of three typical pesticides (lambda-cyhalothrin, phoxim, and acetamiprid) during application and post-application drift at the recommended application dosage. The UE values were found to be 1.74-424.37 ng/m3 and 0.07-1.40 ng/m3, respectively, with marked variation between different spraying nozzles and formulations. For the inhalation exposure assessment, an in vitro method was developed to determine the inhalation bioaccessibility of lambda-cyhalothrin, phoxim, and acetamiprid and its applicability was validated based on in vivo-in vitro correlations (IVIVC) analysis. Their conservative inhalation bioaccessibility values estimates were 46.09 %, 67.12 %, and 40.31 %, respectively. The calculated average daily dose values of the analyzed pesticides in both single and mixed formulations ranged from 8.03 × 10-8 to 4.35 × 10-5 mg/kg·day based on the bioaccessible UE, corresponding to 22.99-67.11 % of the total exposure. Collectively, these findings are of guiding significance for improving risk management in pesticide application.
Collapse
Affiliation(s)
- Tingting Meng
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tingting Li
- College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Weizhang Qi
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Li Zhang
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yingmei Hu
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yuying Liu
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Yanhong Shi
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Jinjing Xiao
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, Anhui Province 230036, China; College of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China.
| |
Collapse
|
4
|
Expósito A, Maillo J, Uriarte I, Santibáñez M, Fernández-Olmo I. Kinetics of ascorbate and dithiothreitol oxidation by soluble copper, iron, and manganese, and 1,4-naphthoquinone: Influence of the species concentration and the type of fluid. CHEMOSPHERE 2024; 361:142435. [PMID: 38797213 DOI: 10.1016/j.chemosphere.2024.142435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
An alternative metric to account for particulate matter (PM) composition-based toxicity is the ability of PM-species to generate reactive oxygen species (ROS) and deplete antioxidants, the so-called oxidative potential (OP). Acellular OP assays are the most used worldwide, mainly those based on ascorbic acid (AA) and dithiothreitol (DTT) depletion; OP values are calculated from AA/DTT concentration over time kinetic curves. Since a great variability in OP-DTT and OP-AA values can be found in the literature, the understanding of those factors affecting the kinetic rate of AA and DTT oxidation in the presence of PM-bound species will improve the interpretation of OP values. In this work, a kinetic study of the oxidation rate of AA and DTT driven by species usually found in PM (transition metals and naphthoquinone (NQ)) was carried out. In particular, the influence of the concentration of Cu(II), Fe(II), Fe(III), Mn(II), Mn(III), and 1,4-NQ, and the type of fluid used in the assay (phosphate buffer (PB), phosphate buffer saline (PBS) and artificial lysosomal fluid (ALF)) is analysed and discussed. The reaction orders with respect to the AA/DTT and the active compound, and the kinetic rate constants were also determined. The results show great variability in OP values among the studied species depending on the fluid used; the OP values were mostly higher in PB0.05 M, followed by PBS1x and ALF. Moreover, different species concentration-responses for OP-DTT/OP-AA were obtained. These differences were explained by the different reaction orders and kinetic rate constants obtained for each active compound in each fluid.
Collapse
Affiliation(s)
- A Expósito
- Dpto. de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain.
| | - J Maillo
- Dpto. de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - I Uriarte
- Dpto. de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - M Santibáñez
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - I Fernández-Olmo
- Dpto. de Ingenierias Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| |
Collapse
|
5
|
Schiavo B, Meza-Figueroa D, Morton-Bermea O, Angulo-Molina A, González-Grijalva B, Armienta-Hernández MA, Inguaggiato C, Berrellez-Reyes F, Valera-Fernández D. Metal(loid) bioaccessibility and risk assessment of ashfall deposit from Popocatépetl volcano, Mexico. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:354. [PMID: 39080128 PMCID: PMC11289158 DOI: 10.1007/s10653-024-02135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
Ash emission from volcanic eruptions affects the environment, society, and human health. This study shows the total concentration and lung bioaccessible fraction of eight potential toxic metal(loid)s in five Popocatépetl ashfall samples. Mineralogical phases and particle size distribution of the ashfall were analyzed by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) techniques, respectively. The bioaccessibility test of Gamble solution (GS) and Artificial Lysosomal Fluid (ALF) were conducted to simulate extracellular (pH 7) and intracellular (pH 4.5) conditions, respectively. The studied metal(loid)s showed the following total concentration (mg kg-1): 1.98 (As), 0.17 (Cd), 134.09 (Cr), 8.66 (Cu), 697.33 (Mn), 55.35 (Ni), 8.77 (Pb), and 104.10 (Zn). Geochemical indices suggested that some metal(loid)s are slightly enriched compared to the local soil background concentrations. Several mineralogical phases were identified in the collected ashfall deposits, such as plagioclase, pyroxene, and Fe-Ti oxide, among others. According to the risk assessment results, the non-carcinogenic risk related to ashfall exposure returns an HQ > 1 for children. In contrast, the estimation of carcinogenic risk was found to be within the tolerable limit. Metal(loid)s showed low bioaccessibility (< 30%) in GS and ALF, with the highest values found in ALF solution for As (12.18%) and Cu (7.57%). Despite their metal-bioaccessibility, our findings also showed that dominant ash particle size ranged between fine (< 2.5 μm) and extremely fine (< 1 μm), considered highly inhalable fractions. The results obtained in this work indicate that volcanic ashes are bioinsoluble and biodurable, and exhibit low bioaccessibility when in contact with lung human fluids.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | | | - Ofelia Morton-Bermea
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000, Hermosillo, Mexico
| | | | | | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | | | - Daisy Valera-Fernández
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| |
Collapse
|
6
|
Jeon JI, Jung JY, Park SY, Lee HW, Lee JI, Lee CM. A Comparison of Health Risks from PM 2.5 and Heavy Metal Exposure in Industrial Complexes in Dangjin and Yeosu·Gwangyang. TOXICS 2024; 12:158. [PMID: 38393253 PMCID: PMC10893162 DOI: 10.3390/toxics12020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024]
Abstract
Particulate matter (PM) can cause illness, including respiratory diseases, and PM2.5 compositions are likely to vary according to the emission profiles of industrial complexes. This study analyzed and compared the concentrations and distributions of PM2.5 and heavy metals in two regions of Republic of Korea: Yeosu·Gwangyang, which houses a massive national industrial complex, and Dangjin, which houses power plants. Further, we conducted a health risk assessment on the residents of the areas near these industrial complexes. Measurements were taken at five different points in each setting over a two-year period from August 2020 to August 2022. We found differences in PM2.5 concentrations and heavy metal composition ratios across the sites. Specifically, PM2.5 concentrations exceeded the standard of 1 at all measurement sites, while the specific heavy metals exceeding the standard varied across the sites. Ultimately, we observed regional differences in PM2.5 composition across measurement sites across and within the two regions and variations in health risks and according health effects due to the absence of PM2.5 toxicity values, and compared the health risks of two industrial complexes with different characteristics. These findings underscore the importance of considering not only PM2.5 but also its composition in exposure and health risk assessments.
Collapse
Affiliation(s)
- Jeong-In Jeon
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
| | - Ji-Yun Jung
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
| | - Shin-Young Park
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
| | - Hye-Won Lee
- Institute of Environment and Health, Seoul 02713, Republic of Korea;
| | - Jeong-Il Lee
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea;
| | - Cheol-Min Lee
- Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea; (J.-I.J.); (J.-Y.J.); (S.-Y.P.)
- Institute of Environment and Health, Seoul 02713, Republic of Korea;
- Department of Nano, Chemical and Biological Engineering, Seokyeong University, Seoul 02713, Republic of Korea;
| |
Collapse
|
7
|
Mufalo W, Arima T, Igarashi T, Ito M, Sato T, Tomiyama S, Nyambe I, Tabelin CB, Nakata H, Nakayama S, Ishizuka M. Insights on hazardous metal bioaccessibility, and groundwater impacted by Zn residues from a legacy mine and risk evaluation of adjacent soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:64. [PMID: 38319371 DOI: 10.1007/s10653-024-01864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
This study explored the legacy impact of Zinc plant residues (ZPRs) in Kabwe, Zambia, on the environment and human health, particularly in light of the town's reputation for Pb pollution. ZPRs solid samples and groundwater within and around ZPRs zone were collected from the legacy mine, along with soils in a 10 km radius from the mine site. Bioaccessible fractions of Pb and Zn were elucidated by Japanese leaching test (JLT) and simple bioaccessibility extraction test (SBET). Cationic speciation of Pb and Zn from inhalable and ingestible ZPRs particles was investigated via sequential extraction. Groundwater in the ZPRs area showed higher Zn levels (1490 mg/L) compared to Pb (1.7 mg/L). Elevated Zn concentration were facilitated by the presence of soluble Zn sulfates while Pb was constrained due to its precipitation as anglesite. Groundwater sampled outside the ZPRs area was within the Zambia regulatory limits (< 0.5 mg/L for Pb and < 1 mg/L for Zn). Inhalation exposure to < 30 µm dust particles from ZPRs and soils near the mine indicated negligible risk, with < 3% of bioaccessible Pb in artificial lysosomal fluid. Meanwhile, oral intake of ZPRs particles < 250 µm revealed elevated bioaccessible fractions (36% for Pb and 70% for Zn). ZPRs cationic speciation of ingestible particles < 30 µm, 30-75 µm, 75-150 µm and 150-250 µm indicated that the bioaccessible Pb predominantly emanated from labile Pb fractions under gastric conditions with pH < 1. This was due to the dissolution of Pb associated with the exchangeable phase, carbonates and iron/manganese oxides; however, only exchangeable/carbonate Pb was bioaccessible at pH < 2. Hazard quotients indicated increased risks of Pb intoxication through the ingestion of ZPRs and soils near the legacy mine, with higher risks observed in children, emphasizing the need to remediate legacy mine wastes to reduce health risks and protect groundwater through monitoring in mining-affected regions.
Collapse
Affiliation(s)
- Walubita Mufalo
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan.
| | - Takahiko Arima
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Toshifumi Igarashi
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Mayumi Ito
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Tsutomu Sato
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Shingo Tomiyama
- Division of Sustainable Resources Engineering, Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Imasiku Nyambe
- IWRM Centre/Geology Department, School of Mines, The University of Zambia, Lusaka, 32379, Zambia
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering Technology, Mindanao State University-Iligan Institute of Technology, 9200, Iligan City, Philippines
| | - Hokuto Nakata
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| | - Shouta Nakayama
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
- Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia
| | - Mayumi Ishizuka
- Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-Ku, Sapporo, 060-0818, Japan
| |
Collapse
|
8
|
Xiao J, Liu Y, Jiang S, Wang H, Liu Y, Lin F, Liu T, Fang K, Liao M, Shi Y, Cao H. Incorporating Bioaccessibility into Inhalation Exposure Assessment of Emamectin Benzoate from Field Spraying. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7978-7988. [PMID: 37162498 DOI: 10.1021/acs.est.3c02241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The inhalation exposure of pesticide applicators and residents who live close to pesticide-treated fields is a worldwide concern in public health. Quantitative assessment of exposure to pesticide inhalation health risk highlights the need to accurately assess the bioaccessibility rather than the total content in ambient air. Herein, we developed an in vitro method to estimate the inhalation bioaccessibility of emamectin benzoate and validated its applicability using a rat plasma pharmacokinetic bioassay. Emamectin benzoate was extracted using the Gamble solution, with an optimized solid-to-liquid ratio (1/250), extraction time (24 h), and agitation (200 rpm), which obtained in vitro inhalation bioaccessibility consistent with its inhalation bioavailability in vivo (32.33%). The margin of exposure (MOE) was used to assess inhalation exposure risk. The inhalation unit exposures to emamectin benzoate of applicators and residents were 11.05-28.04 and 0.02-0.04 ng/m3, respectively, varying markedly according to the methods of application, e.g., formulations and nozzles. The inhalation risk assessment using present application methods appeared to be acceptable; however, the MOE of emamectin benzoate might be overestimated by 32% without considering inhalation bioaccessibility. Collectively, our findings contribute insights into the assessment of pesticide inhalation exposure based on bioaccessibility and provide guidance for the safe application of pesticides.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuanhui Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Han Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yuying Liu
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Fengxiang Lin
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Tianhe Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| | - Yanhong Shi
- School of Resource & Environment, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui Province 230036, China
| |
Collapse
|
9
|
Markiv B, Expósito A, Ruiz-Azcona L, Santibáñez M, Fernández-Olmo I. Environmental exposure to manganese and health risk assessment from personal sampling near an industrial source of airborne manganese. ENVIRONMENTAL RESEARCH 2023; 224:115478. [PMID: 36796611 DOI: 10.1016/j.envres.2023.115478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Manganese (Mn), despite being a trace element necessary in small quantities for the correct functioning of the organism, at higher concentrations can induce health disorders, mainly in motor and cognitive functions, even at levels found in non-occupational environments. For this reason, US EPA guidelines define safe reference doses/concentrations (RfD/RfC) for health. In this study, the individualised health risk of exposure to Mn through different media (air, diet, soil) and routes of entry into the organism (inhalation, ingestion and dermal absorption) was assessed according to the procedure defined by the US EPA. Calculations related to Mn present in ambient air were made on the basis of data obtained from size-segregated particulate matter (PM) personal samplers carried by volunteers recruited in a cross-sectional study conducted in the Santander Bay (northern Spain), where an industrial source of airborne Mn is located. Individuals residing in the vicinity of the main Mn source (within 1.5 km) were found to have a hazard index (HI) higher than 1, indicating that there is a potential risk for these subjects to develop health alterations. Also, people living in Santander, the capital of the region, located 7-10 km from the Mn source, may have some risk (HI > 1) under some wind conditions (SW). In addition, a preliminary study of media and routes of entry into the body confirmed that inhalation of PM2.5-bound Mn is the most important route contributing to the overall non-carcinogenic health risk related to environmental Mn.
Collapse
Affiliation(s)
- B Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain.
| | - A Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - L Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
| | - M Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain
| | - I Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| |
Collapse
|
10
|
Xiao J, Fang K, Zhang S, Jiang S, Liu T, Lv M, Liao M, Cao H, Shi Y. Inhalation bioaccessibility of inhaled triazole fungicides and health risk assessment during spraying. PEST MANAGEMENT SCIENCE 2023; 79:1768-1776. [PMID: 36627764 DOI: 10.1002/ps.7354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Ambient air pollution caused by pesticide drift has received great attention. To accurately evaluate the health risk of inhaled pesticides, bioaccessibility should be considered. However, methods to reliably assess pesticide residues remain limited, hindering the precise estimation of exposure assessment. We aimed to optimize an in vitro method for the inhalation bioaccessibility (IBA) measurement of triazole fungicides and to incorporate this into inhalation exposure assessment during pesticide spraying. RESULTS The IBA of triazole fungicides increased logarithmically with extraction duration, plateauing after 6 h. The frequency of agitation displayed a similar pattern, whereas the ratio of solid to liquid between 1/1500 and 1/250 was considerably negatively associated. The predicted values (35.9-53.5%) for IBA based on optimized methodological parameters determined using a response surface methodology showed an acceptable deviation from experimental values (30.7-50.8%), suggesting feasibility for in vitro IBA measurement. Incorporating IBA into calculations of inhalation exposure amount (IE) yielded a value of 8.5 × 10-7 -2.1 × 10-5 mg kg-1 day-1 , a 50-68% reduction compared to IE based on total amount. Additionally, the safety exposure threshold was determined for triazole fungicides using benchmark dose modelling of data from lung A549 cell proliferation toxicity assays, and in this context, margin of exposure (MOE) values were calculated to be within an acceptable level. CONCLUSION This in vitro method supplements bioaccessibility evaluation based on pesticide inhalation exposure, along with the risk to human health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinjing Xiao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Ke Fang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Sidong Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, China
| | - Siyuan Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Tianhe Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Mengjiao Lv
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
| | - Yanhong Shi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, China
- School of Resource & Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
11
|
Markiv B, Ruiz-Azcona L, Expósito A, Santibáñez M, Fernández-Olmo I. Short- and long-term exposure to trace metal(loid)s from the production of ferromanganese alloys by personal sampling and biomarkers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4595-4618. [PMID: 35190915 PMCID: PMC8860625 DOI: 10.1007/s10653-022-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 05/06/2023]
Abstract
The environmental exposure to trace metal(loid)s (As, Cd, Cu, Fe, Mn, Pb, and Zn) was assessed near a ferromanganese alloy plant using filters from personal particulate matter (PM) samplers (bioaccessible and non-bioaccessible fine and coarse fractions) and whole blood as short-term exposure markers, and scalp hair and fingernails as long-term biomarkers, collected from volunteers (n = 130) living in Santander Bay (northern Spain). Bioaccessible and non-bioaccessible metal(loid) concentrations in coarse and fine PM from personal samplers were determined by ICP-MS after extraction/digestion. Metal(loid) concentration in biomarkers was measured after alkaline dilution (whole blood) and acid digestion (fingernails and scalp hair) by ICP-MS as well. Results were discussed in terms of exposure, considering the distance to the main Mn source, and sex. In terms of exposure, significant differences were found for Mn in all the studied fractions of PM, As in whole blood, Mn and Cu in scalp hair and Mn and Pb in fingernails, with all concentrations being higher for those living closer to the Mn source, with the exception of Cu in scalp hair. Furthermore, the analysis of the correlation between Mn levels in the studied biomarkers and the wind-weighted distance to the main source of Mn allows us to conclude that scalp hair and mainly fingernails are appropriate biomarkers of long-term airborne Mn exposure. This was also confirmed by the significant positive correlations between scalp hair Mn and bioaccessible Mn in coarse and fine fractions, and between fingernails Mn and all PM fractions. This implies that people living closer to a ferromanganese alloy plant are exposed to higher levels of airborne metal(loid)s, mainly Mn, leading to higher levels of this metal in scalp hair and fingernails, which according to the literature, might affect some neurological outcomes. According to sex, significant differences were observed for Fe, Cu and Pb in whole blood, with higher concentrations of Fe and Pb in males, and higher levels of Cu in females; and for Mn, Cu, Zn, Cd and Pb in scalp hair, with higher concentrations in males for all metal(loid)s except Cu.
Collapse
Affiliation(s)
- B Markiv
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain.
| | - L Ruiz-Azcona
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - A Expósito
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| | - M Santibáñez
- Departamento de Enfermería, Universidad de Cantabria, Santander, Spain
| | - I Fernández-Olmo
- Departamento de Ingenierías Química y Biomolecular, Universidad de Cantabria, Santander, Spain
| |
Collapse
|
12
|
Haque E, Jing X, Bostick BC, Thorne PS. In vitro and in silico bioaccessibility of urban dusts contaminated by multiple legacy sources of lead (Pb). JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100178. [PMID: 36926421 PMCID: PMC10016194 DOI: 10.1016/j.hazadv.2022.100178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lead contamination from gasoline, paint, pesticides, and smelting have unique chemical structures. Recent investigations into Pb speciation in urban soils and dusts from multiple sources have revealed emerging forms which differ from the initial sources. This results from reactions with soil constituents leading to transformation to new forms for which the bioaccessibilities remain uninvestigated. We investigated the in vitro and in silico bioaccessibility of these emerging forms in three physiologically relevant milieux: artificial lysosomal fluid (ALF), simulated epithelial lung fluid (SELF), and simulated gastric fluid (SGF). Species were validated using extended X-ray absorption fine structure spectroscopy. Results highlight diverse bioaccessibilities which are form and compartmentally-dependent. In ALF the bioaccessibility trend was humate-bound Pb (86%) > hydrocerussite (79%) > Fe oxide-bound Pb (47%) > galena (10%) > pyromorphite (4%) > Mn oxide-bound Pb (2%). Humate-bound Pb, hydrocerussite, Fe and Mn oxide-bound Pb were 100% bioaccessible in SGF while pyromorphite and galena were 26%, and 8%, respectively. Bioaccessibility in SELF was very low (< 1%) and significantly lower than ALF and SGF (p < 0.001). In silico bioaccessibilities modeled using equilibrium solubilities in extraction solutions were in good agreement with empirical measurements. These emerging forms of Pb have a wide range of bioaccessibilities that can influence their toxicity and impact on human health.
Collapse
Affiliation(s)
- Ezazul Haque
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| | | | - Peter S. Thorne
- Human Toxicology Program, University of Iowa, Iowa City, IA, USA
- Department of Occupational and Environmental Health, University of Iowa, IA, USA
| |
Collapse
|
13
|
Sun Y, Kinsela AS, Waite TD. Elucidation of alveolar macrophage cell response to coal dusts: Role of ferroptosis in pathogenesis of coal workers' pneumoconiosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153727. [PMID: 35149061 DOI: 10.1016/j.scitotenv.2022.153727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Causal factors underlying coal workers' pneumoconiosis (CWP) have been variously attributed to the presence of carbon, crystalline silica and reduced iron (Fe) minerals, especially pyrite and Fe/Si-amorphous compounds. The aim of this research was to assess the role of iron in CWP and, more specifically, the cytotoxicity of coal dusts with different elemental composition towards alveolar macrophages (AMs). Survival rate of AMs, alteration in the production of pro-inflammatory cytokine TNF-α, MDA (the lipid peroxidation product) and intracellular GSH were assessed using commercial assay kits. The quantitative interaction between iron and GSH was investigated by developing a numerical model. The presence of various reduced Fe minerals (viz. pyrite and siderite) in coal dusts exhibited a consistently acute adverse impact on the viability of AMs and enhanced the production of TNF-α. The presence of the clinically available Fe chelator deferiprone (DFP) and the cytosolic antioxidant glutathione (GSH) significantly increased the viability of AMs exposed to Fe bearing coal dusts, suggesting coal dusts containing reduced Fe minerals were likely contributors to the initial stages of AM cytotoxicity via a ferroptosis related pathway. Chemical kinetic modeling indicated that these results may be attributed to an enhanced consumption of GSH as a result of Fe redox cycling. FeIIGSH and GS• produced from the interaction between ferric Fe and GSH facilitated the production of O2•- which further oxidized GSH via a direct reaction between GSH and GS• or GSO•. These results suggest that coal dusts containing reduced Fe minerals and Fe compounds may elevate acute inflammation levels in AMs, indicating that crystalline silica may not be the only hazard of concern in mining environments.
Collapse
Affiliation(s)
- Yingying Sun
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew S Kinsela
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- School of Civil and Environmental Engineering, Water Research Centre, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
14
|
Ruiz-Azcona L, Markiv B, Expósito A, Pozueta A, García-Martínez M, Fernández-Olmo I, Santibáñez M. Poorer cognitive function and environmental airborne Mn exposure determined by biomonitoring and personal environmental monitors in a healthy adult population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152940. [PMID: 35007600 DOI: 10.1016/j.scitotenv.2022.152940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM In the Santander Bay (Cantabria, northern Spain), a ferromanganese alloy plant is located. Our objective was to characterize the Mn personal exposure of adult healthy volunteers living in this highly Mn exposed region, and to determine its association with a poorer cognitive function. METHODS Cross-sectional study analyzing 130 consecutive participants. Cognitive function was assessed by Stroop Color Word, Verbal Fluency tests, Trail Making Test (TMT), Digit Span (WAIS III) and Rey Osterrieth Complex Figure (ROCF) tests and crude scores were standardized according to NEURONORMA norms. Exposure to Mn was assessed in terms of source distance, by Personal Environmental Monitors (PEMs) allowing the separation of fine (PM2.5) and coarse (PM10-2.5) particles (obtaining the bioaccessible fraction by in-vitro bioaccessibility tests), and by biomarkers (blood, hair and fingernails). Age, sex, study level and number of years of residence were predefined as confounding variables and adjusted Mean Differences (MDs) were obtained. RESULTS Statistically significant lower scores (negative MDs) in all test were observed when living near the industrial emission source, after adjusting for the predefined variables. Regarding PEMs results, statistically significant lower scores in all Stroop parts were obtained in participants with higher levels of Total Mn in All fractions (PM10). For Verbal Fluency tests, negative MDs were obtained for both bioaccessible fractions. Digit Span Backward scores were lower for those with higher levels in the bioaccessible coarse fraction, and negative MDs were also observed for the ROCF Delayed part and the non-bioaccessible fine fraction. As regards to Mn in fingernails, adjusted MDs of -1.60; 95%CI (-2.57 to -0.64) and -1.45; 95%CI (-2.29 to -0.61) for Digit Span Forward and Backward parts were observed. CONCLUSIONS Our results support an association between poorer cognitive function and environmental airborne Mn exposure.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Ana Pozueta
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - María García-Martínez
- Service of Neurology, IDIVAL, University Hospital Marqués de Valdecilla, University of Cantabria, 39008 Santander, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28031 Madrid, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005 Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group. Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n., 39008 Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011 Santander, Cantabria, Spain.
| |
Collapse
|
15
|
Mishra A, Pervez S, Candeias C, Verma M, Bano S, Dugga P, Verma SR, Tamrakar A, Shafi S, Pervez YF, Gupta V. Bioaccessiblity features of particulate bound toxic elements: Review of extraction approaches, concentrations and health risks. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Ruiz-Azcona L, Markiv B, Expósito A, González-Aramburu I, Sierra M, Fernández-Olmo I, Santibáñez M. Biomonitoring and bioaccessibility of environmental airborne manganese in relation to motor function in a healthy adult population. Neurotoxicology 2021; 87:195-207. [PMID: 34678399 DOI: 10.1016/j.neuro.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND/AIM Santander, the capital of Cantabria, Spain (172,000 inhabitants) is 7 km from an industrial emission source (IES) of Mn located in a 10,000 inhabitants town (Maliaño) (annual air Mn arithmetic mean = 231.8 ng/m3; reference WHO guideline = 150 ng/m3). Our objective was to compare the motor function of adult healthy volunteers living in both places. METHODS Cross-sectional study analyzing 130 consecutive participants. Exposure to Mn was assessed in terms of source distance from the IES, by Personal Environmental Monitors (PEMs) carried for 24 h by participants consisting of a portable impactor connected to a personal pump, and by biomarkers (blood, hair and fingernails). The impactor allowed the separation of fine (PM2.5) and coarse (PM10-2.5) particles and for each particle size in-vitro bioaccessibility tests with biologically active fluids were performed to separate the soluble (bioaccessible) from the insoluble (non-bioaccessible) fraction. Mean Differences (MDs) adjusted for age, sex, and study level, were obtained for motor function tests results. RESULTS Regarding Grooved Pegboard, overall mean time to complete the test was 59.31 and 65.27 seconds (Standard Deviation = 10.11 and 11.69) for dominant and nondominant hands respectively. Statistically significant higher times (indicating worse function) were observed when living near the IES in both hands but MDs of only 1.22 and 2.05 seconds were obtained after adjusting for the predefined confounders (p = 0.373 and 0.221 respectively). Regarding Mn levels in their PEMs (in both bioaccessible and non-bioaccessible coarse&fine fractions) higher times were computed in participants with higher levels for the bioaccessible-fine fraction, with a MD that diminished but still yielded statistical significance after controlling for confounding: adjusted MD = 3.01 more seconds; 95%CI (0.44-5.38), p = 0.022. Poorer results were also observed for fingernails levels. Regarding Finger Tapping Test, no statistically significant differences were found with the exception of Mn fingernails levels. CONCLUSIONS Our results suggest poorer motor function as assessed by Grooved Pegboard test in relation to "proximity to IES", "bioaccessible-fine fraction as determined by PEMs and "Mn fingernails levels". However, our findings were affected by confounding, and only the adjusted MD for the Mn bioaccessible-fine fraction remained of sufficient magnitude to maintain statistical significance.
Collapse
Affiliation(s)
- Laura Ruiz-Azcona
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain
| | - Bohdana Markiv
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Andrea Expósito
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Isabel González-Aramburu
- Service of Neurology, Hospital Universitario Marqués de Valdecilla (HUMV-IDIVAL), Santander, Spain
| | - María Sierra
- Service of Neurology, Hospital Universitario Marqués de Valdecilla (HUMV-IDIVAL), Santander, Spain
| | - Ignacio Fernández-Olmo
- Dpto. de Ingenierías Química y Biomolecular, Universidad de Cantabria, Avda. Los Castros s/n, 39005, Santander, Cantabria, Spain
| | - Miguel Santibáñez
- Global Health Research Group, Dpto Enfermería, Universidad de Cantabria, Avda. Valdecilla, s/n, 39008, Santander, Cantabria, Spain; Nursing Research Group, IDIVAL, Calle Cardenal Herrera Oria s/n, 39011, Santander, Cantabria, Spain.
| |
Collapse
|
17
|
Ren Y, Luo Q, Zhuo S, Hu Y, Shen G, Cheng H, Tao S. Bioaccessibility and public health risk of heavy Metal(loid)s in the airborne particulate matter of four cities in northern China. CHEMOSPHERE 2021; 277:130312. [PMID: 33774239 DOI: 10.1016/j.chemosphere.2021.130312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 05/24/2023]
Abstract
Atmospheric coarse particulate matter (PM10) enriched with heavy metal(loid)s could pose potentially significant health risk to humans, while accurate health risk assessment calls for characterization of their bioaccessibility, besides the total contents. The health risk of major toxic heavy metal(loid)s in the PM10 from four large cities in northern China via inhalation was investigated based on their total contents and bioaccessibility. The annual mean concentrations of PM-bound Zn, As, Pb, and Mn in the atmosphere of the four cities were 650, 305, 227, and 177 ng⋅m-3, respectively. The levels of heavy metal(loid)s in the PM10 were generally higher in winter but lower in summer in all four cities, which resulted primarily from the emissions associated with coal combustion for district and household heating and the unfavorable meteorological conditions in winter. The bioaccessibility of heavy metal(loid)s in the PM10 ranged from 0.9 to 48.7%, following the general order of Mn > Co > Ni > Cd > Cu > As > Cr > Zn > Pb. Based on their total contents in the PM10, most heavy metal(loid)s posed significant public health risk via inhalation exposure in the four cities. However, after accounting for the bioaccessibility of metal(loid)s, the non-carcinogenic risk of most metal(loid)s was negligible, except for As in the PM10 of Jinzhong, while only the carcinogenic risk posed by Cr and As in the PM10 exceeded the acceptable level. These findings demonstrate the importance of characterizing the bioaccessibility of airborne PM-bound heavy metal(loid)s in health risk assessment and could guide the on-going efforts on reducing the public health risk of PM10 in northern China.
Collapse
Affiliation(s)
- Yuxuan Ren
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qing Luo
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shaojie Zhuo
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Guofeng Shen
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|