1
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
2
|
Sohn EJ, Jun BM, Nam SN, Park CM, Jang M, Son A, Yoon Y. Photocatalytic boron nitride-based nanomaterials for the removal of selected organic and inorganic contaminants in aqueous solution: A review. CHEMOSPHERE 2024; 349:140800. [PMID: 38040264 DOI: 10.1016/j.chemosphere.2023.140800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Boron nitride (BN) coupled with various conventional and advanced photocatalysts has been demonstrated to exhibit extraordinary activity for photocatalytic degradation because of its unique properties, including a high surface area, constant wide-bandgap semiconducting property, high thermal-oxidation resistance, good hydrogen-adsorption performance, and high chemical/mechanical stability. However, only limited reviews have discussed the application of BN or BN-based nanomaterials as innovative photocatalysts, and it does not cover the recent results and the developments on the application of BN-based nanomaterials for water purification. Herein, we present a complete review of the present findings on the photocatalytic degradation of different contaminants by various BN-based nanomaterials. This review includes the following: (i) the degradation behavior of different BN-based photocatalysts for various contaminants, such as selected dye compounds, pharmaceuticals, personal care products, pesticides, and inorganics; (ii) the stability/reusability of BN-based photocatalysts; and (iii) brief discussion for research areas/future studies on BN-based photocatalysts.
Collapse
Affiliation(s)
- Erica Jungmin Sohn
- Water Supply and Sewerage Department, DOHWA Engineering Co., LTD, 438, Samseong-ro, Gangnam-gu, Seoul, 06178, Republic of Korea
| | - Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-daero 989 Beon-gil, Yuseong-gu, Daejeon, 34057, Republic of Korea
| | - Seong-Nam Nam
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 447-1 Wolgye-dong Nowon-gu, Seoul, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea; Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
3
|
An J, Song Y, Zhao J, Xu B. Antifungal efficiency and cytocompatibility of polymethyl methacrylate modified with zinc dimethacrylate. Front Cell Infect Microbiol 2023; 13:1138588. [PMID: 36998636 PMCID: PMC10045475 DOI: 10.3389/fcimb.2023.1138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
Objectives Considering the high incidence rates of denture stomatitis, research that providing dental biomaterials with antifungal property are essential for clinical dentistry. The objectives of the present study were to investigate the effect of zinc dimethacrylate (ZDMA) modification on the antifungal and cytotoxic properties, as well as the variance in surface characteristics and other physicochemical properties of polymethyl methacrylate (PMMA) denture base resin. Methods PMMA with various mass fraction of ZDMA (1 wt%, 2.5 wt% and 5 wt%) were prepared for experimental groups, and unmodified PMMA for the control. Fourier-transform infrared spectroscopy (FTIR) was applied for characterization. Thermogravimetric analysis, atomic force microscopy and water contact angle were performed to investigate the thermal stability and surface characteristics (n=5). Antifungal capacities and cytocompatibility were evaluated with Candida albicans (C. albicans) and human oral fibroblasts (HGFs), respectively. Colony-forming unit counting, crystal violet assay, live/dead biofilm staining and scanning electron microscopy observation were performed to assess antifungal effects, and the detection of intracellular reactive oxygen species production was applied to explore the possible antimicrobial mechanism. Finally, the cytotoxicity of ZDMA modified PMMA resin was evaluated by the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and live/dead double staining. Results The FTIR analyses confirmed some variation in chemical bonding and physical blend of the composites. Incorporation of ZDMA significantly enhanced the thermal stability and hydrophilicity compared with unmodified PMMA (p < 0.05). The surface roughness increased with the addition of ZDMA while remained below the suggested threshold (≤ 0.2 µm). The antifungal activity significantly improved with ZDMA incorporation, and cytocompatibility assays indicated no obvious cytotoxicity on HGFs. Conclusions In the present study, the ZDMA mass fraction up to 5 wt% in PMMA performed better thermal stability, and an increase in surface roughness and hydrophilicity without enhancing microbial adhesion. Moreover, the ZDMA modified PMMA showed effective antifungal activity without inducing any cellular side effects.
Collapse
Affiliation(s)
| | | | - Jing Zhao
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, China
| | - Baohua Xu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
4
|
Fabrication and characterizations of degradable
PVC
/
PLA‐HAp
ultrafiltration membrane with enhanced antifouling properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Avornyo A, Thanigaivelan A, Krishnamoorthy R, Hassan SW, Banat F. Ag-CuO-Decorated Ceramic Membranes for Effective Treatment of Oily Wastewater. MEMBRANES 2023; 13:176. [PMID: 36837679 PMCID: PMC9967170 DOI: 10.3390/membranes13020176] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Although ultrafiltration is a reliable method for separating oily wastewater, the process is limited by problems of low flux and membrane fouling. In this study, for the first time, commercial TiO2/ZrO2 ceramic membranes modified with silver-functionalized copper oxide (Ag-CuO) nanoparticles are reported for the improved separation performance of emulsified oil. Ag-CuO nanoparticles were synthesized via hydrothermal technique and dip-coated onto commercial membranes at varying concentrations (0.1, 0.5, and 1.0 wt.%). The prepared membranes were further examined to understand the improvements in oil-water separation due to Ag-CuO coating. All modified ceramic membranes exhibited higher hydrophilicity and decreased porosity. Additionally, the permeate flux, oil rejection, and antifouling performance of the Ag-CuO-coated membranes were more significantly improved than the pristine commercial membrane. The 0.5 wt.% modified membrane exhibited a 30% higher water flux (303.63 L m-2 h-1) and better oil rejection efficiency (97.8%) for oil/water separation among the modified membranes. After several separation cycles, the 0.5 wt.% Ag-CuO-modified membranes showed a constant permeate flux with an excellent oil rejection of >95% compared with the unmodified membrane. Moreover, the corrosion resistance of the coated membrane against acid, alkali, actual seawater, and oily wastewater was remarkable. Thus, the Ag-CuO-modified ceramic membranes are promising for oil separation applications due to their high flux, enhanced oil rejection, better antifouling characteristics, and good stability.
Collapse
Affiliation(s)
- Amos Avornyo
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Arumugham Thanigaivelan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Shadi W. Hassan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, Abu Dhabi 127788, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
6
|
Mansur S, Othman MHD, Ismail NJ, Sheikh Abdul Kadir SH, Puteh MH, Abdullah H, Jaafar J, Rahman MA, Kusworo TD, Ismail AF, Ahmad AL. Hybrid Inorganic Organic PSF/Hap Dual-Layer Hollow Fibre Membrane for the Treatment of Lead Contaminated Water. MEMBRANES 2023; 13:170. [PMID: 36837673 PMCID: PMC9965034 DOI: 10.3390/membranes13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Lead (Pb) exposure can be harmful to public health, especially through drinking water. One of the promising treatment methods for lead contaminated water is the adsorption-filtration method. To ensure the cost-effectiveness of the process, naturally derived adsorbent shall be utilised. In this study, hydroxyapatite particles, Ca10(PO4)6(OH)2 (HAP) derived from waste cockle shell, were incorporated into the outer layer of polysulfone/HAP (PSf/HAP) dual-layer hollow fibre (DLHF) membrane to enhance the removal of lead from the water source due to its hydrophilic nature and excellent adsorption capacity. The PSf/HAP DLHF membranes at different HAP loadings in the outer layer (0, 10, 20, 30 and 40 wt%) were fabricated via the co-extrusion phase inversion technique. The performance of the DLHF membranes was evaluated in terms of pure water flux, permeability and adsorption capacity towards lead. The results indicated that the HAP was successfully incorporated into the outer layer of the membrane, as visibly confirmed by microscopic analysis. The trend was towards an increase in pure water flux, permeability and lead adsorption capacity as the HAP loading increased to the optimum loading of 30 wt%. The optimized DLHF membrane displayed a reduced water contact angle by 95%, indicating its improved surface hydrophilicity, which positively affects the pure water flux and permeability of the membrane. Furthermore, the DLHF membrane possessed the highest lead adsorption capacity, 141.2 mg/g. The development of a hybrid inorganic-organic DLHF membrane via the incorporation of the naturally derived HAP in the outer layer is a cost-effective approach to treat lead contaminated water.
Collapse
Affiliation(s)
- Sumarni Mansur
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Nurul Jannah Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Laboratory and Forensics (I-PPerForM), Institute of Pathology, Faculty of Medicine, Universiti Teknologi Mara (UiTM), Cawangan Selangor, Sungai Buloh 47000, Selangor, Malaysia
| | - Mohd Hafiz Puteh
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Huda Abdullah
- Department of Electrical, Electronic & Systems Engineering, Faculty of Engineering & Built Environment, The National University of Malaysia, Bangi 43600, Selangor, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Mukhlis A. Rahman
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Faculty of Engineering Diponegoro University, Semarang 50275, Indonesia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia
| |
Collapse
|
7
|
Geleta TA, Maggay IV, Chang Y, Venault A. Recent Advances on the Fabrication of Antifouling Phase-Inversion Membranes by Physical Blending Modification Method. MEMBRANES 2023; 13:58. [PMID: 36676865 PMCID: PMC9864519 DOI: 10.3390/membranes13010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces. A convenient method to prepare antifouling membranes is via physical blending (or simply blending), which is a one-step method that consists of mixing the main matrix polymer and the antifouling material prior to casting and film formation by a phase inversion process. This review focuses on the recent development (past 10 years) of antifouling membranes via this method and uses different phase-inversion processes including liquid-induced phase separation, vapor induced phase separation, and thermally induced phase separation. Antifouling materials used in these recent studies including polymers, metals, ceramics, and carbon-based and porous nanomaterials are also surveyed. Furthermore, the assessment of antifouling properties and performances are extensively summarized. Finally, we conclude this review with a list of technical and scientific challenges that still need to be overcome to improve the functional properties and widen the range of applications of antifouling membranes prepared by blending modification.
Collapse
Affiliation(s)
| | | | - Yung Chang
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| | - Antoine Venault
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
8
|
Cosme JRA, Castro‐Muñoz R, Vatanpour V. Recent Advances in Nanocomposite Membranes for Organic Compound Remediation from Potable Waters. CHEMBIOENG REVIEWS 2022. [DOI: 10.1002/cben.202200017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jose R. Aguilar Cosme
- University of Maryland Baltimore Department of Surgery 670 W Baltimore St 21201 Baltimore USA
| | - Roberto Castro‐Muñoz
- Gdansk University of Technology Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering 11/12 Narutowicza St. 80-233 Gdansk Poland
- Tecnologico de Monterrey, Campus Toluca Av. Eduardo Monroy Cárdenas 2000, San Antonio Buenavista 50110 Toluca de Lerdo Mexico
| | - Vahid Vatanpour
- Kharazmi University Department of Applied Chemistry, Faculty of Chemistry 15719-14911 Tehran Iran
- Istanbul Technical University, Maslak National Research Center on Membrane Technologies 34469 Istanbul Turkey
| |
Collapse
|
9
|
Naziri Mehrabani SA, Keskin B, Arefi-Oskoui S, Koyuncu I, Vatanpour V, Orooji Y, Khataee A. Ti2AlN MAX phase as a modifier of cellulose acetate membrane for improving antifouling and permeability properties. Carbohydr Polym 2022; 298:120114. [DOI: 10.1016/j.carbpol.2022.120114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/10/2022] [Accepted: 09/11/2022] [Indexed: 11/25/2022]
|
10
|
Jaber L, Almanassra IW, Backer SN, Kochkodan V, Shanableh A, Atieh MA. A Comparative Analysis of the Effect of Carbonaceous Nanoparticles on the Physicochemical Properties of Hybrid Polyethersulfone Ultrafiltration Membranes. MEMBRANES 2022; 12:1143. [PMID: 36422135 PMCID: PMC9695429 DOI: 10.3390/membranes12111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Numerous studies have been previously reported on the use of nanoscale carbonaceous fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene oxide (GO), in polymeric ultrafiltration (UF) membranes; however, no insight has been clearly reported on which material provides the best enhancements in membrane performance. In this study, a comparative analysis was carried out to establish a comprehensible understanding of the physicochemical properties of hybrid polyethersulfone (PES) UF membranes incorporated with MWCNTs and GO nanoparticles at various concentrations. The hybrid membranes were prepared via the non-solvent-induced phase separation process and further characterized by field emission scanning electron microscopy and atomic force microscope (AFM). The AFM images showed homogeneous membrane surfaces with a reduction in the membrane surface roughness from 2.62 nm for bare PES to 2.39 nm for PES/MWCNTs and to 1.68 nm for PES/GO membranes due to improved hydrophilicity of the membranes. Physicochemical properties of the hybrid PES membranes were assessed, and the outcomes showed an enhancement in the porosity, pore size, water contact angle, and water permeability with respect to nanoparticle concentration. GO-incorporated PES membranes exhibited the highest porosity, pore size, and lowest contact angle as compared to PES/MWCNTs, indicating the homogeneous distribution of nanoparticles within the membrane structure. PES/MWCNTs (0.5 wt.%) and PES/GO (1.0 wt.%) hybrid membranes exhibited the highest water flux of 450.0 and 554.8 L m-2 h-1, respectively, at an applied operating pressure of 1 bar. The filtration and antifouling performance of the PES hybrid membranes were evaluated using 50 mg L-1 of humic acid (HA) as a foulant at pH = 7. Compared to the bare PES membrane, the MWCNTs and GO-incorporated PES hybrid membranes exhibited enhanced permeability and HA removal. Moreover, PES/MWCNTs (0.5 wt.%) and PES/GO (1 wt.%) hybrid membranes reported HA rejection of 90.8% and 94.8%, respectively. The abundant oxygen-containing functional groups in GO-incorporated PES membranes resulted in more hydrophilic membranes, leading to enhanced permeability and fouling resistance. The antifouling properties and flux recovery ratio were improved by the addition of both nanoparticles. Given these findings, although both MWCNTs and GO nanoparticles are seen to notably improve the membrane performance, PES membranes with 1 wt.% GO loading provided the highest removal of natural organic matter, such as HA, under the same experimental conditions.
Collapse
Affiliation(s)
- Lubna Jaber
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Ismail W. Almanassra
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Sumina Namboorimadathil Backer
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Abdallah Shanableh
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Muataz Ali Atieh
- Research Institute of Sciences & Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Chemical and Water Desalination Engineering Program (CWDE), College of Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
11
|
Abbas Q, Shinde PA, Abdelkareem MA, Alami AH, Mirzaeian M, Yadav A, Olabi AG. Graphene Synthesis Techniques and Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7804. [PMID: 36363396 PMCID: PMC9658785 DOI: 10.3390/ma15217804] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications.
Collapse
Affiliation(s)
- Qaisar Abbas
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Pragati A. Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Chemical Engineering Department, Minia University, Minya 61519, Egypt
| | - Abdul Hai Alami
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mojtaba Mirzaeian
- School of Engineering, Computing & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, Almaty 050012, Kazakhstan
| | - Arti Yadav
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University Aston Triangle, Birmingham B4 7ET, UK
| |
Collapse
|
12
|
Dadari S, Rahimi M, Zinadini S. Removal of heavy metal from aqueous medium using novel high-performance, antifouling, and antibacterial nanofiltration polyethersulfone membrane modified with green synthesized Ni-doped Al2O3. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Shan L, Yang Z, Li W, Li H, Liu N, Wang Z. Highly antifouling porous EVAL/F127 blend membranes with hierarchical surface structures. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhang P, Shen B, Pu H. Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Arumugham T, Ouda M, Krishnamoorthy R, Hai A, Gnanasundaram N, Hasan SW, Banat F. Surface-engineered polyethersulfone membranes with inherent Fe-Mn bimetallic oxides for improved permeability and antifouling capability. ENVIRONMENTAL RESEARCH 2022; 204:112390. [PMID: 34838760 DOI: 10.1016/j.envres.2021.112390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
In recent years, bimetallic oxide nanoparticles have garnered significant attention owing to their salient advantages over monometallic nanoparticles. In this study, Fe2O3-Mn2O3 nanoparticles were synthesized and used as nanomodifiers for polyethersulfone (PES) ultrafiltration membranes. A NIPS was used to fabricate asymmetric membranes. The effect of nanoparticle concentration (0-1 wt.%) on the morphology, roughness, wettability, porosity, permeability, and protein filtration performance of the membranes was investigated. The membrane containing 0.25 wt% nanoparticles exhibited the lowest water contact angle (67°) and surface roughness (10.4 ± 2.8 nm) compared to the other membranes. Moreover, this membrane exhibited the highest porosity (74%) and the highest pure water flux (398 L/m2 h), which was 16% and 1.9 times higher than that of the pristine PES membrane. The modified PES membranes showed an improved antifouling ability, especially against irreversible fouling. Bovine serum albumin protein-based dynamic five-cycle filtration tests showed a maximum flux recovery ratio of 77% (cycle-1), 67% (cycle-2), and 65.8% (cycle-5) for the PES membrane containing 0.25 wt% nanoparticles. Overall, the biphasic Fe2O3-Mn2O3 nanoparticles were found to be an effective nanomodifier for improving the permeability and antifouling ability of PES membranes in protein separation and water treatment applications.
Collapse
Affiliation(s)
- Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Mariam Ouda
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nirmala Gnanasundaram
- Mass Transfer Lab, School of Chemical Engineering, Vellore Institute of Technology, Vellore, 632014, India
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
Ouda M, Hai A, Krishnamoorthy R, Govindan B, Othman I, Kui CC, Choi MY, Hasan SW, Banat F. Surface tuned polyethersulfone membrane using an iron oxide functionalized halloysite nanocomposite for enhanced humic acid removal. ENVIRONMENTAL RESEARCH 2022; 204:112113. [PMID: 34563528 DOI: 10.1016/j.envres.2021.112113] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Nanomodification of ultrafiltration (UF) membranes has been shown to be a simple and efficient technique for the preparation of high-performance membranes. In this work, an iron oxide functionalized halloysite nanoclay (Fe-HNC) nanocomposite was prepared and used as a nanofiller for polyethersulfone (PES) membranes. The effect of Fe-HNC concentration on the filtration performance of the membrane was investigated by varying the nanocomposite dosage (0-0.5 wt %) in the casting dope. Various characterization studies showed that the incorporation of Fe-HNC nanocomposites improved the membrane morphology and enhanced the surface properties, thermal stability, mechanical strength, hydrophilicity, and porosity. The permeability to pure water and filtration of humic acid (HA) were significantly improved by incorporating Fe-HNC into the PES membranes. The membrane with Fe-HNC loading of 0.1 wt % exhibited the highest pure water permeability (174.3 L/(m2 h bar)) and removal of HA (90.1 %), which were 1.8 times and 29 % higher, respectively than the pristine PES membrane. Moreover, fouling studies showed the enhanced antifouling ability of the Fe-HNC nanocomposites modified PES membranes, especially against irreversible fouling. Continuous membrane regeneration-based fouling removal studies from HA showed that the PES/0.1 wt % Fe-HNC membrane exhibited a high fouling recovery of 70.4 % with very low reversible and irreversible fouling resistance of 9.61 % and 14.78 %, respectively, compared to the pristine PES membrane (fouling recovery: 40.4 %; reversible fouling: 21.7 %; irreversible fouling: 20.1 %). Overall, the Fe-HNC nanocomposite proved to be an effective nanomodifier for improving the permeability of PES membranes and the antifouling ability to treat HA polluted aqueous streams.
Collapse
Affiliation(s)
- Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Israa Othman
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Cheng Chin Kui
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Selvan BK, Thiyagarajan K, Das S, Jaya N, Jabasingh SA, Saravanan P, Rajasimman M, Vasseghian Y. Synthesis and characterization of nano zerovalent iron-kaolin clay (nZVI-Kaol) composite polyethersulfone (PES) membrane for the efficacious As 2O 3 removal from potable water samples. CHEMOSPHERE 2022; 288:132405. [PMID: 34597639 DOI: 10.1016/j.chemosphere.2021.132405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In this study, Kaolin clay, a mining material, was used as an abundant and available mineral as zero-valent iron-kaolinite composites for As2O3 removal from the water samples. The composites were made by the sodium borohydrate reduction method. The existence of Fe0 in the produced composites was confirmed by X-ray diffraction (XRD) and Fourier-Transform Infrared Spectroscopy (FTIR) analysis. The membranes are prepared with zerovalent nano Iron-Kaolin and PES. The synthesized composites were then mixed with polyethersulfone to prepare the membranes S1, S2, and S3 with varying compositions. Field Emission Scanning Electron Microscopy (FESEM) analysis of the produced membranes showed the porous structure and the contact angle of membranes increased the hydrophilicity. The membranes were explored for the removal of As2O3 (AsIII) in potable water samples. The filtration studies were carried out using the syringe filtration setup. Analysis of the arsenic (III) solution was carried out, before and after the filtration process using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed a maximum of 50% reduction in its original concentration. The filtered membrane is analyzed for arsenic by Energy Dispersive X-ray (EDX) technique. Thus, the synthesized membrane effectively sieves the arsenic in water samples.
Collapse
Affiliation(s)
- B Karpanai Selvan
- Dravida Petroleum DMCC, ONGC BVG EPS, B-Athivaraganatham, Cuddalore, 608601, Tamil Nadu, India
| | - K Thiyagarajan
- Department of Nanoscience and Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Soni Das
- Department of Biotechnology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - N Jaya
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - S Anuradha Jabasingh
- Process Engineering Division, School of Chemical and Bio Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia
| | - P Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 60002, Tamil Nadu, India
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
18
|
Jagadeeshanayaka N, Awasthi S, Jambagi SC, Srivastava C. Bioactive Surface Modifications through Thermally Sprayed Hydroxyapatite Composite Coatings: A Review over Selective Reinforcements. Biomater Sci 2022; 10:2484-2523. [DOI: 10.1039/d2bm00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HA) has been an excellent replacement for the natural bone in orthopedic applications, owing to its close resemblance; however, it is brittle and has low strength. Surface modification techniques...
Collapse
|
19
|
Kallem P, Ouda M, Bharath G, Hasan SW, Banat F. Enhanced water permeability and fouling resistance properties of ultrafiltration membranes incorporated with hydroxyapatite decorated orange-peel-derived activated carbon nanocomposites. CHEMOSPHERE 2022; 286:131799. [PMID: 34364235 DOI: 10.1016/j.chemosphere.2021.131799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Hydroxyapatite-decorated activated carbon (HAp/AC) nanocomposite was synthesized and utilized as a nanofiller to fabricate a novel type of polyethersulfone (PES) nanocomposite ultrafiltration (UF) membranes. Activated carbon (AC) derived from orange peel was synthesized by low-temperature pyrolysis at 400 °C. A hydroxyapatite/AC (HAp/AC) nanocomposite was developed by a simple one-pot hydrothermal synthesis method. The UF membrane was fabricated by intercalating HAp/AC fillers into PES casting solution by the non-solvent induced phase separation (NIPS) process. The prepared membranes exhibited a lower water contact angle than the pristine PES membrane. The hybrid membrane with 4 wt% HAp/AC nanocomposite displayed 4.6 times higher pure water flux (~660 L/m2 h) than that of the pristine membrane (143 L/m2 h). In static adsorption experiments, it was found that the amount of humic acid (HA) and bovine serum albumin (BSA) adsorbed by the HAp/AC-PES hybrid membrane was much lower than that of the original membrane due to the electrostatic repulsive forces between them and the surface of the membrane. Irreversible fouling was reduced from 33 to 6 % for HA and from 46 to 8 % for BSA after HAp/AC was incorporated into the PES matrix. After 7 cycles of water-BSA-water, the HAp/AC-PES hybrid membrane maintained a high pure water flux of 540 L/m2 h with an excellent flux recovery ratio (FRR), demonstrating the long-term stability of the membranes. The developed UF membranes outperformed the original PES membranes in terms of permeability, selectivity, and antifouling.
Collapse
Affiliation(s)
- Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Mariam Ouda
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - G Bharath
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Yang S, Tang R, Dai Y, Wang T, Zeng Z, Zhang L. Fabrication of cellulose acetate membrane with advanced ultrafiltration performances and antibacterial properties by blending with HKUST-1@LCNFs. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Sun R, Yue C, Cao N, Lin Z, Pang J. Construction of antifouling zwitterionic membranes by facile multi-step integration method. J Colloid Interface Sci 2021; 610:905-912. [PMID: 34865743 DOI: 10.1016/j.jcis.2021.11.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022]
Abstract
Membrane fouling during the use of separation membrane has always been the main reason for the degradation of membrane performance. The traditional solution is complicated and inefficient, so we proposed multi-step integration method to prepare antifouling zwitterionic poly(aryl ether sulfone) (PAES-Z-x) ultrafiltration (UF) membrane with higher efficiency. We designed and synthesized a bisphenol precursor containing tertiary amine groups, which could provide reactive sites for grafting zwitterionic group. Afterwards, the zwitterionic modified UF membrane was prepared by graft copolymerization and non-solvent-induced phase separation (NIPS). The morphology, hydrophilicity, water flux and rejection of the PAES-Z-x membrane could be optimized by tuning zwitterion content. The hydration layer formed by zwitterions effectively reduced the adsorption of proteins and endowed the membrane good antifouling properties. The resulting membrane showed the pure water flux increased (up to 311 L m-2h-1 bar-1), high bovine serum albumin (BSA) rejection (97%) and good water flux recovery ratio (FRR) (82.8%). Zwitterionic antifouling PAES UF membrane prepared by a simple and effective method provided a new direction for improving PAES UF membrane's antifouling performance.
Collapse
Affiliation(s)
- Ruiyin Sun
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Cheng Yue
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ning Cao
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ziyu Lin
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China.
| |
Collapse
|
22
|
Wibisono Y, Pratiwi AY, Octaviani CA, Fadilla CR, Noviyanto A, Taufik E, Uddin MK, Anugroho F, Rochman NT. Marine-Derived Biowaste Conversion into Bioceramic Membrane Materials: Contrasting of Hydroxyapatite Synthesis Methods. Molecules 2021; 26:6344. [PMID: 34770753 PMCID: PMC8586969 DOI: 10.3390/molecules26216344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Marine-derived biowaste increment is enormous, yet could be converted into valuable biomaterial, e.g., hydroxyapatite-based bioceramic. Bioceramic material possesses superiority in terms of thermal, chemical, and mechanical properties. Bioceramic material also has a high level of biocompatibility when projected into biological tissues. Tuning the porosity of bioceramic material could also provide benefits for bioseparation application, i.e., ultrafiltration ceramic membrane filtration for food and dairy separation processes. This work presents the investigation of hydroxyapatite conversion from crab-shells marine-based biowaste, by comparing three different methods, i.e., microwave, coprecipitation, and sol-gel. The dried crab-shells were milled and calcinated as calcium precursor, then synthesized into hydroxyapatite with the addition of phosphates precursors via microwave, coprecipitation, or sol-gel. The compound and elemental analysis, degree of crystallinity, and particle shape were compared. The chemical compounds and elements from three different methods were similar, yet the degree of crystallinity was different. Higher Ca/P ratio offer benefit in producing a bioceramic ultrafiltration membrane, due to low sintering temperature. The hydroxyapatite from coprecipitation and sol-gel methods showed a significant degree of crystallinity compared with that of the microwave route. However, due to the presence of Fe and Sr impurities, the secondary phase of Ca9FeH(PO4)7 was found in the sol-gel method. The secondary phase compound has high absorbance capacity, an advantage for bioceramic ultrafiltration membranes. Furthermore, the sol-gel method could produce a snake-like shape, compared to the oval shape of the coprecipitation route, another benefit to fabricate porous bioceramic for a membrane filter.
Collapse
Affiliation(s)
- Yusuf Wibisono
- Department of Bioprocess Engineering, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia; (A.Y.P.); (C.A.O.); (C.R.F.)
- MILI Institute for Water Research, Kawasan Industri Jababeka, Bekasi 17530, Indonesia
| | - Alien Yala Pratiwi
- Department of Bioprocess Engineering, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia; (A.Y.P.); (C.A.O.); (C.R.F.)
| | - Christine Ayu Octaviani
- Department of Bioprocess Engineering, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia; (A.Y.P.); (C.A.O.); (C.R.F.)
| | - Cut Rifda Fadilla
- Department of Bioprocess Engineering, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia; (A.Y.P.); (C.A.O.); (C.R.F.)
| | - Alfian Noviyanto
- Nano Center Indonesia, Jl. PUSPIPTEK Tangerang Selatan, Banten 15314, Indonesia
- Department of Mechanical Engineering, Mercu Buana University, Jl. Meruya Selatan, Kebun Jeruk, Jakarta Barat 11650, Indonesia
| | - Epi Taufik
- Faculty of Animal Science, IPB University, Bogor 16680, Indonesia;
| | - Muhammad K.H. Uddin
- Department of Science of Dental Materials, Dr. Ishrat-Ul-Ebad Khan Institute of Oral Health Sciences, DOW University of Health Sciences, Karachi 74200, Pakistan;
| | - Fajri Anugroho
- Department of Environmental Engineering, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia;
| | - Nurul Taufiqu Rochman
- Research Center for Metallurgy and Materials, Indonesian Institute of Sciences, PUSPIPTEK Tangerang Selatan, Banten 15314, Indonesia;
| |
Collapse
|
23
|
Sun X, Zhang L, Chen R, Liu J, Yu J, Zhu J, Liu P, Wang J, Liu Q. Constructing three-dimensional network C, O Co-doped nitrogen-deficient carbon nitride regulated by acrylic fluoroboron overall marine antifouling. J Colloid Interface Sci 2021; 608:1802-1812. [PMID: 34742089 DOI: 10.1016/j.jcis.2021.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
To deal with unwanted biofouling adsorption, which impacts the economy and the environment, significant research has been devoted to composite systems involving a photocatalyst combined with self-renewal resin to provide synergistic antifouling. Here, photocatalyst based on three-dimensional (3D) network of carbon-oxygen-doped nitrogen-deficient carbon nitride and acrylic fluoroboron polymer as a system was successfully synthesized. 3D networks carbon nitride with carbon-oxygen dopants and nitrogen defects were prepared as skeletons, which effectively support and regulate the hydrolysis rate of the polymer. These composite systems exhibits excellent diatom anti-adhesion performance and high antibacterial rates for Escherichia coli and Staphylococcus aureus of up to 91.87% and 88.52%, respectively. In addition, self-cleaning function of the composite system are proved by and higher efficiency of chemical oxygen demand (COD) removal owing to efficient charge-carrier separation and transfer within the 3D network carbon nitride network. The great potential applications of this strategy demonstrated in marine engineering in the future.
Collapse
Affiliation(s)
- Xiaonan Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linlin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd, Hainan 572427, China.
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd, Hainan 572427, China.
| |
Collapse
|
24
|
Li X, Nayak K, Stamm M, Tripathi BP. Zwitterionic silica nanogel-modified polysulfone nanoporous membranes formed by in-situ method for water treatment. CHEMOSPHERE 2021; 280:130615. [PMID: 33965864 DOI: 10.1016/j.chemosphere.2021.130615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
We report a simple methodology to prepare nano-porous polysulfone membranes using zwitterionic functionalized silica nanogels with high BSA protein rejection and antifouling properties. The zwitterionic silica precursor was prepared by reacting 1,3-propane sultone with 3-aminopropyl triethoxysilane under an inert atmosphere. The precursor was in situ hydrolyzed and condensed in the polysulfone nanoporous membrane network by one-pot acidic phase inversion. The prepared membranes were characterized to establish their physicochemical nature, morphology, and basic membrane properties such as permeation, rejection, and recovery. The zwitterionic membranes showed improved hydrophilicity, membrane water uptake (∼83.5%), water permeation, BSA protein rejection (>95%), and dye rejection (congo red: >52% (∼6-fold increase); methylene blue: ∼15% (∼2-fold increase)) were improved without compromising the membrane flux and fouling resistance. Overall, we report an easy fabrication method of efficient nanocomposite zwitterionic ultrafilter membranes for water treatment with excellent flux, protein separation, filtration efficiency, and antifouling behavior.
Collapse
Affiliation(s)
- Xiaojiao Li
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Kanupriya Nayak
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Manfred Stamm
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069, Dresden, Germany; Technische Universität Dresden, Department of Chemistry, 01069, Dresden, Germany
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
25
|
Vatanpour V, Naziri Mehrabani SA, Keskin B, Arabi N, Zeytuncu B, Koyuncu I. A Comprehensive Review on the Applications of Boron Nitride Nanomaterials in Membrane Fabrication and Modification. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran, 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Seyed Ali Naziri Mehrabani
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Basak Keskin
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Negar Arabi
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Bihter Zeytuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Metallurgical and Materials Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
- Environmental Engineering Department, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
26
|
Effective and efficient fabrication of high-flux tight ZrO2 ultrafiltration membranes using a nanocrystalline precursor. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119378] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|