1
|
Chen Y, Zhen Z, Wu W, Yang C, Yang G, Li X, Li Q, Zhong X, Yin J, Lin Z, Zhang D. Biochar modification accelerates soil atrazine biodegradation by altering bacterial communities, degradation-related genes and metabolic pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135693. [PMID: 39216246 DOI: 10.1016/j.jhazmat.2024.135693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Atrazine is one of the most used herbicides, posing non-neglectable threats to ecosystem and human health. This work studied the performance and mechanisms of surface-modified biochar in accelerating atrazine biodegradation by exploring the changes in atrazine metabolites, bacterial communities and atrazine degradation-related genes. Among different types of biochar, nano-hydroxyapatite modified biochar achieved the highest degradation efficiency (85.13 %), mainly attributing to the increasing pH, soil organic matter, soil humus, and some enriched indigenous bacterial families of Bradyrhizobiaceae, Rhodospirillaceae, Methylophilaceae, Micrococcaceae, and Xanthobacteraceae. The abundance of 4 key atrazine degradation-related genes (atzA, atzB, atzC and triA) increased after biochar amendment, boosting both dechlorination and dealkylation pathways in atrazine metabolism. Our findings evidenced that biochar amendment could accelerate atrazine biodegradation by altering soil physicochemical properties, microbial composition and atrazine degradation pathways, providing clues for improving atrazine biodegradation performance at contaminated sites.
Collapse
Affiliation(s)
- Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weilong Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Changhong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Guiqiong Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaofeng Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Qing Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaolan Zhong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Junyong Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Research Institute of Guangdong Ocean University, Shenzhen 518108, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
2
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
3
|
Shi D, Ma Y, Zhu J, Zhang L, Cai M. Occurrence, sources and transport of triazine herbicides in the Antarctic marginal seas. MARINE POLLUTION BULLETIN 2024; 207:116820. [PMID: 39126778 DOI: 10.1016/j.marpolbul.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
The extensively applied triazine herbicides are easily transported by ocean currents over long distances. This study analyzed ten triazine herbicides in the Antarctic marginal seas and the Southern Indian Ocean during the austral summer for the first time, addressing their largely unexplored behavior in remote marine environments. The total triazine herbicides showed great spatial heterogeneity, with a range of 20-790 pg/L and an average of 31 ± 66 pg/L. The waterborne transport of triazine herbicides in the Antarctic was affected by hydrological processes, especially the blocking and accumulation effect of the polar front. Variations in sea ice extent and temperature were also important influencing factors, resulting in elevated triazine herbicides in surface seawater of East Antarctica, but reduced levels in West Antarctica. Furthermore, the source apportionment results indicated that approximately 55 % of the herbicides originated from sugarcane cultivation, 28 % from algaecide use, and 16 % from corn and sorghum farming.
Collapse
Affiliation(s)
- Dandan Shi
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Yuxin Ma
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China.
| | - Jincai Zhu
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Lihong Zhang
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China
| | - Minghong Cai
- School of Oceanography, Shanghai Jiao Tong University, 1954 Huashan Road, 200030 Shanghai, China; Ministry of Natural Resources Key Laboratory for Polar Science, Polar Research Institute of China, 451 Jinqiao Road, Shanghai 200136, China
| |
Collapse
|
4
|
Ghoshal D, Dixit M, Narayanan N, Mandal A, Saini P, Banerjee T, Singh N, Kumar A, Gupta S. Persistence and degradation of tembotrione in loamy soil: Effect of various organic amendments, moisture regimes and temperatures. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:611-623. [PMID: 39285648 DOI: 10.1080/03601234.2024.2403865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
In the present study, persistence and degradation of tembotrione, a triketone herbicide, was studied in loamy soil collected from maize field. Effects of organic amendments, moistures and temperatures on tembotrione dissipation were evaluated. Soil samples were processed according to the modified QuEChERS involving dichloromethane solvent and MgSO4 without PSA. Analysis using LC-MS/MS showed >95% recoveries of tembotrione its two metabolites TCMBA and M5 from fortified soils. Tembotrione residues dissipated with time and 85.55 to 98.53% dissipation was found on 90th day under different treatments. Tembotrione dissipation increased with temperature and moisture content of the soil. Among organic amendments, highest dissipation was observed in vermicompost amended soil. Minimum and maximum half-lives of tembotrione were recorded under 35 °C (15.7 days) and air-dry (33 days) conditions, respectively. Residues of tembotrione declined with time while that of TCMBA increased steadily up to 10-45th day in different treatments and declined thereafter. Residues of M5 were not detected in our experiments. Tembotrione persistence was negatively correlated with the organic carbon (%), moisture regimes, and temperature. A good correlation between soil microbial biomass carbon and degradation was found. A two-way ANOVA indicated significant differences between the treatments at 95% confidence level (p < 0.05).
Collapse
Affiliation(s)
- Debabrata Ghoshal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- The Graduate School, IARI, New Delhi, India
| | - Mahima Dixit
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India
| | - Neethu Narayanan
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhishek Mandal
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Priya Saini
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aman Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Suman Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
5
|
Deng S, Chen C, Wang Y, Liu S, Zhao J, Cao B, Jiang D, Jiang Z, Zhang Y. Advances in understanding and mitigating Atrazine's environmental and health impact: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121530. [PMID: 38905799 DOI: 10.1016/j.jenvman.2024.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/09/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Atrazine is a widely used herbicide in agriculture, and it has garnered significant attention because of its potential risks to the environment and human health. The extensive utilization of atrazine, alongside its persistence in water and soil, underscores the critical need to develop safe and efficient removal strategies. This comprehensive review aims to spotlight atrazine's potential impact on ecosystems and public health, particularly its enduring presence in soil, water, and plants. As a known toxic endocrine disruptor, atrazine poses environmental and health risks. The review navigates through innovative removal techniques across soil and water environments, elucidating microbial degradation, phytoremediation, and advanced methodologies such as electrokinetic-assisted phytoremediation (EKPR) and photocatalysis. The review notably emphasizes the complex process of atrazine degradation and ongoing scientific efforts to address this, recognizing its potential risks to both the environment and human health.
Collapse
Affiliation(s)
- Shijie Deng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cairu Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuhang Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shanqi Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiaying Zhao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Duo Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130132, PR China.
| |
Collapse
|
6
|
Zhai W, Guo Q, Wang N, Liu X, Liu D, Zhou Z, Wang P. Antibiotics alter the metabolic profile of metolachlor in soil-plant system by disturbing the detoxifying process and oxidative stress. BIORESOURCE TECHNOLOGY 2024; 406:130855. [PMID: 38851596 DOI: 10.1016/j.biortech.2024.130855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/10/2024]
Abstract
Antibiotics are widely detected in farmland, which may influence the environmental behavior and risks of the coexisting pesticide. In this work, the effects of antibiotics on metolachlor transformation in soil-pea and the risk of metolachlor to earthworm were assessed, and the mechanism was explored in view of detoxifying process and oxidative stress. Antibiotics affected not the degradation rate but the metabolic profile of metolachlor. In soil, the content of metabolites oxaloacetic acid (OA) and ethane sulfonic acid (ESA) was decreased and dechlorometolachlor (DCL) was increased by antibiotics. In pea, the accumulation of metolachlor, DCL and ESA was decreased, while OA was increased by antibiotics. The changed transformation of metolachlor affected the risk to earthworm according to risk quote assessment. In further research, it was found that cytochrome P450 (CYP450) enzyme was reduced by 12.3% - 30.4% in soil and 12.4% - 23.6% in pea, which might due to excessive ROS accumulation induced by antibiotics, thus affecting the transformation and metabolite profile of metolachlor in soil-plant system.
Collapse
Affiliation(s)
- Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Nan Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
7
|
Guo Q, Zhai W, Li P, Xiong Y, Li H, Liu X, Zhou Z, Li B, Wang P, Liu D. Nitrogen fertiliser-domesticated microbes change the persistence and metabolic profile of atrazine in soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133974. [PMID: 38518695 DOI: 10.1016/j.jhazmat.2024.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Pesticides and fertilisers are frequently used and may co-exist on farmlands. The overfertilisation of soil may have a profound influence on pesticide residues, but the mechanism remains unclear. The effects of chemical fertilisers on the environmental behaviour of atrazine and their underlying mechanisms were investigated. The present outcomes indicated that the degradation of atrazine was inhibited and the half-life was prolonged 6.0 and 7.6 times by urea and compound fertilisers (NPK) at 1.0 mg/g (nitrogen content), respectively. This result, which was confirmed in both sterilised and transfected soils, was attributed to the inhibitory effect of nitrogen fertilisers on soil microorganisms. The abundance of soil bacteria was inhibited by nitrogen fertilisers, and five families of potential atrazine degraders (Micrococcaceae, Rhizobiaceae, Bryobacteraceae, Chitinophagaceae, and Sphingomonadaceae) were strongly and positively (R > 0.8, sig < 0.05) related to the decreased functional genes (atzA and trzN), which inhibited hydroxylation metabolism and ultimately increased the half-life of atrazine. In addition, nitrogen fertilisers decreased the sorption and vertical migration behaviour of atrazine in sandy loam might increase the in-situ residual and ecological risk. Our findings verified the weakened atrazine degradation with nitrogen fertilisers, providing new insights into the potential risks and mechanisms of atrazine in the context of overfertilisation.
Collapse
Affiliation(s)
- Qiqi Guo
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Wangjing Zhai
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Pengxi Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Yabing Xiong
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Huimin Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Xueke Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Bingxue Li
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Peng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China
| | - Donghui Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, No. 2, West Yuanmingyuan Road, Beijing 100193, People's Republic of China.
| |
Collapse
|
8
|
Jia J, Xue P, Ma L, Li P, Xu C. Deep degradation of atrazine in water using co-immobilized laccase-1-hydroxybenzotriazole-Pd as composite biocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133779. [PMID: 38367439 DOI: 10.1016/j.jhazmat.2024.133779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
The efficient and green removal technology of refractory organics such as atrazine in water has been an important topic of research in water treatment. A novel membrane composite biocatalyst Lac-HBT-Pd/BC as prepared for the first time by co-immobilizing laccase, mediator 1-hydroxybenzotriazole (HBT) and metal Pd on functionalized bacterial cellulose (BC) to investigate the removal of atrazine and degradation of its intermediates under mild ambient conditions. It was found that atrazine could be completely degraded in 5 h by the catalysis of Lac-HBT-Pd/BC, and the removal rate of degradation intermediates from atrazine was about 85% after continuous catalysis, which achieved deep degradation of atrazine. The effect of electrochemical activity and radical stability of the membrane composite biocatalysts loaded with Pd was investigated. The possible degradation pathways were proposed by identifying and analyzing the deep degradation products of atrazine. The Lac-HBT-Pd/BC demonstrated deep degradation of atrazine and favorable reusability as well as considerable adaptability to various water qualities. This work provides an important reference for preparing new kinds of biocatalysts to degrade refractory organic pollutants in water.
Collapse
Affiliation(s)
- Juan Jia
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ping Xue
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Lan Ma
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Peng Li
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chongrui Xu
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
9
|
Jiang W, Cheng Z, Zhai W, Ma X, Gao J, Liu X, Liu D, Zhou Z, Wang P. Oxytetracycline Increases the Residual Risk of Imidacloprid in Radish ( Raphanus sativus) and Disturbs the Plant-Rhizosphere Microbiome Holobiont Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6167-6177. [PMID: 38500001 DOI: 10.1021/acs.jafc.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Antibiotics can be accidentally introduced into farmland by wastewater irrigation, and the environmental effects are still unclear. In this study, the effects of oxytetracycline on the residue of imidacloprid in soil and radishes were investigated. Besides, the rhizosphere microbiome and radish metabolome were analyzed. It showed that the persistence of imidacloprid in soil was unchanged, but the content of olefin-imidacloprid was increased by oxytetracycline. The residue of imidacloprid in radishes was increased by nearly 1.5 times, and the hazard index of imidacloprid was significantly raised by 1.5-4 times. Oxytetracycline remodeled the rhizosphere microbiome, including Actinobe, Elusimic, and Firmicutes, and influenced the metabolome of radishes. Especially, some amino acid metabolic pathways in radish were downregulated, which might be involved in imidacloprid degradation. It can be assumed that oxytetracycline increased the imidacloprid residue in radish through disturbing the plant-rhizosphere microbiome holobiont and, thus, increased the pesticide dietary risk.
Collapse
Affiliation(s)
- Wenqi Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093, China
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Zheng Cheng
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Wangjing Zhai
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Xiaoran Ma
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Jing Gao
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Xueke Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Donghui Liu
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| | - Peng Wang
- Department of Applied Chemistry, China Agricultural University, Beijing 100094, China
| |
Collapse
|
10
|
Guo J, Du Y, Yang L, Luo Y, Zhong G, Zhao HM, Liu J. Effects of microplastics on the environmental behaviors of the herbicide atrazine in soil: Dissipation, adsorption, and bioconcentration. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133085. [PMID: 38070269 DOI: 10.1016/j.jhazmat.2023.133085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
As an emerging contaminant in soil, the impact of microplastics (MPs) on the environmental behavior of other organic pollutants remains uncertain, potentially threatening the sustainability of agricultural production. In this study, the impact of two kinds of MPs on the environmental behaviors of herbicide atrazine in soil-plant system was investigated. The results showed that MPs significantly reduced the half-life 17.69 ∼ 21.86 days of atrazine in the soil, compared to the control group. Meanwhile, the introduction of MPs substantially increased atrazine adsorption. Additionally, MPs substantially enriched the diversity and functionality of soil microbiome, and the soil metabolic activity was stimulated. Regarding the crop growth, the accumulation of atrazine in maize were significantly decreased by approximately 48.4-78.5 % after exposure to MPs. In conclusion, this study reveals the impact of MPs on atrazine's environmental behaviors in soil and highlights their less effect on maize growth, providing valuable insights for managing MPs contamination in sustainable agriculture.
Collapse
Affiliation(s)
- Jiatai Guo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhang Du
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yili Luo
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
11
|
Harindintwali JD, Dou Q, Wen X, Xiang L, Fu Y, Xia L, Jia Z, Jiang X, Jiang J, Wang F. Physiological and transcriptomic changes drive robust responses in Paenarthrobacter sp. AT5 to co-exposure of sulfamethoxazole and atrazine. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132795. [PMID: 37865076 DOI: 10.1016/j.jhazmat.2023.132795] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Agricultural waterways are often contaminated with herbicide and antibiotic residues due to the widespread use of these chemicals in modern agriculture. The search for resistant bacterial strains that can adapt to and degrade these mixed contaminants is essential for effective in situ bioremediation. Herein, by integrating chemical and transcriptomic analyses, we shed light on mechanisms through which Paenarthrobacter sp. AT5, a well-known atrazine-degrading bacterial strain, can adapt to sulfamethoxazole (SMX) while degrading atrazine. When exposed to SMX and/or atrazine, strain AT5 increased the production of extracellular polymeric substances and reactive oxygen species, as well as the rate of activity of antioxidant enzymes. Atrazine and SMX, either alone or combined, increased the expression of genes involved in antioxidant responses, multidrug resistance, DNA repair, and membrane transport of lipopolysaccharides. Unlike atrazine alone, co-exposure with SMX reduced the expression of genes encoding enzymes involved in the lower part of the atrazine degradation pathway. Overall, these findings emphasize the complexity of bacterial adaptation to mixed herbicide and antibiotic residues and highlight the potential of strain AT5 in bioremediation efforts.
Collapse
Affiliation(s)
- Jean Damascene Harindintwali
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Dou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Xiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Xia
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Jülich 52428, Germany; RWTH Aachen University, Institute for Environmental Research, WorringerWeg 1, 52074 Aachen, Germany.
| |
Collapse
|
12
|
Liu H, Wang Y, Shi X. Co-existing antibiotics alter the enantioselective dissipation characteristics of zoxamide and drive combined impact on soil microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118340. [PMID: 37336018 DOI: 10.1016/j.jenvman.2023.118340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/21/2023]
Abstract
Co-existence of antibiotics (ABX) in soil may expand the environmental harm of pesticide pollution. Our study investigated the combined effects of five antibiotics chlortetracycline (CTC), oxytetracycline (OTC), tetracycline (TC), sulfamethoxazole (SMX), enrofloxacin (ENR) on enantioselective fate of zoxamide (ZXM) and soil health. The results showed that S-(+)-ZXM preferentially dissipated in soil. ABX prolonged dissipation half-life and reduced enantioselectivity of ZXM. Soil was detected to be more acidic after long-term treatment of ZXM and ABX. Lowest soil available N, P, K were found in ZXM + SMX, ZXM + OTC and ZXM + SMX groups at 80 days, respectively. ABX had demonstrated effective promotion of catalase (S-CAT), urease (S-UE) and negative impact on dehydrogenase (S-DHA), sucrase (S-SC) activities. Bacteria Lysobacter, Sphingomonas and fungus Mortierella were identified as the most dominant genera, which possessed as potential microbial resources for removal of composite pollution from ZXM and ABX. SMX and TC, SMX, ENR, respectively, contributed to the alteration of bacteria and fungi community abundance. Soil acidity, available N and enzyme activity showed stronger correlations with bacteria and fungi compared to other environmental factors. Our findings highlighted the interactions between ZXM and ABX from the perspective of soil microenvironment changes. Moreover, a theoretical basis for the mechanism was actively provided.
Collapse
Affiliation(s)
- Hui Liu
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China.
| | - Yue Wang
- College of Plant Protection, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyu Shi
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
13
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
14
|
Xu F, Liu M, Zhang S, Chen T, Sun J, Wu W, Zhao Z, Zhang H, Gong Y, Jiang J, Wang H, Kong Q. Treatment of atrazine-containing wastewater by algae-bacteria consortia: Signal transmission and metabolic mechanism. CHEMOSPHERE 2023:139207. [PMID: 37364639 DOI: 10.1016/j.chemosphere.2023.139207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023]
Abstract
Atrazine is a toxic endocrine disruptor. Biological treatment methods are considered to be effective. In the present study, a modified version of the algae-bacteria consortia (ABC) was established and a control was simultaneously set up to investigate the synergistic relationship between bacteria and algae and the mechanism by which atrazine is metabolized by those microorganisms. The total nitrogen (TN) removal efficiency of the ABC reached 89.24% and the atrazine concentration was reduced to below the level recommended by the Environment Protection Agency (EPA) regulatory standards within 25 days. The protein signal released from the extracellular polymeric substances (EPS) secreted by the microorganisms triggered the resistance mechanism of the algae, and the conversion of humic acid to fulvic acid and electron transfer constituted the synergistic mechanism between the bacteria and algae. The mechanism by which atrazine is metabolized by the ABC mainly consists of hydrogen bonding, H-pi interactions, and cation exchange with atzA for hydrolysis, followed by a reaction with atzC for decomposition to non-toxic cyanuric acid. Proteobacteria was the dominant phylum for bacterial community evolution under atrazine stress, and the analysis revealed that the removal of atrazine within the ABC was mainly dependent on the proportion of Proteobacteria and the expression of degradation genes (p < 0.01). EPS played a major role in the removal of atrazine within the single bacteria group (p < 0.01).
Collapse
Affiliation(s)
- Fei Xu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Mengyu Liu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Tao Chen
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Jingyao Sun
- The Natural Resources and Planning Bureau of Weishan, Jining, 273100, PR China
| | - Wenjie Wu
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Yanyan Gong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Jinpeng Jiang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Hao Wang
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, PR China; Dongying Institute, Shandong Normal University, Dongying, Shandong, 257092, PR China.
| |
Collapse
|
15
|
Zhai W, Jiang W, Guo Q, Wang Z, Liu D, Zhou Z, Wang P. Existence of antibiotic pollutant in agricultural soil: Exploring the correlation between microbiome and pea yield. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162152. [PMID: 36775170 DOI: 10.1016/j.scitotenv.2023.162152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Due to sewage irrigation, manure fertilizer application or other agricultural activities, antibiotics have been introduced into farmland as an emerging contaminant, existing with other agrochemicals. However, the potential influences of antibiotics on the efficiency of agrochemicals and crops health are still unclear. In this work, the effect of antibiotics on fertilization efficiency and pea yield was evaluated, and the mechanism was explored in view of soil microbiome. Nitrogen utilization and pea yield were decreased by antibiotics. In specific, the weight of seeds decreased 9.5 % by 5 mg/kg antibiotics and decreased 25.1 % by 50 mg/kg antibiotics. For N nutrient in pea, antibiotics resulted in 62.5 %-63.7 % decrease in amino acid content and 8.3 %-35.3 % decrease in inorganic-N content. Further research showed that antibiotics interfered with N cycle in soil, inhibiting urea decomposition and denitrification process by reducing function genes ureC, nirK and norB in soil, thus decreasing N availability. Meanwhile, antibiotics destroyed the enzyme function in N assimilation. This work evaluated the environmental risk of antibiotics from fertilization efficiency and N utilization in crop. Antibiotics could not only affect N cycle, limiting the decomposition of N fertilizer, but also affect N utilization in plants, thus affecting the yield and even the quality of leguminous crops.
Collapse
Affiliation(s)
- Wangjing Zhai
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Wenqi Jiang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Qiqi Guo
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhixuan Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Donghui Liu
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China
| | - Peng Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, No. 2 West Yuanmingyuan Road, Beijing 100193, PR China.
| |
Collapse
|
16
|
Chang J, Fang W, Chen L, Zhang P, Zhang G, Zhang H, Liang J, Wang Q, Ma W. Toxicological effects, environmental behaviors and remediation technologies of herbicide atrazine in soil and sediment: A comprehensive review. CHEMOSPHERE 2022; 307:136006. [PMID: 35973488 DOI: 10.1016/j.chemosphere.2022.136006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Atrazine has become one of the most popular applied triazine herbicides in the world due to its high herbicidal efficiency and low price. With its large-dosage and long-term use on a global scale, atrazine can cause widespread and persistent contamination of soil and sediment. This review systematically evaluates the toxicological effects, environmental risks, environmental behaviors (adsorption, transport and transformation, and bioaccumulation) of atrazine, and the remediation technologies of atrazine-contaminated soil and sediment. For the adsorption behavior of atrazine on soil and sediment, the organic matter content plays an extremely important role in the adsorption process. Various models and equations such as the multi-media fugacity model and solute transport model are used to analyze the migration and transformation process of atrazine in soil and sediment. It is worth noting that certain transformation products of atrazine in the environment even have stronger toxicity and mobility than its parent. Among various remediation technologies, the combination of microbial remediation and phytoremediation for atrazine-contaminated soil and sediment has wide application prospects. Although other remediation technologies such as advanced oxidation processes (AOPs) can also efficiently remove atrazine from soil, some potential problems still need to be further clarified. Finally, some related challenges and prospects are proposed.
Collapse
Affiliation(s)
- Jianning Chang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Wei Fang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Le Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Panyue Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin, 300130, China.
| | - Haibo Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Jinsong Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Qingyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Weifang Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
17
|
Jiang W, Zhai W, Liu X, Wang F, Liu D, Yu X, Wang P. Co-exposure of Monensin Increased the Risks of Atrazine to Earthworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7883-7894. [PMID: 35593893 DOI: 10.1021/acs.est.2c00226] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibiotics could enter farmlands through sewage irrigation or manure application, causing combined pollution with pesticides. Antibiotics may affect the environmental fate of pesticides and even increase their bioavailability. In this study, the influence of monensin on the degradation, toxicity, and availability of atrazine in soil-earthworm microcosms was investigated. Monensin inhibited the degradation of atrazine, changed the metabolite patterns in soil, and increased the bioavailability of atrazine in earthworms. Atrazine and monensin had a significant synergistic effect on earthworms in the acute toxic test. In long-term toxicity tests, co-exposure of atrazine and monensin also led to worse effects on earthworms including oxidative stress, energy metabolism disruption, and cocoon production compared to single exposure. The expression of tight junction proteins was down-regulated significantly by monensin, indicating that the intestinal barrier of earthworms was weakened, possibly causing the increased bioavailability of atrazine. The expressions of heat shock protein 70 (Hsp70) and reproductive and ontogenetic factors (ANN, TCTP) were all downregulated in binary exposure, indicating that the resilience and cocoon production of earthworms were further weakened under combined pollution. Monensin disturbed the energy metabolism and weakened the intestinal barrier of earthworms. These results showed that monensin increased the risks of atrazine in agricultural areas.
Collapse
Affiliation(s)
- Wenqi Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
- Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Wangjing Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Xueke Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Donghui Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| | - Xiangyang Yu
- Institute of Agricultural Resources & Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Peng Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
18
|
Luo S, Ren L, Wu W, Chen Y, Li G, Zhang W, Wei T, Liang YQ, Zhang D, Wang X, Zhen Z, Lin Z. Impacts of earthworm casts on atrazine catabolism and bacterial community structure in laterite soil. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127778. [PMID: 34823960 DOI: 10.1016/j.jhazmat.2021.127778] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Atrazine accumulation in agricultural soil is prone to cause serious environmental problems and pose risks to human health. Vermicomposting is an eco-friendly approach to accelerating atrazine biodegradation, but the roles of earthworm cast in the accelerated atrazine removal remains unclear. This work aimed to investigate the roles of earthworm cast in promoting atrazine degradation performance by comprehensively exploring the change in atrazine metabolites and bacterial communities. Our results showed that earthworm cast amendment significantly increased soil pH, organic matters, humic acid, fulvic acid and humin, and achieved a significantly higher atrazine removal efficiency. Earthworm cast addition also remarkably changed soil microbial communities by enriching potential soil atrazine degraders (Pseudomonadaceae, Streptomycetaceae, and Thermomonosporaceae) and introducing cast microbial degraders (Saccharimonadaceae). Particularly, earthworm casts increased the production of metabolites deethylatrazine and deisopropylatrazine, but not hydroxyatrazine. Some bacterial taxa (Gaiellaceaea and Micromonosporaceae) and humus (humic acid, fulvic acid and humin) were strongly correlated with atrazine metabolism into deisopropylatrazine and deethylatrazine, whereas hydroxyatrazine production was benefited by higher pH. Our findings verified the accelerated atrazine degradation with earthworm cast supplement, providing new insights into the influential factors on atrazine bioremediation in vermicomposting.
Collapse
Affiliation(s)
- Shuwen Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yijie Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Gaoyang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Weijian Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Ting Wei
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Yan-Qiu Liang
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhen Zhen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China.
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, PR China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518114, PR China.
| |
Collapse
|