1
|
Peng W, Lu J, Kuang J, Tang R, Guan F, Xie K, Zhou L, Yuan Y. Enhancement of hydrogenotrophic methanogenesis for methane production by nano zero-valent iron in soils. ENVIRONMENTAL RESEARCH 2024; 247:118232. [PMID: 38262517 DOI: 10.1016/j.envres.2024.118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Nanoscale zero-valent iron (nZVI) is attracting increasing attention as the most commonly used environmental remediation material. However, given the high surface area and strong reducing capabilities of nZVI, there is a lack of understanding regarding its effects on the complex anaerobic methane production process in flooded soils. To elucidate the mechanism of CH4 production in soil exposed to nZVI, paddy soil was collected and subjected to anaerobic culture under continuous flooding conditions, with various dosages of nZVI applied. The results showed that the introduction of nZVI into anaerobic flooded rice paddy systems promoted microbial utilization of acetate and carbon dioxide as carbon sources for methane production, ultimately leading to increased methane production. Following the introduction of nZVI into the soil, there was a rapid increase in hydrogen levels in the headspace, surpassing that of the control group. The hydrogen levels in both the experimental and control groups were depleted by the 29th day of culture. These findings suggest that nZVI exposure facilitates the enrichment of hydrogenotrophic methanogens, providing them with a favorable environment for growth. Additionally, it affected soil physicochemical properties by increasing pH and electrical conductivity. The metagenomic analysis further indicates that under exposure to nZVI, hydrogenotrophic methanogens, particularly Methanobacteriaceae and Methanocellaceae, were enriched. The relative abundance of genes such as mcrA and mcrB associated with methane production was increased. This study provides important theoretical insights into the response of key microbes, functional genes, and methane production pathways to nZVI during anaerobic methane production in rice paddy soils, offering fundamental insights into the long-term fate and risks associated with the introduction of nZVI into soils.
Collapse
Affiliation(s)
- Weijie Peng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jinrong Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiajie Kuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fengyi Guan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kunting Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhang X, Huang T, Wu D. Enhanced anaerobic digestion of human feces by ferrous hydroxyl complex (FHC): Stress factors alleviation and microbial resistance improvement. CHEMOSPHERE 2024; 350:141041. [PMID: 38151064 DOI: 10.1016/j.chemosphere.2023.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Anaerobic digestion (AD) offers a reliable strategy for resource recovery from source-separated human feces (HF), but is limited by a disproportionate carbon/nitrogen (C/N) ratio. Ferrous hydroxyl complex (FHC) was first introduced into the HF-AD system to mediate methanogenesis. Mono-digestion of undiluted HF was inhibited by high levels of volatile fatty acids (VFAs), ammonia, and hydrogen sulfide (H2S). FHC addition at optimum dosage (500-1000 mg/L) increased the cumulative methane (CH4) yield by 22.7%, enhanced the peak value of daily CH4 production by 60.5%, and shortened the lag phase by 24.7%. H2S concentration in biogas was also greatly decreased by FHC via precipitation. FHC mainly facilitated the hydrolysis, acidification, and methanogenesis processes. The production and transformation of VFAs were optimized in the presence of FHC, thus relieving acid stress. FHC elevated the activities of alkaline protease, cellulase, and acetate kinase by 32.3%, 18.2%, and 30.3%, respectively. Microbial analysis revealed that hydrogenotrophic methanogens prevailed in mono-digestion at high HF loading but were weakened after FHC addition. FHC also enriched Methanosarcina, thereby expanding the methanogenesis pathway and improving the resistance to ammonia stress. This work would contribute to improving the methanogenic performance and resource utilization for HF anaerobic digestion.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Tao Huang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Yañez Palma R, Córdova-Lizama AJ, Zepeda Pedreguera A, Ruiz Espinoza JE. Influence of zero-valent iron nanoparticles on anaerobic digestion of swine manure: effects on methane yield. ENVIRONMENTAL TECHNOLOGY 2024:1-10. [PMID: 38252802 DOI: 10.1080/09593330.2024.2306798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
This study evaluated the effect of zero-valent iron nanoparticles (NZVI) on the anaerobic digestion of swine manure. A wide range of doses of NZVI was evaluated (5, 10, 15, 20, 25, 50, and 100 mgFe°/gVS). The maximum methane yield of 0.4506 L/gVSremoved was obtained with the concentration of 10 mgFe°/gVS representing an increase of 58.99% than the control system with 0.2834 L/gVSremoved, indicating that Fe° improves the methanogenic activity. However, when using doses greater than 20 mgFe°/gVS, there were decreases in the methane yield of 34.4-47.98%. Also, to observe the effect of NZVI in anaerobes was evaluated the activity in the electron transport system (ETS), where the control reactor showed an activity of 31.91 μg INTred/gVS•h, while in reactors with NZVI showed values of 39.48 μg INTred/gVS•h (10 Fe°mg/gVS), observing a stimulation of Fe° in microbial activity. However, the dose of 100 mgFe°/gVS showed the greatest decrease in methane yield (0.1474 L/gVSremoved) and a reduction in ETS was observed by 8.5% compared to the control. The effect on the composition of the volatile fatty acids was observed, where the control system obtained a maximum production of acetic acid of 639 mg/L, which was exceeded with the dose of 10 mg Fe°/gVS by 215% and a decrease of 41.15% with the inhibitory concentration of 100 mg Fe°/gVS. As a result, higher doses of NZVI affect the metabolic activity of anaerobes as well as the acetoclastic pathway causing a decrease in the methane production.
Collapse
|
4
|
Yan X, Chen L, Peng P, Yang F, Dai L, Zhang H, Zhao F. Dual role of birnessite on the modulation of acid production and reinforcement of interspecific electron transfer in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167842. [PMID: 37848138 DOI: 10.1016/j.scitotenv.2023.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Achieving efficient anaerobic digestion of highly loaded substrates is one of the most challenging problems in the field of waste resourcing. Here, the addition of birnessite (2.0 g/L) to kitchen wastewater increased the acetate and final methane yields by 40.53 and 99.18 %, respectively, while reducing the yields of propionate and butyrate by 38.17 and 48.86 %, respectively. There were two main pathways for birnessite to enhance anaerobic digestion, one of which is to act as an electron acceptor, by inducing an alteration in the ratio of reduced-state coenzyme I in the microorganism, allowing the acid production process to proceed towards deeper oxidation. Another pathway enhances the interspecific electron transfer between bacteria and archaea and improves methane yield by optimizing the metabolic relationship. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional predictions suggest that the extracellular electron transport pathway of the microorganism is enhanced with the addition of birnessite and that its intracellular metabolic pathway is biased towards the nicotinamide adenine dinucleotide (NADH) generation pathway. This work demonstrated that anaerobic digestion facilitation by metallic minerals was not monolithic; that is, different properties of the minerals were employed to intensify the different stages of anaerobic digestion and obtain an amplification cascade.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Liping Dai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Han Zhang
- Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
5
|
Alam M, Dhar BR. Boosting thermophilic anaerobic digestion with conductive materials: Current outlook and future prospects. CHEMOSPHERE 2023; 343:140175. [PMID: 37714472 DOI: 10.1016/j.chemosphere.2023.140175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Thermophilic anaerobic digestion (TAD) can provide superior process kinetics, higher methane yields, and more pathogen destruction than mesophilic anaerobic digestion (MAD). However, the broader application of TAD is still very limited, mainly due to process instabilities such as the accumulation of volatile fatty acids and ammonia inhibition in the digesters. An emerging technique to overcome the process disturbances in TAD and enhance the methane production rate is to add conductive materials (CMs) to the digester. Recent studies have revealed that CMs can promote direct interspecies electron transfer (DIET) among the microbial community, increasing the TAD performance. CMs exhibited a high potential for alleviating the accumulation of volatile fatty acids and inhibition caused by high ammonia levels. However, the types, properties, sources, and dosage of CMs can influence the process outcomes significantly, along with other process parameters such as the organic loading rates and the type of feedstocks. Therefore, it is imperative to critically review the recent research to understand the impacts of using different CMs in TAD. This review paper discusses the types and properties of CMs applied in TAD and the mechanisms of how they influence methanogenesis, digester start-up time, process disturbances, microbial community, and biogas desulfurization. The engineering challenges for industrial-scale applications and environmental risks were also discussed. Finally, critical research gaps have been identified to provide a framework for future research.
Collapse
Affiliation(s)
- Monisha Alam
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, 116 Street NW, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
6
|
Li X, Ma R, Zhu L, Zhang X, Lin C, Tang Y, Huang Z, Wang C. Effects of zero-valent iron and magnetite on ethanol and lactic acid production in the anaerobic fermentation of food waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118928. [PMID: 37683382 DOI: 10.1016/j.jenvman.2023.118928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
With the increasing global concern about food waste management, finding efficient ways to convert it into valuable products is crucial. The addition of zero-valent iron and magnetite to enhance ethanol and lactic acid fermentation yields from food waste emerges as a potential solution. This study compared the effects of 50-nm and 500-nm particle sizes of zero-valent iron and magnetite on ethanol and lactic acid fermentation and analyzed the mechanism of action from the perspective of organic matter material transformation and microbiology. The experimental results showed that 500-nm particle size magnetite and zero-valent iron could promote the hydrolysis of polysaccharides and proteins. 500-nm particle size magnetite could increase ethanol production (1.4-fold of the control), while 500-nm particle size zero-valent iron could increase lactic acid production (2.8-fold of the control). Metagenomic analysis showed that 500-nm magnetite increased the abundance of genes for amino acid metabolic functions, while 500-nm zero-valent iron increased the abundance of glycoside hydrolase genes (1.3-fold of the control). It's worth noting that while these findings are promising, they are based on controlled experimental conditions, and real-world applications may vary. his research not only offers a novel approach to augmenting anaerobic fermentation yields but also contributes to sustainable food waste management practices, potentially reducing environmental impacts and creating valuable products.
Collapse
Affiliation(s)
- Xiaotian Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rong Ma
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Langping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xiaozhi Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Changquan Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Youqian Tang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhuoshen Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Chunming Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
7
|
Alimohammadi M, Demirer GN. Petroleum coke supplementation for enhanced biogas production and phosphate removal under mesophilic conditions. Biotechnol Prog 2023; 39:e3385. [PMID: 37642144 DOI: 10.1002/btpr.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
The use of carbon-based conductive materials has been shown to lead to an increase in biogas and methane yields during anaerobic digestion (AD). The effect of these additives on AD using synthetic substrates has been extensively studied, yet their significance for wastewater sludge digestion has not been adequately investigated. Therefore, the aim of this research was to optimize the concentration of petroleum coke (PC) that is a waste by-product of oil refineries, for the anaerobic digestion of wastewater sludge and investigation of phosphate removal in the AD process in the mesophilic temperature range. According to the results of the experiments, supplementing reactors with PC could significantly improve biogas and methane production. Supplementation of reactors with 1.5 g/L PC led to 23.40 ± 0.26% and 42.55 ± 3.97% increase in biogas production and methane generation, respectively. Moreover, the average volatile solids (VS), phosphate, and chemical oxygen demand (COD) removals were 43.43 ± 0.73, 46.74 ± 0.77%, and 60.40 ± 0.38%, respectively.
Collapse
Affiliation(s)
- Mahsa Alimohammadi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA
| | - Goksel N Demirer
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, Michigan, USA
- Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
8
|
Feng L, Gao Z, Hu T, He S, Liu Y, Jiang J, Zhao Q, Wei L. A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance. ENVIRONMENTAL RESEARCH 2023; 234:116589. [PMID: 37423354 DOI: 10.1016/j.envres.2023.116589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Strengthening direct interspecies electron transfer (DIET), via adding conductive materials, is regarded as an effective way for improving methane productivity of anaerobic digestion (AD). Therein, the supplementation of combined materials (composition of biochar and iron-based materials) has attracted increasing attention in recent years, because of their advantages of promoting organics reduction and accelerating biomass activity. However, as far as we known, there is no study comprehensively summarizing the application of this kind combined materials. Here, the combined methods of biochar and iron-based materials in AD system were introduced, and then the overall performance, potential mechanisms, and microbial contribution were summarized. Furthermore, a comparation of the combinated materials and single material (biochar, zero valent iron, or magnetite) in methane production was also evaluated to highlight the functions of combined materials. Based on these, the challenges and perspectives were proposed to point the development direction of combined materials utilization in AD field, which was hoped to provide a deep insight in engineering application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Liu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
9
|
Yan M, Su Z, Ding J, Zhu T, Liu Y. The enhancement of tetracycline degradation through zero-valent iron combined with microorganisms during wastewater treatment: Mechanism and contribution. ENVIRONMENTAL RESEARCH 2023; 226:115666. [PMID: 36906267 DOI: 10.1016/j.envres.2023.115666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Ttetracycline (TC) posed potential threats to human health and ecological environment due to its mutagenicity, deformity and strong toxicity. However, few researches focused on the mechanism and their contribution of TC removal through microorganisms combined with zero-valent iron (ZVI) in wastewater treatment field. In this study, three groups of anaerobic reactors, added with ZVI, activated sludge (AS), ZVI coupled with activated sludge (ZVI + AS), respectively, were performed to explore the mechanism and the contribution of ZVI combined with microorganisms on TC removal. The results showed that the additive effects of ZVI and microorganisms improved TC removal. In ZVI + AS reactor, TC was mainly removed by the ZVI adsorption, chemical reduction and microbial adsorption. At the initial period of the reaction, microorganisms played a major role in the ZVI + AS reactors, contributing 80%. The fraction of ZVI adsorption and chemical reduction were 15.5% and 4.5%, respectively. Afterwards, the microbial adsorption gradually reached saturation and the chemical reduction as well as the adsorption of ZVI did their stuff. However, iron-encrustation covered on the adsorption sites of microorganisms and the inhibitory effect of TC on biological activity led to the decreasing TC removal in the ZVI + AS reactor after 23 h 10 min. The optimum reaction time for TC removal in ZVI coupling microbial system was about 70 min. In 1 h 10 min, the TC removal efficiencies were 15%, 63% and 75% in ZVI, AS and ZVI + AS reactors, respectively. Finally, in order to relieve the influence of TC on activated sludge and the iron cladding, a two-stage process was proposed to be explored later in the future.
Collapse
Affiliation(s)
- Min Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zhongxian Su
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiazeng Ding
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
10
|
Nnorom MA, Saroj D, Avery L, Hough R, Guo B. A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130628. [PMID: 36586329 DOI: 10.1016/j.jhazmat.2022.130628] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.
Collapse
Affiliation(s)
- Mac-Anthony Nnorom
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Devendra Saroj
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Lisa Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Rupert Hough
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, United Kingdom
| | - Bing Guo
- Centre for Environmental Health and Engineering (CEHE), Department of Civil and Environmental Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
11
|
Feng L, He S, Gao Z, Zhao W, Jiang J, Zhao Q, Wei L. Mechanisms, performance, and the impact on microbial structure of direct interspecies electron transfer for enhancing anaerobic digestion-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160813. [PMID: 36502975 DOI: 10.1016/j.scitotenv.2022.160813] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Direct interspecies electron transfer (DIET) has been received tremendous attention, recently, due to the advantages of accelerating methane production via organics reduction during anaerobic digestion (AD) process. DIET-based syntrophic relationships not only occurred with the existence of pili and some proteins in the microorganism, but also can be conducted by conductive materials. Therefore, more researches into understanding and strengthening DIET-based syntrophy have been conducted with the aim of improving methanogenesis kinetics and further enhance methane productivity in AD systems. This study summarized the mechanisms, application and microbial structures of typical conductive materials (carbon-based materials and iron-based materials) during AD reactors operation. Meanwhile, detail analysis of studies on DIET (from substrates, dosage and effectiveness) via conductive materials was also presented in the study. Moreover, the challenges of applying conductive materials in boosting methane production were also proposed, which was supposed to provide a deep insight in DIET for full scale application.
Collapse
Affiliation(s)
- Likui Feng
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shufei He
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhelu Gao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
12
|
Xu N, Hu C, Zhu Z, Wang W, Peng H, Liu B. Establishment of a novel system for photothermal removal of ampicillin under near-infrared irradiation: Persulfate activation, mechanism, pathways and bio-toxicology. J Colloid Interface Sci 2023; 640:472-486. [PMID: 36871512 DOI: 10.1016/j.jcis.2023.02.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
One of the most effective ways to address the problems of low solar spectrum utilization in photocatalysis and the high cost of persulfate activation technology is to create a cost-effective synergistic photothermal persulfate system. In this work, a brand-new composite catalyst called ZnFe2O4/Fe3O4@MWCNTs (ZFC) was developed to activate PDS (K2S2O8) from the aforementioned basis. ZFC's surface temperature could unbelievably reach 120.6 °C in 150 s together with the degrading synergistic system solution temperature could reach 48 °C under near-infrared light (NIR) in 30 min, thus accelerating the ZFC/PDS decolorization rate for reactive blue KN-R (150 mg/L) to 95% in 60 min. Furthermore, the ZFC's ferromagnetism bore it with good cycling performance, allowing it to maintain an 85% decolorization rate even after 5 cycles with OH·, SO4-·, 1O2, and O2-· dominating the degrading process. In the meantime, the DFT calculations of the kinetic constants for the entire process of S2O82- adsorption on Fe3O4 in dye degradation solution were in agreement with the outcomes of the experimental pseudo-first-order kinetic fitting. By analyzing the particular degradation route of ampicillin (50 mg/L) and the possible environmental impact of the intermediate using LC-MS and the toxicological analysis software (T.E.S.T.), respectively, it was shown that this system might function as an environmentally friendly method for removing antibiotics. This work may provide some productive research lines for the creation of a photothermal persulfate synergistic system and suggest fresh approaches to water treatment technology.
Collapse
Affiliation(s)
- Nan Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Chunyan Hu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhijia Zhu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Wei Wang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Department of Textile &Garment Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Huitao Peng
- ANTA (China) Co. Ltd., Jinjiang 362212, China.
| | - Baojiang Liu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry, Chemical Engineering, Innovation Center for Textile Science and Technology, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|
13
|
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022; 10:2142. [PMID: 36363734 PMCID: PMC9695802 DOI: 10.3390/microorganisms10112142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.
Collapse
Affiliation(s)
- Ana R. Castro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Gilberto Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Andreia F. Salvador
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| | - Ana J. Cavaleiro
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4704-553 Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Wang X, Wang P, Meng X, Ren L. Performance and metagenomics analysis of anaerobic digestion of food waste with adding biochar supported nano zero-valent iron under mesophilic and thermophilic condition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153244. [PMID: 35065103 DOI: 10.1016/j.scitotenv.2022.153244] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
A large amount of food waste (FW) brings environmental pollution and sanitation problems. Anaerobic digestion (AD) is an effective technology to treat FW and generate biogas energy. This study investigated the effect of biochar supported nano zero-valent iron (BC-nZVI) on AD performance of FW. Results showed that the cumulative methane yield (CMY) increased by 21.52%-54.90% and the lag time decreased significantly with BC-nZVI. Under mesophilic and thermophilic condition, the peak of CMY was achieved at 178.82 ± 5.27 mL/g VS and 193.01 ± 6.81 mL/g VS with 5 g/L BC-nZVI, respectively. Besides, BC-nZVI stimulated hydrolysis process and reduced the inhibition of NH4+-N and volatile fatty acids accumulation, and it could improve the system stability. Structural equation model analysis indicated that digestion time, BC-nZVI, NH4+-N, temperature and total volatile fatty acid had significant effects on CMY, explaining 92.20% of its total variation. The metagenomic analysis of key microorganisms and related metabolism pathways involved in AD system was further investigated. The results suggested that BC-nZVI contributed to strengthen methanogenesis through enriching the various predominant methanogenic pathways and activating most enzymes related to methane metabolism. BC-nZVI could improve the AD system function and provided a better AD performance by shifting the microbial communities and altering functional genes. This study provided a theoretical basis for BC-nZVI applications and improvements in AD process of FW.
Collapse
Affiliation(s)
- Xinzi Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xingyao Meng
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Deng Y, Xia J, Zhao R, Xu J, Liu X. Iron-coated biochar alleviates acid accumulation and improves methane production under ammonium enrichment conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151154. [PMID: 34688755 DOI: 10.1016/j.scitotenv.2021.151154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The high stress of ammonia-nitrogen in swine manure anaerobic digestion (SMAD) negatively impacts methane yields. Here, the effects of iron-coated biochar in SMAD under different ammonium stresses were investigated. Iron-coated biochar prepared at 500 °C (500BC@Fe) had a large specific surface area (123.2 cm3/g) and an acceptable ammonium adsorption capacity (5.25 mg/g). In SMAD, 500BC@Fe addition effectively broke the thermodynamic barrier from butyrate to acetate and accelerated propionate degradation. It acted as a temporary electron acceptor to promote direct interspecies electron transfer in the initial SMAD stage. As the ammonium stress sharply increased from 400 mg/L to 4000 mg/L, the methanogenesis efficiency decreased from 94.3% to 94.0% and the biochemical methane potential decreased from 189.7 NmL/g VS to 176.1 NmL/g VS. A kinetic analysis showed that the predictive value of SMAD may be calculated more accurately using the Logistic function than the Modified Gompertz equation. This study provides basic theoretical data and important kinetic parameters for the intensive production of iron-coated biochar and its large-scale application in SMAD.
Collapse
Affiliation(s)
- Yuanfang Deng
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China
| | - Rui Zhao
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
16
|
Zhu R, He L, Li Q, Huang T, Gao M, Jiang Q, Liu J, Cai A, Shi D, Gu L, He Q. Mechanism study of improving anaerobic co-digestion performance of waste activated sludge and food waste by Fe 3O 4. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 300:113745. [PMID: 34547575 DOI: 10.1016/j.jenvman.2021.113745] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
A large amount of waste activated sludge (WAS) and food waste (FW) are produced every year in China. Anaerobic co-digestion is considered to be an effective way to solve this problem. This study applied FW/WAS mixture as co-substrate to create different digestive environment, aiming to understand the mechanism of Fe3O4 particles in promoting AD performance. The results showed that the addition of Fe3O4 presented various performances when facing different digestive acidification stress brought by different mixing ratios of WAS and FW. Methanogenic pathways and microbial communities varied with substrates' properties. For group A (WAS mono-digestion), the acetoclastic methanogens dominated, 20 mg/g VS (according to the iron element) Fe3O4 could promote methane production, while 200 mg/g VS Fe3O4 would inhibit microbial activity. The promoted methane production by Fe3O4 was attributable to the promotion of sludge hydrolysis. For group B (WAS: FW = 1:0.5, based on VS addition, similarly hereinafter), Fe3O4 triggered direct interspecific electron transfer (DIET) between bacteria and methanogens. For group C (WAS: FW = 1:1), the hydrogenotrophic methanogens dominated, bacteria excreted more non-conductive polysaccharides in EPS to resist unfavorable environment, thereby it prevented their contact with Fe3O4 particles. So, it was difficult for Fe3O4 to trigger DIET and promote the digestive performance of batch experiments in such condition.
Collapse
Affiliation(s)
- Ruilin Zhu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Linyan He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Qianyi Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - TingXuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Meng Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Qin Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Junyan Liu
- Chongqing Three Gorges Water Drainage (Wulong) Co., Ltd, 130 Jianshe West Road, Wulong County, Chongqing, 408500, PR China
| | - Anrong Cai
- Chongqing Yuxi Water Co., Ltd, No. 36, Fenghuang Avenue, Yongchuan District, Chongqing, 402160, PR China
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China.
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing, 400045, PR China
| |
Collapse
|
17
|
Guo Q, Ji J, Ling Z, Zhang K, Xu R, Leng X, Mao C, Zhou T, Wang H, Liu P, Li X. Bioaugmentation improves the anaerobic co-digestion of cadmium-containing plant residues and cow manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117885. [PMID: 34388552 DOI: 10.1016/j.envpol.2021.117885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation causes a large quantity of phytoremediation residues rich in heavy metals (HMs). This kind of plant residue can be used as a substrate for anaerobic digestion (AD) to reduce the content of HM-containing biomass, but high concentrations of HMs will inhibit the digestion efficiency and reduce the conversion efficiency of plant residues. Bioaugmentation may be an effective method to improve the degradation efficiency and methane yield of plant residues rich in HMs. In this study, a cellulose-degrading anaerobic bacteria Paracoccus sp. Termed strain LZ-G1 was isolated from cow dung, which can degrade cellulose and simultaneously adsorb Cd2+. The Cd2+ (10 mg/L)-adsorbtion efficiency and cellulose (463.12 g/kg)-degradation rate were 65.1 % and 60.59 %, respectively. In addition, using the strain LZ-G1 bioaugmented Cd2+-containing plant residues and cow manure mixed AD system, the system's biogas and methane production significantly increased (98.97 % and 142.03 %, respectively). During the AD process, the strain LZ-G1 was successfully colonized in the digestion system. Furthermore, the microbial community analysis revealed that LZ-G1 bioaugmentation alleviates the toxicity of free Cd2+ to the microbial community in the AD system, regulates and restores the archaea genus dominant in the methanogenesis stage, and restores the relative abundance of dominant bacteria associated with biomass hydrolysis. The restoration of the microbial community increased the biogas yield and methane production rate. Thus, bioaugmentation provides an easy and a feasible method for the actual on-site treatment of HM-rich phytoremediation residues.
Collapse
Affiliation(s)
- Qian Guo
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Jing Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Zhenmin Ling
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Kai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Rong Xu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiaoyun Leng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China
| | - Chunlan Mao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Tuoyu Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Haoyang Wang
- McMaster University, 303-2, 1100 Main Street West, Hamilton, Ontario, Canada
| | - Pu Liu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China
| | - Xiangkai Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, 730020, PR China.
| |
Collapse
|
18
|
Zhang M, Wang Y. Impact of biochar supported nano zero-valent iron on anaerobic co-digestion of sewage sludge and food waste: Methane production, performance stability and microbial community structure. BIORESOURCE TECHNOLOGY 2021; 340:125715. [PMID: 34391191 DOI: 10.1016/j.biortech.2021.125715] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
This work evaluates the effects of biochar supported nano zero-valent iron (nZVI-BC) on anaerobic co-digestion (co-AD) of sewage sludge and food waste. Kinetic model analysis suggested that nZVI-BC addition significantly increased the methane production potential (R0) and daily methane production rate (Gm) by 42.87% and 49.87%, while the raw biochar only increased R0 and Gm by 5.11% and 6.73%, respectively. Supplementation of higher concentrations of nZVI-BC was not preferable as inhibition of methane productivity was appeared. nZVI-BC addition remarkably improved organics degradation efficiency, as the reduction rate of TCOD, VSS and TSS were increased by 34.93%, 11.44% and 13.96%, respectively. The microbial analysis demonstrated that nZVI-BC facilitated the growth of hydrogentrophic methanogens, while acetotrophic methanogens which can only use acetate as electron donor were restrained. The study demonstrated nZVI-BC can effectively strengthen methanogenesis mainly through the enhancement of DIET between bacteria and methanogens, and the enrichment of hydrogenotrophic methanogens.
Collapse
Affiliation(s)
- Min Zhang
- Department of Landscape Architecture, Center for Ecophronetic Practice Research, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
| | - Yuncai Wang
- Department of Landscape Architecture, Center for Ecophronetic Practice Research, College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China.
| |
Collapse
|
19
|
Kong X, Niu J, Zhang W, Liu J, Yuan J, Li H, Yue X. Mini art review for zero valent iron application in anaerobic digestion and technical bottlenecks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148415. [PMID: 34412392 DOI: 10.1016/j.scitotenv.2021.148415] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) has been used extensively to control environmental pollution owing to its strong reducibility and low cost. Herein, we evaluate the impact of ZVI (iron scrap and ZVI powder with different scales) on anaerobic digestion (AD) reactor performance improvement and syntrophic relationship stimulation among various microbial groups in the methanogenesis process. In recent studies, ZVI addition significantly enhanced methane and volatile fatty acid (VFA) yields and alleviated excessive acidification, ammonia accumulation, and odorous gas production. Further, we reviewed the changes in enzyme activity and microbial metabolism after the addition of ZVI throughout the reaction process. Certain innovative technologies, such as bioelectrochemical system assistance and combined usage of conductive materials, may improve AD performance compared to the use of ZVI alone, the mechanism of which has been discussed from various viewpoints. Furthermore, the primary technical bottlenecks, such as poor mass transfer efficiency in dry AD and high ZVI dosage, have been illustrated, and syntrophic methanogenesis regulated by ZVI addition can be further studied by conducting theoretical research.
Collapse
Affiliation(s)
- Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China; School of Environment, Tsinghua University, Beijing 10084, PR China.
| | - Jianan Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Wenjing Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 10084, PR China
| | - Jin Yuan
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong 030600, PR China
| |
Collapse
|