1
|
Li W, Sun L, Yang X, Peng C, Hua R, Zhu M. Enantioselective effects of chiral profenofos on the conformation for human serum albumin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106159. [PMID: 39477612 DOI: 10.1016/j.pestbp.2024.106159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/07/2024]
Abstract
Profenofos, as a typical chiral organophosphorus pesticide, can cause various environmental problems and even endanger human health when used in excess. The toxicity of chiral profenofos was investigated through multispectral analysis, molecular docking, and density functional theory (DFT), employing human serum albumin (HSA) as the model protein. Fluorescence titration and lifetime measurements demonstrated that the interaction between chiral profenofos and HSA involves static quenching. Chiral profenofos forms a 1:1 complex with HSA at site II (subdomain IIIA), primarily driven by hydrophobic interactions and hydrogen bonds. Notably, the binding efficacy diminishes as temperature increases. Spectroscopic analyses confirm that chiral profenofos alters the microenvironment and structure of HSA, with the R-enantiomer exerting a greater impact than the S-enantiomer. Consequently, the toxicological implications of the R-profenofos is significantly more pronounced. Investigating the molecular-level toxic effects of chiral pesticides enhances the thoroughness of pesticide assessments, aids in understanding their distribution, metabolism, and associated risks, and facilitates the development of mitigation strategies.
Collapse
Affiliation(s)
- Wenze Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
2
|
Rupreo V, Tissopi R, Baruah K, Roy AS, Bhattacharyya J. Multispectroscopic and Theoretical Investigation on the Binding Interaction of a Neurodegenerative Drug, Lobeline with Human Serum Albumin: Perturbation in Protein Conformation and Hydrophobic-Hydrophilic Surface. Mol Pharm 2024; 21:4169-4182. [PMID: 39037173 DOI: 10.1021/acs.molpharmaceut.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Lobeline (LOB), a naturally occurring alkaloid, has a broad spectrum of pharmacological activities and therapeutic potential, including applications in central nervous system disorders, drug misuse, multidrug resistance, smoking cessation, depression, and epilepsy. LOB represents a promising compound for developing treatments in various medical fields. However, despite extensive pharmacological profiling, the biophysical interaction between the LOB and proteins remains largely unexplored. In the current article, a range of complementary photophysical and cheminformatics methodologies were applied to study the interaction mechanism between LOB and the carrier protein HSA. Steady-state fluorescence and fluorescence lifetime experiments confirmed the static-quenching mechanisms in the HSA-LOB system. "K" (binding constant) of the HSA-LOB system was determined to be 105 M-1, with a single preferable binding site in HSA. The forces governing the HSA-LOB stable complex were analyzed by thermodynamic parameters and electrostatic contribution. The research also investigated how various metal ions affect complex binding. Site-specific binding studies depict Site I as probable binding in HSA by LOB. We conducted synchronous fluorescence, 3D fluorescence, and circular dichroism studies to explore the structural alteration occurring in the microenvironment of amino acids. To understand the robustness of the HSA-LOB complex, we used theoretical approaches, including molecular docking and MD simulations, and analyzed the principal component analysis and free energy landscape. These comprehensive studies of the structural features of biomolecules in ligand binding are of paramount importance for designing targeted drugs and delivery systems.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Rengka Tissopi
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| | - Kakali Baruah
- Department of Chemical & Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Atanu Singha Roy
- Department of Chemical & Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Nagaland 797103, India
| |
Collapse
|
3
|
Yang H, Ji X, Wang H, Yang R, Ma J. Mechanism understanding of PIKfyve inhibitor YM201636 with human serum albumin: Insights from molecular modeling and multiple spectroscopic techniques. LUMINESCENCE 2024; 39:e4838. [PMID: 39051537 DOI: 10.1002/bio.4838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 07/27/2024]
Abstract
YM201636 is the potent PIKfyve inhibitor that is being actively investigated for liver cancer efficacy. In this study, computer simulations and experiments were conducted to investigate the interaction mechanism between YM201636 and the transport protein HSA. Results indicated that YM201636 is stably bound between the subdomains IIA and IIIA of HSA, supported by site marker displacement experiments. YM201636 quenched the endogenous fluorescence of HSA by static quenching since a decrease in quenching constants was observed from 7.74 to 2.39 × 104 M-1. UV-vis and time-resolved fluorescence spectroscopy confirmed the YM201636-HSA complex formation and this binding followed a static mechanism. Thermodynamic parameters ΔG, ΔH, and ΔS obtained negative values suggesting the binding was a spontaneous process driven by Van der Waals interactions and hydrogen binding. Binding constants ranged between 5.71 and 0.33 × 104 M-1, which demonstrated a moderately strong affinity of YM201636 to HSA. CD, synchronous, and 3D fluorescence spectroscopy revealed that YM201636 showed a slight change in secondary structure. The increase of Kapp and a decrease of PSH with YM201636 addition showed that YM201636 changed the surface hydrophobicity of HSA. The research provides reasonable models helping us further understand the transportation and distribution of YM201636 when it absorbs into the blood circulatory system.
Collapse
Affiliation(s)
- Hongqin Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Xinzhu Ji
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Huiling Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Ruijing Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Junyi Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| |
Collapse
|
4
|
Chen C, He W, Ni Z, Zhang X, Cui Y, Song X, Feng J. Bioaccumulation, trophic transfer and risk assessment of polycyclic musk in marine food webs of the Bohai Sea. MARINE POLLUTION BULLETIN 2024; 202:116353. [PMID: 38598929 DOI: 10.1016/j.marpolbul.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Galaxolide (HHCB) and tonalide (AHTN) are dominant musks added to personal care products. However, the accumulate and trophic transfer of SMs through the marine food chain are unclear. In this study, organisms were collected from three bays in Bohai Sea to investigate the bioaccumulation, trophic transfer, and health risk of SMs. The HHCB and AHTN concentrations in the muscles range from 2.75 to 365.40 μg/g lw and 1.04-4.94 μg/g lw, respectively. The median HHCB concentrations in muscles were the highest in Bohai Bay, followed by Laizhou Bay and Liaodong Bay, consistent with the HHCB concentrations in sediments. The different fish tissues from Bohai Bay were analyzed, and the HHCB and AHTN concentrations followed the heart > liver > gill > muscles. The trophic magnification factors (TMF) were lower than 1 and the health risk assessment showed no adverse health effects. The results provide insights into the bioaccumulation and trophic transfer behavior of SMs in marine environments.
Collapse
Affiliation(s)
- Cuihong Chen
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wanyu He
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenyang Ni
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiaohui Zhang
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, 037009, China
| | - Yuxiao Cui
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaojing Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
5
|
Liu S, Sun L, Sun M, Lv Z, Hua R, Wang Y, Yang X, Zhu M. Influence of para-substituted benzaldehyde derivatives with different push/pull electron strength groups on the conformation of human serum albumin and toxicological effects in zebrafish. Int J Biol Macromol 2024; 266:131246. [PMID: 38554915 DOI: 10.1016/j.ijbiomac.2024.131246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Excessive intake of benzaldehyde and its derivatives can cause irreversible damage to living organisms. Hence, benzaldehyde derivatives with different para-substitutions of push/pull electronic groups were chosen to investigate the effect of different substituent properties on the structure of human serum albumin (HSA). The binding constants, number of binding sites, major interaction forces, protein structural changes, and binding sites of benzaldehyde (BzH) and its derivatives (4-BzHD) with HSA in serum proteins were obtained based on multispectral and molecular docking techniques. The mechanism of BzH/4-BzHD interaction on HSA is mainly static quenching and is accompanied by the formation of a ground state complex. BzH/4-BzHD is bound to HSA in a 1:1 stoichiometric ratio. The interaction forces for the binding of BzH/4-BzHD to HSA are mainly hydrogen bonding and hydrophobic interaction, which are also accompanied by a small amount of electrostatic interactions. The effect of BzH/4-BzHD on HSA conformation follows: 4-Diethylaminobenzaldehyde (4-DBzH) > 4-Nitrobenzaldehyde (4-NBzH) > 4-Hydroxybenzaldehyde (4-HBzH) > 4-Acetaminobenzaldehyde (4-ABzH) > BzH, which means that the stronger push/pull electronic strength of the para-substituted benzaldehyde derivatives has a greater effect on HSA conformation. Furthermore, the concentration-lethality curves of different concentrations for BzH/4-BzHD on zebrafish verified above conclusion. This work provides a scientific basis for the risk assessment of benzaldehyde and its derivatives to the ecological environment and human health and for the environmental toxicological studies of benzaldehyde derivatives with different strengths of push/pull electron substitution.
Collapse
Affiliation(s)
- Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Long Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Zhanao Lv
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Rimao Hua
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Yi Wang
- Key Laboratory of Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Xiaofan Yang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Meiqing Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| |
Collapse
|
6
|
Asgharzadeh S, Shareghi B, Farhadian S. Probing the toxic effect of chlorpyrifos as an environmental pollutant on the structure and biological activity of lysozyme under physiological conditions. CHEMOSPHERE 2024; 355:141724. [PMID: 38499074 DOI: 10.1016/j.chemosphere.2024.141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
The pervasive use of pesticides like chlorpyrifos (CPY) has been associated with deleterious effects on biomolecules, posing significant risks to environmental integrity, public health, and overall ecosystem equilibrium. Accordingly, in this study, we investigated the potential binding interaction between the well-conserved enzyme, lysozyme (LSZ), and CPY through various spectroscopic techniques and molecular modeling. The UV-vis absorption and fluorescence experiments confirmed the complex formation and static quenching of the intrinsic fluorescence intensity. LSZ revealed a singular binding site for CPY, with binding constants around 105 M-1 across different temperature ranges. Analysis of thermodynamic parameters showed the spontaneous nature of the complexation process, while also revealing the pivotal role of hydrophobic interactions in stabilizing the LSZ-CPY system. According to circular dichroism and Fourier transform infrared studies, CPY binding changed the secondary structure of LSZ by boosting α-helix presence and reducing the levels of β-sheet and β-turn content. Further, CPY decreased the stability and activity of LSZ. Computational docking delineated the specific and highly preferred binding site of CPY within the structure of LSZ. Molecular dynamic simulation indicated the enduring stability of the LSZ/CPY complex and revealed structural modifications in the LSZ after binding with CPY. This research provides a detailed understanding of the intermolecular dynamics between CPY and LSZ, concurrently elucidating the molecular-level implications for the potential hazards of pesticides in the natural environment.
Collapse
Affiliation(s)
- Sanaz Asgharzadeh
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran
| | - Behzad Shareghi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| | - Sadegh Farhadian
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, P. O. Box.115, Iran; Central Laboratory, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
7
|
Zheng Q, Xie J, Xiao J, Cao Y, Liu X. Unraveling the underlying mechanism of interactions between astaxanthin geometrical isomers and bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123731. [PMID: 38064963 DOI: 10.1016/j.saa.2023.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
The health benefits of astaxanthin (AST) are related to its geometric isomers. Generally, functional activity is realized by the interactions between active substances and transporters. Hereto, bovine serum albumin (BSA), as a model-binding protein and transporter, is able to recognize and transport isomers of active substances through binding with them. However, differences in the binding mechanism of isomers to BSA may affect the functional activities of isomers through the "binding-transport-activity" chain reaction. Thus, this study sought to elucidate the interactions between AST geometrical isomers and BSA using multi-spectroscopy, surface plasmon resonance and molecular docking. The results showed that Z-AST displayed more interacting amino acid residues and lower thermodynamic parameters than all-E-AST. Meanwhile, the order of binding affinity to BSA was 13Z-AST (1.56 × 10-7 M) > 9Z-AST (2.70 × 10-7 M) > all-E-AST (4.01 × 10-7 M), indicating that Z-AST possessed stronger binding ability to BSA. Moreover, AST isomers were located at the junction between subdomains ⅡA and ⅢA of BSA, and showed the same interaction forces (hydrogen bond and van der Waals force) as well as kinetic processes (slow combination, slow dissociation). These interaction parameters provide valuable insights into their pharmacokinetics in vivo, and it was of great significance to explain the potential differences among AST isomers in functional activities.
Collapse
Affiliation(s)
- Qinsheng Zheng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
8
|
Diao Z, Zhang X, Xu M, Wei F, Xie X, Zhu F, Hui B, Zhang X, Wang S, Yuan X. A critical review of distribution, toxicological effects, current analytical methods and future prospects of synthetic musks in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169872. [PMID: 38199360 DOI: 10.1016/j.scitotenv.2024.169872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Synthetic musks (SMs) have gained widespread utilization in daily consumer products, leading to their widespread dissemination in aquatic environments through various pathways. Over the past few decades, the production of SMs has consistently risen, prompting significant concern over their potential adverse impacts on ecosystems and human health. Although several studies have focused on the development of analytical techniques for detecting SMs in biological samples and cosmetic products, a comprehensive evaluation of their global distribution in diverse aquatic media and biological matrices remains lacking. This review aims to provide an up-to-date overview of the occurrence of SMs in both aquatic and various biological matrices, investigating their worldwide distribution trends, assessing their ecological toxicity, and comparing different methodologies for processing and analysis of SMs. The findings underscore the prevalence of polycyclic musks as predominant SMs, with consumption of various products in different countries leading to contrasting distribution of contaminants. Furthermore, the migration of SMs from sediments to the water phase is investigated, indicating the role of solid-phase reservoirs. Incomplete degradation of SMs in the environment could contribute to their accumulation in aquatic systems, impacting the growth and oxidative stress of aquatic organisms, and having a possibility of genotoxicity to them. Human exposure data highlight substantial risks for vulnerable populations such as pregnant women and infants. Moreover, contemporary methods for SMs analysis are presented in this review, particularly focusing on advancements made in the last five years. Finally, research enhancement and critical questions regarding the analysis of SMs are provided, offering suggestions for future research endeavors.
Collapse
Affiliation(s)
- Zishan Diao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Mengxin Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fenghua Wei
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaomin Xie
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Bin Hui
- School of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Xiaohan Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China.
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, PR China; Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao, Shandong 266237, PR China
| |
Collapse
|
9
|
Li X, Li R, Niu Y, Du M, Yang H, Liu D. Mitigating abortion risk of synthetic musk-contained body wash in pregnant women: Risk assessment and mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122672. [PMID: 37797926 DOI: 10.1016/j.envpol.2023.122672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/26/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
Synthetic musks (SMs), the widely used odor component in personal care products have attracted attention due to their environmental impacts, especially the abortion risks. Given that women comprise a significant consumer demographic for personal care products, it is imperative to promptly initiate research on avoidance strategies for pregnant women concerning their exposure to synthetic chemicals (SMs). This study tried to establish novel theoretical approaches to eliminate the abortion risks of SM-contained body wash by designing the SM-contained proportioning scheme and analyzing the abortion risk mechanisms. The binding energy of SMs to estrogen-progesterone protein complex was used as an indicator of the abortion risk. A total of 324 SM-contained body wash proportioning schemes were designed using full factorial design and No. 218 was found as the most effective formula for body wash proportioning with the binding energy value of 68.6 kJ/mol. Results showed the abortion risk could be effectively alleviated (reduced 0.6%-163.4%) by regulating the proportioning scheme of SM-contained body wash. In addition, the mechanism analysis of SM-contained proportioning scheme proportioning scheme found that xanthan gum and disodium EDTA played essential roles in reducing the abortion risk in pregnant women after exposure. The selection of proper body wash components for reducing the abortion risk of SMs on pregnant women was first proposed. It sheds lights on the potential risks of people's daily life and proposes risk-eliminating strategies.
Collapse
Affiliation(s)
- Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, A1B 3X5, Canada.
| | - Rui Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yong Niu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Meijin Du
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Hao Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Di Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
10
|
Liu ML, Chen ZJ, Huang XQ, Wang H, Zhao JL, Shen YD, Luo L, Wen XW, Hammock B, Xu ZL. A bispecific nanobody with high sensitivity/efficiency for simultaneous determination of carbaryl and its metabolite 1-naphthol in the soil and rice samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122265. [PMID: 37517641 PMCID: PMC10529271 DOI: 10.1016/j.envpol.2023.122265] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
The simultaneous determination of carbaryl and its metabolite 1-naphthol is essential for risk assessment of pesticide exposure in agricultural and environmental samples. Herein, several bispecific nanobodies (BsNbs) with different lengths of hydrophilic linkers and junction sites were prepared and characterized for the simultaneous recognition of carbaryl and its metabolite 1-naphthol. It was found that the affinity of BsNbs to the analytes could be regulated by controlling linker length and linking terminal. Additionally, molecular simulation revealed that linker lengths affected the conformation of BsNbs, leading to alteration in sensitivity. The BsNb with G4S linker, named G4S-C-N-VHH, showing good thermal stability and sensitivity was used to develop a bispecific indirect competitive enzyme-linked immunosorbent assay (Bic-ELISA). The assay demonstrated a limit of detection of 0.8 ng/mL for carbaryl and 0.4 ng/mL for 1-naphthol in buffer system. Good recoveries from soil and rice samples were obtained, ranging from 80.0% to 112.7% (carbaryl) and 76.5%-110.8% (1-naphthol), respectively. Taken together, this study firstly provided a BsNb with high sensitivity and efficiency against environmental pesticide and its metabolite, and firstly used molecular dynamics simulation to explore the influence of linker on recognition. The results are valuable for the application of immunoassay with high efficiency in the fields of environment and agriculture.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Xiao-Qing Huang
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jin-Li Zhao
- Guangzhou Institute of Food Inspection, Guangzhou, 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Wei Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, CA, 95616, United States
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety / Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Zhang H, Cai R, Chen C, Gao L, Ding P, Dai L, Chi B. Impacts of Halogen Substitutions on Bisphenol A Compounds Interaction with Human Serum Albumin: Exploring from Spectroscopic Techniques and Computer Simulations. Int J Mol Sci 2023; 24:13281. [PMID: 37686087 PMCID: PMC10487517 DOI: 10.3390/ijms241713281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound, and the binding mechanism of BPA with carrier proteins has drawn widespread attention. Halogen substitutions can significantly impact the properties of BPA, resulting in various effects for human health. Here, we selected tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) to investigate the interaction between different halogen-substituted BPAs and human serum albumin (HSA). TBBPA/TCBPA spontaneously occupied site I and formed stable binary complexes with HSA. Compared to TCBPA, TBBPA has higher binding affinity to HSA. The effect of different halogen substituents on the negatively charged surface area of BPA was an important reason for the higher binding affinity of TBBPA to HSA compared to TCBPA. Hydrogen bonds and van der Waals forces were crucial in the TCBPA-HSA complex, while the main driving factor for the formation of the TBBPA-HSA complex was hydrophobic interactions. Moreover, the presence of TBBPA/TCBPA changed the secondary structure of HSA. Amino acid residues such as Lys199, Lys195, Phe211, Arg218, His242, Leu481, and Trp214 were found to play crucial roles in the binding process between BPA compounds and HSA. Furthermore, the presence of halogen substituents facilitated the binding of BPA compounds with HSA.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China;
| | - Ruirui Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Linna Gao
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Pei Ding
- School of Pharmacy, Nanchang University, Nanchang 330031, China;
| | - Lulu Dai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| | - Baozhu Chi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; (R.C.); (C.C.); (L.G.); (L.D.)
| |
Collapse
|
12
|
Xu M, Hu S, Cui Z, Liu C, Xiao Y, Liu R, Zong W. Characterizing the binding interactions between virgin/aged microplastics and catalase in vitro. CHEMOSPHERE 2023; 323:138199. [PMID: 36813000 DOI: 10.1016/j.chemosphere.2023.138199] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs) undergo physical, chemical, and biological aging in the environment, leading to changes in their physicochemical properties, affecting migration characteristics and toxicity. Oxidative stress effects induced by MPs in vivo have been extensively studied, but the toxicity difference between virgin and aged MPs and the interactions between antioxidant enzymes and MPs in vitro have not been reported yet. This study investigated the structural and functional changes of catalase (CAT) induced by virgin and aged PVC-MPs. It was shown that light irradiation aged the PVC-MPs, and the aging mechanism was photooxidation, resulting in a rough surface and appearing holes and pits. Because of the changes in physicochemical properties, aged MPs had more binding sites than virgin MPs. Fluorescence and synchronous fluorescence spectra results suggested that MPs quenched the endogenous fluorescence of CAT and interacted with tryptophane and tyrosine residues. The virgin MPs had no significant effect on the skeleton of CAT, while the skeleton and the polypeptide chains of CAT became loosened and unfolded after binding with the aged MPs. Moreover, the interactions of CAT with virgin/aged MPs increased the α-helix and decreased the β-sheet contents, destroyed the solvent shell, and resulted in a dispersion of CAT. Due to the large size, MPs cannot enter the interior of CAT and have no effects on the heme groups and activity of CAT. The interaction mechanism between MPs and CAT may be that MPs adsorb CAT to form the protein corona, and aged MPs had more binding sites. This study is the first comprehensive investigation of the effect of aging on the interaction between MPs and biomacromolecules and highlights the potential negative effects of MPs on antioxidant enzymes.
Collapse
Affiliation(s)
- Mengchen Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China.
| | - Shuncheng Hu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Zhaohao Cui
- Qingdao Ecological Environment Monitoring Center, Qingdao, 266003, PR China
| | - Changqing Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Yihua Xiao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, PR China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, PR China
| | - Wansong Zong
- College of Population, Resources and Environment, Shandong Normal University, 88# East Wenhua Road, Jinan, 250014, PR China
| |
Collapse
|
13
|
Xia H, Sun Q, Gan N, Ai P, Li H, Li Y. Unveiling the binding details and esterase-like activity effect of methyl yellow on human serum albumin: spectroscopic and simulation study. RSC Adv 2023; 13:8281-8290. [PMID: 36926008 PMCID: PMC10011880 DOI: 10.1039/d2ra07377c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
The food sector uses methyl yellow (MY) extensively as a colorant. The primary transporter in vivo that influences MY absorption, metabolism, distribution, and excretion is human serum albumin (HSA). Exploring the binding process and looking at how HSA and MY work physiologically at the molecular level is therefore very important. Experiments using steady-state fluorescence and fluorescence lifetimes proved that HSA and MY's quenching mechanisms were static. The HSA-MY complex's binding constant was estimated using thermodynamic parameters to be around 104 M-1. The hydrophobic forces were a major factor in the binding process, as evidenced by the negative ΔG, positive ΔH, and ΔS, which suggested that this contact was spontaneous. Site tests showed that MY linked to HSA's site I. Circular dichroism and three-dimensional fluorescence analysis revealed that the 1.33% α-helix content dropped and the amino acid microenvironment altered. While HSA's protein surface hydrophobicity decreased when engaging MY, the binding of MY to HSA reduced in the presence of urea. The stability of the system was assessed using molecular modeling. Additionally, HSA's esterase-like activity decreased when MY was present, and Ibf/Phz affected the inhibition mechanism of MY on HSA. These findings offer a distinctive perspective for comprehending the structure and functioning of HSA and evaluating the safety of MY.
Collapse
Affiliation(s)
- Haobin Xia
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Na Gan
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Pu Ai
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Hui Li
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Yanfang Li
- School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
14
|
Solé M, Figueres E, Mañanós E, Rojo-Solís C, García-Párraga D. Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120149. [PMID: 36115493 DOI: 10.1016/j.envpol.2022.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
Collapse
Affiliation(s)
- M Solé
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain.
| | - E Figueres
- Institut de Ciències del Mar, CSIC, Psg. Marítim de La Barceloneta 37-49, 08003, Barcelona, Spain
| | - E Mañanós
- Institute of Aquaculture Torre La Sal (IATS),-CSIC, 12595, Cabanes, Castellón, Spain
| | - C Rojo-Solís
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| | - D García-Párraga
- Veterinary Services, Oceanogràfic, Ciudad de Las Artes y Las Ciencias, C/Eduardo Primo Yúfera (Científic) 1B, 46013, València, Spain
| |
Collapse
|
15
|
Zhang S, Zhou B, Zhou L, Zhou H, Chen F, Yang S, Chen C, Tuo X. Alterations in the conformation and function of human serum albumin induced by the binding of methyl hydrogen phthalate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121335. [PMID: 35526438 DOI: 10.1016/j.saa.2022.121335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizer components in production. Methyl hydrogen phthalate (MHP) is a metabolite of dimethyl phthalate (DMP, a kind of PAEs), and its toxic residues accumulate in the nature and can enter the human body. Here, the interaction between MHP and human serum albumin (HSA) was probed by using multi-spectral, computer simulations, and biochemical techniques. The results showed that MHP was spontaneously embedded in site I of HSA to form a complex by H-bonds and van der Waals forces (ΔH < 0, ΔS < 0). The binding constant (Ka) of the HSA-MHP system was 1.136 ± 0.026 × 104 M-1 (298 K). The combination of MHP produced conformational variations of HSA, as shown by the 3D fluorescence spectrum, CD spectra, and molecular dynamics simulation. Additionally, molecular docking indicated that MHP was surrounded by multiple residues, such as Lys199, Leu203, Phe206, and Trp214. Specifically, Lys199 and Trp214 exerted a crucial effect on the interaction of HSA and MHP. The residues with important energy contribution were mostly located in site I. The ASA values of the aromatic amino acids of HSA changed after combining with MHP. The Rg and SASA values of HSA increased after adding MHP, suggesting that the structure of HSA was less compact. Moreover, the esterase-like activity of HSA increased after adding MHP to HSA, indicating that MHP may disturb the normal physiological activities in the human body. This study was helpful to understand the biological function of MHP and provided some insights for its side effect in the human body.
Collapse
Affiliation(s)
- Siyao Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Bijia Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Like Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hui Zhou
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Shuling Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chaolan Chen
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xun Tuo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
16
|
Zheng X, Pan F, Zhao S, Zhao L, Yi J, Cai S. Phenolic characterization, antioxidant and α-glycosidase inhibitory activities of different fractions from Prinsepia utilis Royle seed shell using in vitro and in silico analyses. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Li Z, Zhao L, Sun Q, Gan N, Zhang Q, Yang J, Yi B, Liao X, Zhu D, Li H. Study on the interaction between 2,6-dihydroxybenzoic acid nicotine salt and human serum albumin by multi-spectroscopy and molecular dynamics simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120868. [PMID: 35032760 DOI: 10.1016/j.saa.2022.120868] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
As a new form of nicotine introduction for novel tobacco products, the interaction of nicotine salt with biological macromolecules may differ from that of free nicotine and thus affect its transport and distribution in vivo. Hence, the mechanism underlying the interaction between 2,6-dihydroxybenzoic acid nicotine salt (DBN) and human serum albumin (HSA) was investigated by multi-spectroscopy, molecular docking, and dynamic simulation. Experiments on steady-state fluorescence and fluorescence lifetime revealed that the quenching mechanism of DBN and HSA was dynamic quenching, and binding constant was in the order of 10^4 L mol-1. Thermodynamic parameters exhibited that the binding was a spontaneous process with hydrophobic forces as the main driving force. Fluorescence competition experiments revealed that DBN bound to site I of HSA IIA subdomain. According to the results of synchronous fluorescence, 3D fluorescence, FT-IR spectroscopy, circular dichroism (CD) spectroscopy, and molecular dynamics (MD) simulation, DBN did not affect the basic skeleton structure of HSA but changed the microenvironment around the amino acid residues. Computer simulations positively corroborated the experimental results. Moreover, DBN decreased the surface hydrophobicity and weakened the esterase-like activity of HSA, leading to the impaired function of the latter. This work provides important information for studying the interaction between DBN as a nicotine substitute and biological macromolecules and contributes to the further development and application of DBN.
Collapse
Affiliation(s)
- Zhiqiang Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China; R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiyi Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Ji Yang
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Bin Yi
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Xiaoxiang Liao
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Donglai Zhu
- R&D Center of China Tobacco Yunnan Industrial Co., Ltd, No.367, Hongjin Road, Kunming 650231, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
18
|
Comprehensive investigation of binding of some polycyclic aromatic hydrocarbons with bovine serum albumin: spectroscopic and molecular docking studies. Bioorg Chem 2022; 120:105656. [DOI: 10.1016/j.bioorg.2022.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023]
|
19
|
Bu Q, Li Q, Zhang H, Wu D, Yu G. Using a fugacity model to determine the degradation rate of typical polycyclic musks in the field: A case study in the North Canal River watershed of Beijing, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114096. [PMID: 34775339 DOI: 10.1016/j.jenvman.2021.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/14/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
To quantitate the degradation rate of 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-[g]-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) under field conditions, a level III fugacity model combined with a least-squares method was used to determine the degradation rate of HHCB and AHTN in the North Canal River watershed of Beijing, China. Model fitting, validation, sensitivity, and uncertainty analyses revealed that the established model was stable and robust. The degradation rates of HHCB and AHTN were 4.16 × 10-3 h-1 (t1/2 = 167 h) and 1.68 × 10-2 h-1 (t1/2 = 41.3 h), respectively. The calculated degradation rates were extrapolated to the Liangshui River, and indicated that the differences between the measured and predicted concentrations were less than 0.32 and 0.34 log units for HHCB and AHTN, respectively. The attenuation rates of HHCB and AHTN were calculated, and the results indicated that degradation was an important yet not the sole contributor to the degradation of the polycyclic musks. Results of uncertainty analyses indicated that the inflow and outflow concentrations of the polycyclic musks in the surface water of each segment strongly influenced the model outputs, followed by environmental factors (water depth and flow rate). It is essential to measure the degradation rate in the field because of the influence of the surrounding environment. The present study reveals the utility of fugacity models to quantify the degradation rate of organic micropollutants in the field.
Collapse
Affiliation(s)
- Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China.
| | - Qingshan Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China
| | - Handan Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Dongkui Wu
- School of Chemical & Environmental Engineering, China University of Mining & Technology - Beijing, Beijing, 100083, PR China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Gang Yu
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
20
|
Li N, Yang X, Chen F, Zeng G, Zhou L, Li X, Tuo X. Spectroscopic and in silico insight into the interaction between dicofol and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120277. [PMID: 34455384 DOI: 10.1016/j.saa.2021.120277] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/20/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Dicofol, a broad-spectrum acaricide, has garnered considerable attention because of the potential harm to the environment and various organisms. Herein, this study applied spectroscopic and in silico methods to understand the interaction between human serum albumin (HSA) and dicofol. Fluorescence experiments demonstrated that dicofol formed a stable complex and the binding process occurred in Suldow's site I of HSA. Its binding constant was 2.26 × 105 M-1 at 298 K. Van der Waals forces and hydrogen bond were primarily facilitated the interaction between dicofol and HSA (ΔH < 0, ΔS < 0) according to thermodynamic experiments. Additionally, 3D fluorescence and circular dichroism (CD) spectra revealed a few conformational changes in HSA due to dicofol. Molecular docking analysis indicated that dicofol interacted with Ser192, Gln196, Leu481, Arg218, Leu238, and Phe211 via van der Waals forces and formed a hydrogen bond with His242. Molecular dynamics (MD) simulation showed that Lys195 and Arg218 residues contributed greater energy for forming the HSA-dicofol complex. MD simulation analysis also showed that dicofol can affect the HSA structure with a reduction in α-helix. This research is desired to facilitate a new perspective on the toxicity mechanism of dicofol in the human body.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xi Yang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Like Zhou
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaoke Li
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
21
|
Zheng S, Fang X, Li F, Sun Q, Zhao M, Wei H, Xu W, Li H. Characterization of interactions of montelukast sodium with human serum albumin: multi-spectroscopic techniques and computer simulation studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj00419d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The interaction mechanism of montelukast sodium and HSA was characterized using spectroscopic and computer methods.
Collapse
Affiliation(s)
- Shoujun Zheng
- Medical College of Panzhihua University, Panzhihua, 617000, China
| | - Xinyi Fang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Mu Zhao
- Medical College of Panzhihua University, Panzhihua, 617000, China
| | - Huiping Wei
- Medical College of Panzhihua University, Panzhihua, 617000, China
| | - Wanyu Xu
- Medical College of Panzhihua University, Panzhihua, 617000, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Sun Q, Zhai Y, Wang W, Gan N, Zhang S, Suo Z, Li H. Molecular recognition patterns between vitamin B12 and human serum albumin explored through STD-NMR and spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119828. [PMID: 33930850 DOI: 10.1016/j.saa.2021.119828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Ligand-receptor molecular recognitionis the basis of biological process. The Saturation Transfer Difference-NMR (STD-NMR) technique has been recently used to gain qualitative and quantitative information about physiological interactions at atomic-resolution. The molecular recognition patterns between Vitamin B12 (VB12) and human serum albumin (HSA) were investigated by STD-NMR supplemented by other spectroscopies and molecular docking. STD-NMR delivered a complete picture that the substituent groups on the tetrapyrrole ring of VB12 interacted with site III of HSA through binding epitope mapping and competitive probe experiments. STD-NMR and fluorescence results proved the moderate binding capability of VB12 and clarified a static, spontaneous, and temperature-sensitive binding mechanism. 3D-fluorencence, FT-IR and circular dichroism spectra showed a compact protein structure by interacting with VB12. Size distribution and surface hydrophobicity showed the surface properties changes of HSA caused by the binding of VB12. Computer simulation confirmed the recognition mode in theory and was compared with experiments. This work is beneficial for understanding the safety and biological action of VB12, and will attract researchers interested in NMR technology.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanming Zhai
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Wenjing Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Na Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zili Suo
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
23
|
Lv X, Jiang Z, Zeng G, Zhao S, Li N, Chen F, Huang X, Yao J, Tuo X. Comprehensive insights into the interactions of dicyclohexyl phthalate and its metabolite to human serum albumin. Food Chem Toxicol 2021; 155:112407. [PMID: 34273427 DOI: 10.1016/j.fct.2021.112407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/15/2021] [Accepted: 07/09/2021] [Indexed: 01/28/2023]
Abstract
Phthalate esters (PAEs) are a type of persistent organic pollutants and have received widespread concerns due to their adverse effects on human health. Dicyclohexyl phthalate (DCHP) and its metabolite monocyclohexyl phthalate (MCHP) were selected to explore the mechanism for interaction of PAEs with human serum albumin (HSA) through molecular docking and several spectroscopic techniques. The results showed that DCHP/MCHP can spontaneously occupy site I to form a binary complex with HSA, and DCHP exhibited higher binding affinity to HSA than MCHP. At 298 K, the binding constants (Kb) of DCHP and MCHP to HSA were 24.82 × 104 and 1.04 × 104 M-1, respectively. Hydrogen bonds and van der Waals forces were the major driving forces in DCHP/MCHP-HSA complex. The presence of DCHP/MCHP induced the secondary structure changes in HSA, and the pi electrons of the benzene ring skeleton of DCHP/MCHP played a key role in this binding processes. Exposure of DCHP/MCHP to TM4 cells revealed that interactions between PAEs and serum albumin can affect their cytotoxicity; DCHP showed higher toxicity than MCHP. The binding affinity of PAEs with HSA may be a valuable parameter for rapid assessment of their toxicity to organisms.
Collapse
Affiliation(s)
- Xiaolan Lv
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zheng Jiang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Sujuan Zhao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Na Li
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaojian Huang
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jia Yao
- School of Pharmacy, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|