1
|
Kumar R, Lamba J, Adhikari S, Kasera N, Torbert HA. Influence of iron-modified biochar on phosphate transport and deposition in saturated porous media under varying pH, ionic strength, and biochar dosage. CHEMOSPHERE 2025; 370:143932. [PMID: 39667531 DOI: 10.1016/j.chemosphere.2024.143932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Phosphorus (P) is one of the essential nutrients required for plants; however, loss of phosphorus from agricultural areas results in water quality impairment. This research aims to investigate the transport and deposition of phosphate at different solution chemistries and phosphate-biochar dosages under (a) individual phosphate flow, (b) phosphate transport followed by biochar, and (c) co-transport of biochar-phosphate in saturated porous media. Breakthrough curves (BTCs) for phosphate were generated to understand the effect of pine raw biochar (BC) and iron-modified biochar (Fe-BC) on phosphate transport and deposition under varying solutions, pH (5.5 ± 0.1-10.5 ± 0.1), ionic strength (0-10 mM), phosphate (10-20 mg/L), and biochar dosages (100-200 mg/L) in saturated porous media. Results revealed increased deposition of BC and Fe-BC at high ionic strength (IS), i.e., 10 mM compared to 0 mM. The BTCs of phosphate (10-20 mg/L) transport at increasing IS showed delayed elute and long tailing curves compared to BTCs of tracer. Further, phosphate transport using BTCs in biochar-mediated saturated porous media was investigated at 10-20 mg/L phosphate, where maximum retardation (37%) was observed at pH 6.7 ± 0.1 and 0 mM IS due to the availability of active sites for 10 mg/L phosphate using Fe-BC than BC. The BTCs of phosphate transport at pH 6.7 ± 0.1 and 0-10 mM IS showed 37% and 40% phosphate deposition in Fe-BC-mediated columns for 0 mM and 10 mM, respectively, than BC-mediated columns. For BC, maximum phosphate adsorption was observed at pH 5.5 ± 0.1, whereas for Fe-BC, it was observed at pH 6.7 ± 0.1 at 10 mM IS. The least adsorption was observed at pH of 10.5 ± 0.1 for both BC and Fe-BC. Similar phosphate retardation BTCs for BC and Fe-BC at 10 mM were observed with adsorption of 40% phosphate for 100-200 mg/L biochar dosages. Besides, co-transport and deposition of biochar and phosphate, considering with and without ripening effect, reported high phosphate retardation using Fe-BC than BC at pH of 6.7 ± 0.1 and 10 mM IS due to chemical non-equilibrium and mass transfer. Taken together, iron-modified biochar (Fe-BC) showed significant adsorptive potential for phosphate management in saturated porous media. Overall, modeling of transport and deposition of phosphate and biochar are significant to understanding fate, nutrient mobility & management, biochar-phosphate interactions, and remediation designs in saturated porous media.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Jasmeet Lamba
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA.
| | - Sushil Adhikari
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Nitesh Kasera
- Department of Biosystems Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Henry Allen Torbert
- United States Department of Agriculture-Agricultural Research Service, National Soil Dynamics Laboratory, Auburn, AL, 36832, USA
| |
Collapse
|
2
|
Saiano F, Scalenghe R. Challenges in developing reliable phosphorus predictive models: Unpredictable release under soil redox changes. Heliyon 2024; 10:e40160. [PMID: 39660203 PMCID: PMC11629194 DOI: 10.1016/j.heliyon.2024.e40160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
Phosphorus (P), crucial for plant nutrition, is unevenly distributed in the Earth's crust, necessitating its supplementation in agriculture through fertilizers. However, excessive use can lead to water pollution. Our research focuses on the P adsorbing complex, investigating P release due to flooding, using 12 well-characterized soils with contrasting properties. Our research measures directly the P-adsorbing complex using adsorption/desorption isotherms. We observed that the P concentration in the solution -sufficient to prevent desorption yet low enough to avoid further sorption by the soil- decreases when the soil undergoes complete reduction (anoxia). When grouped by similarity, calcareous soils exhibit higher maximum P adsorption capacities (Xmax) under alternating reducing conditions (ARC) compared to continuous reducing conditions (CRC). In slightly acidic soils, CRC leads to a wider spread in Xmax values than ARC. For acidic, organic matter-rich soils, ARC results in the highest Xmax values (123 mmol P kg-1 soil) compared to CRC, whereas in acidic, light-textured soils, CRC shows significantly higher mean Xmax values than ARC. Nevertheless, we were unable to develop a predictive model for soil P desorption based on key intrinsic properties and climate. When an environmental or anthropogenic transformation induces anoxia, the P released does not follow a predictable pattern.
Collapse
Affiliation(s)
- Filippo Saiano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli studi di Palermo, Italy
| | - Riccardo Scalenghe
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli studi di Palermo, Italy
| |
Collapse
|
3
|
Wu Y, Yang W, Kou J, Li Q, Liu J, Chi L, Zhang Y, Liu Q, Yu Y. Impacts of phosphate-solubilizing bacterium strain MWP-1 on vegetation growth, soil characteristics, and microbial communities in the Muli coal mining area, China. Front Microbiol 2024; 15:1500070. [PMID: 39703706 PMCID: PMC11655473 DOI: 10.3389/fmicb.2024.1500070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Due to the cold climate and low soil nutrient content, high-altitude mining areas are challenging to restore ecologically. Their poor nutrient content may be ameliorated by introducing specific microorganisms into the soil. This study aims to evaluate the effects of a highly efficient phosphate solubilizing bacterium MWP-1, Pseudomonas poae, on plant growth, soil nutrients in remedying the soil of the high-altitude Muli mining area in Qinghai Province, and analyze its impact on microbial communities through high-throughput sequencing soil microbial communities. The results showed that MWP-1 significantly increased the content of soil available phosphorus by >50%, soil organic matter and total nitrogen by >10%, and significantly increased the height, coverage, and aboveground biomass of vegetation by >40% in comparison with the control (p < 0.05). MWP-1 mainly affected the composition of the soil bacterial communities at the taxonomic level below the phylum. Its impact on soil fungal communities occurred at the phylum and below taxonomic levels. In addition, MWP-1 also significantly improved the diversity of soil bacterial and fungal communities (p < 0.05), and changed their functions. It also significantly altered the relative abundance of genes regulating phosphorus absorption and transport, inorganic phosphorus dissolution and organic phosphorus mineralization in the bacterial community (p < 0.05). It caused a significant increase in the relative abundance of the genes regulating nitrogen fixation and nitrification in nitrogen cycling (p < 0.05), but a significant decrease in the genes regulating phospholipase (p < 0.05). Although sequencing results indicated that Pseudomonas poae did not become the dominant species, its dissolved phosphorus elements can promote plant growth and development, enrich soil nutrient content, and affect the succession of microbial communities, enhance ecosystem stability, with an overall positive effect on soil remediation in the mining area.
Collapse
Affiliation(s)
- Yanru Wu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Wenquan Yang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jiancun Kou
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
- Key Laboratory of the Alpine Grassland Ecology in the Three Rivers Region (Qinghai University), Ministry of Education, Xining, China
| | - Qinyao Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Jiaqing Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Lu Chi
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yangcan Zhang
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Qian Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Yanghua Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Feng B, Ma J, Liu Y, Wang L, Zhang X, Zhang Y, Zhao J, He W, Chen Y, Weng L. Application of machine learning approaches to predict ammonium nitrogen transport in different soil types and evaluate the contribution of control factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116867. [PMID: 39154501 DOI: 10.1016/j.ecoenv.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
The loss of nitrogen in soil damages the environment. Clarifying the mechanism of ammonium nitrogen (NH4+-N) transport in soil and increasing the fixation of NH4+-N after N application are effective methods for improving N use efficiency. However, the main factors are not easily identified because of the complicated transport and retardation factors in different soils. This study employed machine learning (ML) to identify the main influencing factors that contribute to the retardation factor (Rf) of NH4+-N in soil. First, NH4+-N transport in the soil was investigated using column experiments and a transport model. The Rf (1.29 - 17.42) was calculated and used as a proxy for the efficacy of NH4+-N transport. Second, the physicochemical parameters of the soil were determined and screened using lasso and ridge regressions as inputs for the ML model. Third, six machine learning models were evaluated: Adaptive Boosting, Extreme Gradient Boosting (XGB), Random Forest, Gradient Boosting Regression, Multilayer Perceptron, and Support Vector Regression. The optimal ML model of the XGB model with a low mean absolute error (0.81), mean squared error (0.50), and high test r2 (0.97) was obtained by random sampling and five-fold cross-validation. Finally, SHapely Additive exPlanations, entropy-based feature importance, and permutation characteristic importance were used for global interpretation. The cation exchange capacity (CEC), total organic carbon (TOC), and Kaolin had the greatest effects on NH4+-N transport in the soil. The accumulated local effect offered a fundamental insight: When CEC > 6 cmol+ kg-1, and TOC > 40 g kg-1, the maximum resistance to NH4+-N transport within the soil was observed. This study provides a novel approach for predicting the impact of the soil environment on NH4+-N transport and guiding the establishment of an early-warning system of nutrient loss.
Collapse
Affiliation(s)
- Bingcong Feng
- College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling 712100, China; Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Yong Liu
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Long Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiaoyu Zhang
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yanning Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wenxiang He
- College of Natural Resources and Environment, Northwest Agriculture & Forestry University, Yangling 712100, China.
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
5
|
Kaur H, Mir RA, Hussain SJ, Prasad B, Kumar P, Aloo BN, Sharma CM, Dubey RC. Prospects of phosphate solubilizing microorganisms in sustainable agriculture. World J Microbiol Biotechnol 2024; 40:291. [PMID: 39105959 DOI: 10.1007/s11274-024-04086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Phosphorus (P), an essential macronutrient for various plant processes, is generally a limiting soil component for crop growth and yields. Organic and inorganic types of P are copious in soils, but their phyto-availability is limited as it is present largely in insoluble forms. Although phosphate fertilizers are applied in P-deficit soils, their undue use negatively impacts soil quality and the environment. Moreover, many P fertilizers are lost because of adsorption and fixation mechanisms, further reducing fertilizer efficiencies. The application of phosphate-solubilizing microorganisms (PSMs) is an environmentally friendly, low-budget, and biologically efficient method for sustainable agriculture without causing environmental hazards. These beneficial microorganisms are widely distributed in the rhizosphere and can hydrolyze inorganic and organic insoluble P substances to soluble P forms which are directly assimilated by plants. The present review summarizes and discusses our existing understanding related to various forms and sources of P in soils, the importance and P utilization by plants and microbes,, the diversification of PSMs along with mixed consortia of diverse PSMs including endophytic PSMs, the mechanism of P solubilization, and lastly constraints being faced in terms of production and adoption of PSMs on large scale have also been discussed.
Collapse
Affiliation(s)
- Harmanjit Kaur
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Sofi Javed Hussain
- Department of Botany, Central University of Kashmir, Ganderbal, Jammu, Kashmir, 191201, India
| | - Bhairav Prasad
- Department of Biotechnology, Chandigarh Group of Colleges, SAS Nagar, Landran, Punjab, 140307, India
| | - Pankaj Kumar
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| | - Becky N Aloo
- Department of Biological Sciences, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya
| | - Chandra Mohan Sharma
- Department of Botany and Microbiology, School of Life Sciences, H.N.B. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya, Haridwar, Uttarakhand, 249404, India
| |
Collapse
|
6
|
Zhang X, Chen F, Yan D, Zhu YG, Zhang Y, Zhang Z. Effects of wet-dry alternation on organic phosphorus dynamics and sediment characteristics in the intertidal zone of Nansi Lake. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116668. [PMID: 38964058 DOI: 10.1016/j.ecoenv.2024.116668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The study of the fractions and distribution characteristics of organic phosphorus in the sediment of the water level fluctuating zone of Nansi Lake is conducive to revealing the transformation of phosphorus in the lake, and has important scientific significance for controlling the eutrophication of Nansi Lake. Based on the sediment of the water level fluctuation zone of Nansi Lake. The improved Hedley continuous grading extraction, ultraviolet-visible spectroscopy and three-dimensional fluorescence spectroscope were used to characterize the structural characteristics and stability of organic molecules in the sediment, and to reflect the differences in the structure and stability of organophosphate in the water level fluctuating zone. Principal component analysis (PCA), Redundancy analysis (RDA) and correlation heat map analysis were used to analyze the correlation between phosphorus and physicochemical index. The results showed that the alternation between wet-dry conditions was more favorable for the release of phosphorus from sediment, compared to continuous inundation conditions. Moreover, the higher the frequency of wet-dry alternations, the greater the release of phosphorus in different forms from the sediment. Wet-dry alternation resulted in a reduction of substituent on the aromatic rings of sediment DOM (dissolved organic matter), and the continuous drying would increase the molecular weight and humidification degree of DOM in the sediment. Correlation analysis showed that NaOH-Po content in sediment was significantly negatively correlated with TP, IP, OP and various organophosphorus forms, indicating a close transformation relationship between phosphorus forms in sediment. The results can provide a scientific basis for controlling the release of endogenous phosphorus and the risk of eutrophication in Nansi Lake.
Collapse
Affiliation(s)
- Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fuai Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Dajiang Yan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Yong Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
7
|
Asrade DA, Kulhánek M, Balík J, Černý J, Sedlář O, Suran P. Phosphorus Availability and Balance with Long-Term Sewage Sludge and Nitrogen Fertilization in Chernozem Soil under Maize Monoculture. PLANTS (BASEL, SWITZERLAND) 2024; 13:2037. [PMID: 39124155 PMCID: PMC11314305 DOI: 10.3390/plants13152037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
A continuous long-term field experiment with maize monoculture was conducted to evaluate the P availability and balance, DM yield, P uptake, and P sorption parameters in chernozem soil after 27 years. A total of 2 doses of nitrogen (120 and 240 kg ha-1) were applied as mineral nitrogen (N120 and N240) and sewage sludge (SS120 and SS240) and compared with unfertilized control (Con). The aboveground biomass (DM) yields significantly increased in the order of Con < SS120 < SS240 < N120 < N240 treatments and the maximum P uptake was recorded for both N240 and SS240 (25.1 kg P ha-1) according to the nutrient application gradient. The N120 and N240 treatments positively influenced the DM yield but negatively influenced the P balance (-648 and -678 kg P ha-1 27 years-1), gradually bringing a risk of P deficiency in the soil. On the other hand, applications of SS120 and SS240 positively influenced the P availability and pseudototal (PAR) content in the soil, which resulted in a buildup of legacy P or an increase in P saturation greater than the environmental threshold value. Aluminum was found to be a major controlling sorption factor for P in our chernozem soil.
Collapse
Affiliation(s)
| | - Martin Kulhánek
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic; (D.A.A.); (J.B.); (J.Č.); (O.S.); (P.S.)
| | | | | | | | | |
Collapse
|
8
|
Jia M, Ma J, Zhou Q, Liu L, Jie X, Liu H, Qin S, Li C, Sui F, Fu H, Xie H, Wang L, Zhao P. Effect of calcium and phosphorus on ammonium and nitrate nitrogen adsorption onto iron (hydr)oxides surfaces: CD-MUSIC model and DFT computation. CHEMOSPHERE 2024; 357:142070. [PMID: 38641297 DOI: 10.1016/j.chemosphere.2024.142070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Calcium (Ca2+) and phosphorous (PO43-) significantly influence the form and effectiveness of nitrogen (N), however, the precise mechanisms governing the adsorption of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) are still lacking. This study employed batch adsorption experiments, charge distribution and multi-site complexation (CD-MUSIC) models and density functional theory (DFT) calculations to elucidate the mechanism by which Ca2+ and PO43- affect the adsorption of NH4+-N and NO3--N on the goethite (GT) surface. The results showed that the adsorption of NH4+-N on the GT exhibited an initial increase followed by a decrease as pH increased, peaking at a pH of 8.5. Conversely, the adsorption of NO3--N decreased with rising pH. According to the CD-MUSIC model, Ca2+ minimally affected the NH4+-N adsorption on the GT but enhanced NO3--N adsorption via electrostatic interaction, promoting the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. Similarly, PO43- inhibited the adsorption of ≡FeOH-NO3- and ≡Fe3O-NO3- species. However, PO43- boosted NH4+-N adsorption by facilitating the formation of ≡Fe3O-NH4+ via electrostatic interaction and site competition. DFT calculations indicates that although bidentate phosphate (BP) was beneficial to stabilize NH4+-N than monodentate phosphate (SP), SP-NH4+ was the main adsorption configuration at pH 5.5-9.5 owing the prevalence of SP on the GT surface under site competition of NH4+-N. The results of CD-MUSIC model and DFT calculation were verified mutually, and provide novel insights into the mechanisms underlying N fixation and migration in soil.
Collapse
Affiliation(s)
- Mengke Jia
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Jie Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Qiongqiong Zhou
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Lijie Liu
- Agricultural Ecology and Resource Protection Station, Agriculture and Rural Bureau, Xinxiang, Henan, 453000, China
| | - Xiaolei Jie
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Hongen Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Shiyu Qin
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Chang Li
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Fuqing Sui
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Haichao Fu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou, Zhejiang, 310003, China
| | - Long Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Peng Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
9
|
Pang F, Li Q, Solanki MK, Wang Z, Xing YX, Dong DF. Soil phosphorus transformation and plant uptake driven by phosphate-solubilizing microorganisms. Front Microbiol 2024; 15:1383813. [PMID: 38601943 PMCID: PMC11005474 DOI: 10.3389/fmicb.2024.1383813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Phosphorus (P) is an important nutrient for plants, and a lack of available P greatly limits plant growth and development. Phosphate-solubilizing microorganisms (PSMs) significantly enhance the ability of plants to absorb and utilize P, which is important for improving plant nutrient turnover and yield. This article summarizes and analyzes how PSMs promote the absorption and utilization of P nutrients by plants from four perspectives: the types and functions of PSMs, phosphate-solubilizing mechanisms, main functional genes, and the impact of complex inoculation of PSMs on plant P acquisition. This article reviews the physiological and molecular mechanisms of phosphorus solubilization and growth promotion by PSMs, with a focus on analyzing the impact of PSMs on soil microbial communities and its interaction with root exudates. In order to better understand the ability of PSMs and their role in soil P transformation and to provide prospects for research on PSMs promoting plant P absorption. PSMs mainly activate insoluble P through the secretion of organic acids, phosphatase production, and mycorrhizal symbiosis, mycorrhizal symbiosis indirectly activates P via carbon exchange. PSMs can secrete organic acids and produce phosphatase, which plays a crucial role in soil P cycling, and related genes are involved in regulating the P-solubilization ability. This article reviews the mechanisms by which microorganisms promote plant uptake of soil P, which is of great significance for a deeper understanding of PSM-mediated soil P cycling, plant P uptake and utilization, and for improving the efficiency of P utilization in agriculture.
Collapse
Affiliation(s)
- Fei Pang
- College of Agriculture, Guangxi University, Nanning, China
| | - Qing Li
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, India
| | - Zhen Wang
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Smart Agricultural College, Yulin Normal University, Yulin, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Deng-Feng Dong
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
10
|
Zhu F, Li T, Liu J. Transport of nZVI/copper synthesized by green tea extract in Cr(IV)-contaminated soil: modeling study and reduced toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20499-20509. [PMID: 38374508 DOI: 10.1007/s11356-024-32463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
In this study, nano-zero-valent iron/copper was synthesized by green tea extracts (GT-nZVI/Cu) and produced a stable suspension than nano-zero-valent iron synthesized by green tea extracts (GT-nZVI) injected into Cr(VI)-containing soil column. The equilibrium 1D-CDE model was successfully used to fit the penetration curves of Fe(tot), Fe(aq), and Fe(0) in order to determine the relevant parameters. The hydrodynamic dispersion coefficient of chromium-contaminated soil was 0.401 cm2·h-1, and the pore flow rate was 0.144 cm·h-1. The stable C/C0 of Fe(tot), Fe(aq), and Fe(0) in the effluent were retarded to 0.39, 0.79, and 0.11, respectively, compared to a ratio of 1 for the concentration of the tracer Cl- in the effluent to the concentration in the influent. Additionally, the 1D-CDE model describes the migration behavior of Cr(VI) with a high R2 (> 0.97). The obtained blocking coefficients declined gradually with increasing concentration of GT-nZVI/Cu suspension and decreasing concentration of Cr(VI). The content of reduced chromium in the soil decreased from 2.986 to 1.121 after remediation, while the content of more stable oxidizable chromium and residual chromium increased from 2.975 and 20.021 to 16.471 and 27.612. The phytotoxicity test showed that mung bean seeds still had a germination rate of 90% (control of 100%), root length of 29.63 mm (control of 35.25 mm), and stem length of 17.9 cm (control of 18.96 cm) after remediation with GT-nZVI/Cu. These indicated that GT-nZVI/Cu was effective in immobilizing Cr(VI) in the soil column and reduced the ecological threat. This study provides an analytical basis and theoretical model for the migration of chromium-contaminated soil in practical application.
Collapse
Affiliation(s)
- Fang Zhu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China.
| | - Ting Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China
| | - Junxiang Liu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Jinzhong, Shanxi, 030600, People's Republic of China
| |
Collapse
|
11
|
Bagheri H, Izady A, Zare Abyaneh H. Ability of equilibrium and non-equilibrium models to simulate the effects of vermicompost and hydraulic conditions on nitrate and DOC leaching. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 38296816 DOI: 10.1080/09593330.2024.2309476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
ABSTRACTThis study aims to model the effects of saturated-unsaturated flow rates and initial moisture content on nitrate and dissolved organic carbon (DOC) leaching in soils amended and unamended with vermicompost using equilibrium and non-equilibrium models. Flow rates ranging from 0.4 to 5.1 cm3/min were applied to the columns filled with the soils under initial saturated and air-dried conditions. The leaching of nitrate and DOC was simulated using a one-dimensional advection-dispersion model coupled with the equilibrium and non-equilibrium models. The accuracy of equilibrium without distribution coefficient (KD), equilibrium with KD, one-site, two-site and dual porosity models for modelling the nitrate leaching was 21.8, 33.6, 67.5, 82.2 and 83.9%, respectively, indicating the higher accuracy of dual porosity and two-site models compared to the other models. According to the results of the two-site model, the kinetic release was the most dominant process in all leaching experiments due to the fractions of equilibrium soil sites (F) < 0.5. Vermicompost decreased the diffusion coefficient (D0), distribution coefficient (KD), first-order rate constant (β) and retardation factor (RF). In comparison to the air-dried condition, the initial saturated condition compared to the air-dried condition resulted in less F and D0, higher KD and RF lower β for nitrate and lower KD and RF and higher β for DOC. Leaching using a desaturation flow rate of 0.4 cm3/min was more time-dependent, which reduced RF values from 22.6 to 1.09 and 21.5 to 3.68 for nitrate and DOC, respectively. Moreover, the desaturation flow rate reduced D0 and KD and increased β.
Collapse
Affiliation(s)
- Hossein Bagheri
- Faculty of Agriculture, Department of Water Engineering, Bu-Ali Sina University, Hamedan, Iran
| | - Azizallah Izady
- Water Research Center, Sultan Qaboos University, Muscat, Oman
| | - Hamid Zare Abyaneh
- Faculty of Agriculture, Department of Water Engineering, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
12
|
Ma J, Li J, Weng L, Ouyang X, Chen Y, Li Y. Phosphorus-Enhanced and Calcium-Retarded Transport of Ferrihydrite Colloid: Mechanism of Electrostatic Potential Changes Regulated via Adsorption Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4219-4230. [PMID: 36848599 DOI: 10.1021/acs.est.2c09670] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO43-) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC transport, whereas Ca loaded onto P-FHC retarded FHC transport. Phosphate adsorption provided a negative potential on the FHC, while Ca added to P-FHC led to electrostatic screening, compression of the electric double layer, and formation of Ca5(PO4)3OH followed by heteroaggregation at pH ≥ 6.0. The monodentate and bidentate P surface complexes coexisted, and Ca mainly formed a ternary complex with bidentate P (≡(FeO)2PO2Ca). The unprotonation bidentate P at the Stern 1-plane had a considerable negative potential at the Van der Waals molecular surface. Extending the potential effect to the outer layer of FHC, the potential at the Stern 2-plane and zeta potential exhibited a corresponding change, resulting in a change in FHC mobility, which was validated by comparison of experimental results, DFT calculations, and CD-MUSIC models. Our results highlighted the influence of P and Ca on FHC transport and elucidated their interaction mechanisms based on quantum chemistry and colloidal chemical interface reactions.
Collapse
Affiliation(s)
- Jie Ma
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jinbo Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Liping Weng
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Department of Soil Quality, Wageningen University, P.O. Box 47, Wageningen 6700 AA, The Netherlands
| | - Xiaoxue Ouyang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Institute of Agricultural Product Quality, Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Yali Chen
- Key Laboratory for Environmental Factors Control of Agro-Product Quality Safety, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Yao X, Hui D, Hou E, Xiong J, Xing S, Deng Q. Differential responses and mechanistic controls of soil phosphorus transformation in Eucalyptus plantations with N fertilization and introduced N 2 -fixing tree species. THE NEW PHYTOLOGIST 2023; 237:2039-2053. [PMID: 36513603 DOI: 10.1111/nph.18673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Introducing N2 -fixing tree species into Eucalyptus plantations could replace nitrogen (N) fertilization to maintain high levels of N consumption and productivity. However, N enrichment may exacerbate phosphorus (P) limitation as Eucalyptus robusta Smith is extensively planted in P-poor tropical and subtropical soils. We conducted a field experiment in a pure plantation of Eucalyptus urophylla × grandis to investigate the impacts of N fertilization and introduced an N2 -fixing tree of Dalbergia odorifera T. Chen on soil P transformation. Nitrogen fertilization significantly enhanced soil occluded P pool and reduced the other P pools due to acidification-induced pH-sensitive geochemical processes, lowering Eucalyptus leaf P concentration with higher N : P ratio. By contrast, introduced N2 -fixing tree species did not change soil pH, labile inorganic P pool, and Eucalyptus leaf N : P ratio, even enhanced organic P pools and reduced occluded P pool probably due to altering microbial community composition particularly stimulating arbuscular mycorrhiza fungal abundance. Our results revealed differential responses and mechanistic controls of soil P transformation in Eucalyptus plantations with N fertilization and introduced N2 -fixing tree species. The dissolution of occluded P pool along with organic P accumulation observed in the mixed plantations may represent a promising future to better manage soil P availability.
Collapse
Affiliation(s)
- Xianyu Yao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong, 510650, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong, 510650, China
| | - Junfei Xiong
- Experimental Center of Topical Forestry, Chinese Academy of Forestry, Pingxiang, 532600, China
| | - Shuo Xing
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong, 510650, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong, 510650, China
| |
Collapse
|
14
|
Sundha P, Basak N, Rai AK, Yadav RK, Sharma PC. Irrigation water quality, gypsum, and city waste compost addition affect P dynamics in saline-sodic soils. ENVIRONMENTAL RESEARCH 2023; 216:114559. [PMID: 36279917 DOI: 10.1016/j.envres.2022.114559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The amendments used for sodicity reclamation also profoundly influence P dynamics and leaching losses. This study characterized the effect of irrigation water quality on P dynamics and leaching from saline-sodic soil during reclamation utilizing gypsum alone or in combination with manure and city compost. Changes in properties of unleached and leached soils were fitted with labile P pools using redundancy analysis. The relation between leachate properties and P loss was explained by means of monitoring leachate properties up to ten pore volumes. During incubation, the water-extractable P (PH2O) concentration was greater than Olsen's P (PNaHCO3) in all treatments. The PNaHCO3 decreased in proportion to the amount of gypsum applied. Applying the organics with gypsum increased the PNaHCO3, PH2O, and organic P concentration compared to gypsum alone. The labile P pools in soil were positively correlated with HCO3- content (r = 0.39-0.77; P < 0.05) of leached and unleached soils. Adding gypsum and compost caused a 10-14% decrease in cumulative P leaching. The cumulative P leaching were greater with rainwater compared to saline water of SAR (sodium adsorption ratio) 5 and 15. The CO32-, HCO3-, pH, and SO42-content of the leachate explained about 71% variability in total P leaching (adj. R2 = 0.71; P < 0.001). This study concludes that low electrolyte water had a greater risk of P leaching and associated environmental pollution. Leaching of the saline-sodic soil amended with gypsum and city waste compost with low SAR saline water can reduce P leaching compared to good quality rainwater.
Collapse
Affiliation(s)
- Parul Sundha
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India
| | - Nirmalendu Basak
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India.
| | - Arvind Kumar Rai
- ICAR-Central Soil Salinity Research Institute, Karnal, 132 001, Haryana, India.
| | | | | |
Collapse
|
15
|
Chen Y, Huang L, Zhang R, Ma J, Guo Z, Zhao J, Weng L, Li Y. Retardation factors in controlling the transport of inorganic, organic, and particulate phosphorus in fluvo-aquic soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114402. [PMID: 36516624 DOI: 10.1016/j.ecoenv.2022.114402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Excessive application of fertilizers has caused a high load of phosphorus (P) in the North China Plain. The fate of P and its effects on aquatic ecosystems depend on its chemical speciation in soils. However, few studies systematically investigated the transport and retardation of different P species in the fluvo-aquic soil. In this study, the transport of inorganic P (orthophosphate, PO4), organic P (phytic acid, PA) and particulate P (hydroxyapatite nanoparticles, nHAP) in the fluvo-aquic soil were investigated by column experiments, and their retardation from major soil components such as kaolin, CaCO3, Al2O3, and goethite (GT) was also investigated by monitoring breakthrough curves and fitting transport models. The transport of P species in fluvo-aquic soil followed the order of PO4 > PA > nHAP. A high fraction of increased clay and mineral particle-associated P (P-E) was observed for PO4 and PA; while significant Ca-associated P (P-Ca) for nHAP. Under the experimental conditions, both CaCO3 and GT were the most influential factors for PO4, PA, and nHAP retention. Goethite strongly inhibited PO4 transport due to its high PO4 adsorption capacity, while CaCO3 strongly inhibited PA transport due to its strong association with PA under alkaline conditions. Both CaCO3 and GT can severely inhibit nHAP transport due to the favorable electrostatic conditions as well as the Ca2+ bridging effect. These results indicated that CaCO3 played a key role in regulating the retention of organic P and particulate P in the calcareous soil, and also suggested the important role of Fe (hydr)oxides in controlling the transport of inorganic P, which could out-compete that of CaCO3.
Collapse
Affiliation(s)
- Yali Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lei Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Ran Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Jie Ma
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Zhiying Guo
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Junying Zhao
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Peng Y, Zhang B, Guan CY, Jiang X, Tan J, Li X. Identifying biotic and abiotic processes of reversing biochar-induced soil phosphorus leaching through biochar modification with MgAl layered (hydr)oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157037. [PMID: 35777556 DOI: 10.1016/j.scitotenv.2022.157037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Biochar (BC) as a increasing widely adopted soil amendments showed potential threat to soil P leaching, but the relevant mechanisms were not clear enough and relevant strategy should be proposed to address the P leaching induced by BC application. In this study, effects of ordinary corn straw BC, and a fabricated Mg/Al-LDHs modified biochar (LBC) on soil P availability, adsorption, fraction and mobility were compared and investigated by conducting the column and incubation experiments at biochar to soil rate of 1 %, 2 % and 4 % (w/w). Chemical sequential extraction methods and various solid-state method (i.e., three-dimensional excitation emission matrix (EEM), x-ray diffraction (XRD), scanning electron micrograph (SEM) and P K-edge X-ray absorption near edge structure (XANES)) were utilized to give deep insights into the P mobilization and immobilization mechanisms by respectively applying the BC and LBC. Results of incubation experiments showed that applying the LBC reduced the labile P with significant CaP transformation to Al-retained P, while ordinary BC promoted the Fe/Al-P transformation to labile dibasic calcium phosphate and monobasic calcium phosphate evidenced by the EEM analysis, in-situ XANES investigation and chemical sequential extraction methods. Results of phosphatase and microbial analyses indicated that the decreased labile P after 30 days' incubation and the mitigated P leaching in LBC treatment were dominantly ascribed to abiotic processes of inorganic P transformation and (de)sorption. This research gave deep insights into abiotic and biotic processes of ordinary biochar promoting soil P leaching, and important implications for applying engineered biochar in reducing P leaching and improving soil productivity.
Collapse
Affiliation(s)
- Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| | - Baige Zhang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan 260, Taiwan
| | - Xiaoqian Jiang
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Jinfang Tan
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Modern Agricultural Innovation Center, Henan Institute of Sun Yat-sen University, China.
| |
Collapse
|
17
|
Effects of Combined Applications of Biogas Slurry and Biochar on Phosphorus Leaching and Fractionations in Lateritic Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14137924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Diverse soil phosphorus (P)-leaching phenomena induced by environmental disturbance have gained increasing attention. Two kinds of typical organic materials, biochar and biogas slurry, (BS) are widely utilized to amend agricultural soil, but there is little research that gives insight into their co-effects on soil P-leaching and corresponding mechanisms. Herein, a total of six treatments (viz., control, 2% (w/w) biochar, low ratio BS with or without 2% (w/w) biochar, high ratio BS with or without 2% (w/w) biochar) were conducted to investigate the P-leaching and fraction transformation mechanisms. The column experiment results showed that compared to control, sole BS application or biochar both can slightly enhance the soil-P loss by 134.8% and 39.8%. High ratios of BS induced higher P loss than the low ratios of BS by 125.1%. In comparison with the sole BS treatment, combined BS and biochar application increase P loss but result in less soil leaching of basic cations. The incubation experiment results showed that the enhanced P-leaching in combined BS and biochar treatment is probably attributable to the enhanced soil pH, decreased DPS, soil P adsorption capacity, and transformation of moderately labile Fe–P into labile P. This research helps in understanding the abiotic process of biochar and BS in promoting soil P-leaching and soil-P management using biochar and biogas slurry.
Collapse
|
18
|
Hu Y, Chen J, Hui D, Wang YP, Li J, Chen J, Chen G, Zhu Y, Zhang L, Zhang D, Deng Q. Mycorrhizal fungi alleviate acidification-induced phosphorus limitation: Evidence from a decade-long field experiment of simulated acid deposition in a tropical forest in south China. GLOBAL CHANGE BIOLOGY 2022; 28:3605-3619. [PMID: 35175681 DOI: 10.1111/gcb.16135] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
South China has been experiencing very high rate of acid deposition and severe soil acidification in recent decades, which has been proposed to exacerbate the regional ecosystem phosphorus (P) limitation. We conducted a 10-year field experiment of simulated acid deposition to examine how acidification impacts seasonal changes of different soil P fractions in a tropical forest with highly acidic soils in south China. As expected, acid addition significantly increased occluded P pool but reduced the other more labile P pools in the dry season. In the wet season, however, acid addition did not change microbial P, soluble P and labile organic P pools. Acid addition significantly increased exchangeable Al3+ and Fe3+ and the activation of Fe oxides in both seasons. Different from the decline of microbial abundance in the dry season, acid addition increased ectomycorrhizal fungi and its ratio to arbuscular mycorrhiza fungi in the wet season, which significantly stimulated phosphomonoesterase activities and likely promoted the dissolution of occluded P. Our results suggest that, even in already highly acidic soils, the acidification-induced P limitation could be alleviated by stimulating ectomycorrhizal fungi and phosphomonoesterase activities. The differential responses and microbial controls of seasonal soil P transformation revealed here should be implemented into ecosystem biogeochemical model for predicting plant productivity under future acid deposition scenarios.
Collapse
Affiliation(s)
- Yuanliu Hu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Ying-Ping Wang
- CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - Jianling Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Jingwen Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guoyin Chen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiren Zhu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Leiyi Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Deqiang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Deng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
19
|
Li Y, Zhao Y, Cheng K, Yang F. Effects of biochar on transport and retention of phosphorus in porous media: Laboratory test and modeling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118788. [PMID: 34990736 DOI: 10.1016/j.envpol.2022.118788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Given the complexity of soil components, a detailed understanding of the effects of single factors on phosphorus transport and retention will play a key role in understanding the environmental effects of phosphorus. In this work, quartz sand columns (considering five factors: doping rate, pH, particle size, ionic strength and cation type), combined with a two-site nonequilibrium transport model (TSM), were used to investigate phosphate (P) transport behavior. The results show that changes in doping ratio (0.4%-1.6%) and pH (5-9) have a notable effect on the transport of P, while, particle size of quartz sand hardly impacts the transport. When biochar was added at 1.6%, the surface of biochar increased the P fixation rate by about 37% through direct interaction with phosphate and bridging action with metal ions. As the morphology of P changed under different pH conditions, a part of P was immobilized in the form of precipitation. The immobilization of P was further enhanced with the increase of ionic strength. Compared with the direct interaction of P with biochar in Na+ solution, Ca2+ and Mg2+ solutions are more likely to adsorb P. Meanwhile, the TSM model also fits the transport behavior well. This study provides a perspective for evaluating the environmental behavior of P in the porous media interaction with biochar.
Collapse
Affiliation(s)
- Yuelei Li
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Ying Zhao
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China; School of Engineering, Northeast Agricultural University, Harbin, 150030, China
| | - Fan Yang
- School of Water Conservancy & Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin, 150030, China.
| |
Collapse
|