1
|
Davis CW, Brown DM, Swansborough C, Hughes CB, Camenzuli L, Saunders LJ, Lyon DY. Predicting Hydrocarbon Primary Biodegradation in Soil and Sediment Systems Using System Parameterization and Machine Learning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1352-1363. [PMID: 38546229 DOI: 10.1002/etc.5857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 02/24/2024] [Indexed: 06/04/2024]
Abstract
Technical complexity associated with biodegradation testing, particularly for substances of unknown or variable composition, complex reaction products, or biological materials (UVCB), necessitates the advancement of non-testing methods such as quantitative structure-property relationships (QSPRs). Models for describing the biodegradation of petroleum hydrocarbons (HCs) have been previously developed. A critical limitation of available models is their inability to capture the variability in biodegradation rates associated with variable test systems and environmental conditions. Recently, the Hydrocarbon Biodegradation System Integrated Model (HC-BioSIM) was developed to characterize the biodegradation of HCs in aquatic systems with the inclusion of key test system variables. The present study further expands the HC-BioSIM methodology to soil and sediment systems using a database of 2195 half-life (i.e., degradation time [DT]50) entries for HCs in soil and sediment. Relevance and reliability criteria were defined based on similarity to standard testing guidelines for biodegradation testing and applied to all entries in the database. The HC-BioSIM soil and sediment models significantly outperformed the existing biodegradation HC half-life (BioHCWin) and virtual evaluation of chemical properties and toxicities (VEGA) quantitative Mario Negri Institute for Pharmacological Research (IRFMN) models in soil and sediment. Average errors in predicted DT50s were reduced by up to 6.3- and 8.7-fold for soil and sediment, respectively. No significant bias as a function of HC class, carbon number, or test system parameters was observed. Model diagnostics demonstrated low variability in performance and high consistency of parameter usage/importance and rule structure, supporting the generalizability and stability of the models for application to external data sets. The HC-BioSIM provides improved accuracy of Persistence categorization, with correct classification rates of 83.9%, and 90.6% for soil and sediment, respectively, demonstrating a significant improvement over the existing BioHCWin (70.7% and 58.6%) and VEGA (59.5% and 18.5%) models. Environ Toxicol Chem 2024;43:1352-1363. © 2024 Concawe. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Craig W Davis
- ExxonMobil Biomedical Sciences, Annandale, New Jersey, USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Williams-Clayson AM, Vane CH, Jones MD, Thomas R, Taylor C, Beriro DJ. Dermal absorption of high molecular weight parent and alkylated polycyclic aromatic hydrocarbons from manufactured gas plant soils using in vitro assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133858. [PMID: 38493626 DOI: 10.1016/j.jhazmat.2024.133858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
An enhanced in vitro human dermal bioavailability method was developed to measure the release of twenty parent and seven alkylated high molecular weight (HMW) polycyclic aromatic hydrocarbons (PAHs) from contaminated soils collected from five former manufactured Gas Plants (MGP) in England. GC-MS/MS was used to quantify HMW PAHs in soil, Strat-M artificial membrane representing skin, and synthetic receptor solution (RS) representing systemic circulation at 1-h, 10-h, and 24-h timesteps. Fluoranthene and pyrene exhibited the highest fluxes from soils to membrane (ranging from 9.5 - 281 ng/cm2/h) and soil to RS (
Collapse
|
3
|
Nakken CL, Meier S, Mjøs SA, Bijlsma L, Rowland SJ, Donald CE. Discovery of polycyclic aromatic acid metabolites in fish exposed to the petroleum compounds 1-methylphenanthrene and 1,4-dimethylphenanthrene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170496. [PMID: 38296090 DOI: 10.1016/j.scitotenv.2024.170496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
Most of the polycyclic aromatic hydrocarbons (PAHs) in petroleum are alkylated (alkyl PAHs), still the metabolism of these alkyl PAHs to the expected acid products (polycyclic aromatic acids; PAAs) has yet to be demonstrated in oil-exposed fish. Should these compounds be discovered in fish as they have in ragworm, rodents, and humans, they could present an indicative biomarker for assessing oil pollution. In this study, the ability to biotransform alkyl PAHs to PAAs was examined on Atlantic haddock (Melanogrammus aeglefinus). Exposure to phenanthrene, 1-methyphenanthrene or 1,4-dimethylphenanthrene was performed via intraperitoneal injection. An Ion Mobility Quadrupole Time-Of-Flight Mass Spectrometer (IMS-Q-TOF MS) was used in exploratory analysis of extracted bile samples. Acquisition of four-dimensional information by coupling liquid chromatography with the IMS-Q-TOF MS and in-silico prediction for feature prioritization in the data processing workflow allowed several tentative identifications with high degree of confidence. This work presents the first detection of PAAs in fish and suggests the importance of investigating alkyl PAHs in ecotoxicological studies of oil-polluted fish environments.
Collapse
Affiliation(s)
- Charlotte L Nakken
- Department of Chemistry, University of Bergen, Bergen, Norway; Marine Toxicology, Institute of Marine Research, Bergen, Norway
| | - Sonnich Meier
- Marine Toxicology, Institute of Marine Research, Bergen, Norway
| | - Svein A Mjøs
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Lubertus Bijlsma
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain
| | - Steven J Rowland
- Petroleum & Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth, Plymouth, PL4 8AA, Devon, UK
| | - Carey E Donald
- Marine Toxicology, Institute of Marine Research, Bergen, Norway.
| |
Collapse
|
4
|
Choi YH, Kim L, Huh DA, Moon KW, Kang MS, Lee YJ. Association between oil spill clean-up work and thyroid cancer: Nine years of follow-up after the Hebei Spirit oil spill accident. MARINE POLLUTION BULLETIN 2024; 199:116041. [PMID: 38237246 DOI: 10.1016/j.marpolbul.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024]
Abstract
In 2007, an unprecedented oil spill occurred in Taean, Korea. Although crude oil contains chemicals that could increase thyroid cancer risk, few studies have examined the long-term effects of oil exposure during clean-up and thyroid cancer incidence. We investigated the long-term thyroid cancer incidence among participants involved in clean-up work. 1798 participants engaged in at least two surveys since the baseline was tracked from 2008 to 2018. Participants reported the days they participated in oil clean-up works and cancer diagnoses. Cox proportional hazard models were used to estimate the hazard ratios between clean-up work duration and thyroid cancer. Over the 9-year follow-up, 30 thyroid cancer cases were diagnosed. A positive association was observed between clean-up duration and thyroid cancer risk. This effect was more pronounced among residents living <50 m from traffic roads. Our results indicate that crude oil clean-up work participation may increase the thyroid cancer risk.
Collapse
Affiliation(s)
- Yun-Hee Choi
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Lita Kim
- Department of Health and Safety Convergence Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea; BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da-An Huh
- Institute of Health Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Kyong Whan Moon
- BK21 FOUR R&E Center for Learning Health System, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Health and Environmental Science, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min-Sung Kang
- Institute of Environmental Medicine, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea
| | - Yong-Jin Lee
- Regional Environmental Health Center, Soonchunhyang University Cheonan Hospital, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea; Department of Occupational & Environmental Medicine, Soonchunhyang University, 31 Suncheonhyang 6-gil, Dongnam-gu, Cheonan-si 31151, Republic of Korea.
| |
Collapse
|
5
|
Kottuparambil S, Ashok A, Barozzi A, Michoud G, Cai C, Daffonchio D, Duarte CM, Agusti S. Tracking the early signals of crude oil in seawater and plankton after a major oil spill in the Red Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:69150-69164. [PMID: 37133655 DOI: 10.1007/s11356-023-27111-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/15/2023] [Indexed: 05/04/2023]
Abstract
Understanding the immediate impacts of oil spills is essential to recognizing their long-term consequences on the marine environment. In this study, we traced the early (within one week) signals of crude oil in seawater and plankton after a major oil spill in October 2019 in the Red Sea. At the time of sampling, the plume had moved eastward, but we detected significant signs of incorporation of oil carbon into the dissolved organic carbon pool, resulting in a 10-20% increase in the ultraviolet (UV) absorption coefficient (a254) of chromophoric dissolved organic matter (CDOM), elevated oil fluorescence emissions, and depletion of the carbon isotope composition (δ13C) of the seawater. The abundance of the picophytoplankton Synechococcus was not affected, but the proportion of low nucleic acid (LNA) bacteria was significantly higher. Moreover, specific bacterial genera (Alcanivorax, Salinisphaera, and Oleibacter) were enriched in the seawater microbiome. Metagenome-assembled genomes (MAGs) suggested that such bacteria presented pathways for growing on oil hydrocarbons. Traces of polycyclic aromatic hydrocarbons (PAHs) were also detected in zooplankton tissues, revealing the rapid entry of oil pollutants into the pelagic food web. Our study emphasizes the early signs of short-lived spills as an important aspect of the prediction of long-term impacts of marine oil spills.
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Ananya Ashok
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alan Barozzi
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Grégoire Michoud
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chunzhi Cai
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Susana Agusti
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
6
|
Picone M, Russo M, Distefano GG, Baccichet M, Marchetto D, Volpi Ghirardini A, Lunde Hermansson A, Petrovic M, Gros M, Garcia E, Giubilato E, Calgaro L, Magnusson K, Granberg M, Marcomini A. Impacts of exhaust gas cleaning systems (EGCS) discharge waters on planktonic biological indicators. MARINE POLLUTION BULLETIN 2023; 190:114846. [PMID: 36965268 PMCID: PMC10152311 DOI: 10.1016/j.marpolbul.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/05/2023]
Abstract
Exhaust Gas Cleaning Systems (EGCS), operating in open-loop mode, continuously release acidic effluents (scrubber waters) to marine waters. Furthermore, scrubber waters contain high concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs, potentially affecting the plankton in the receiving waters. Toxicity tests evidenced significant impairments in planktonic indicators after acute, early-life stage, and long-term exposures to scrubber water produced by a vessel operating with high sulphur fuel. Acute effects on bacterial bioluminescence (Aliivibrio fischeri), algal growth (Phaeodactylum tricornutum, Dunaliella tertiolecta), and copepod survival (Acartia tonsa) were evident at 10 % and 20 % scrubber water, while larval development in mussels (Mytilus galloprovincialis) showed a 50 % reduction at ∼5 % scrubber water. Conversely, larval development and reproductive success of A. tonsa were severely affected at scrubber water concentrations ≤1.1 %, indicating the risk of severe impacts on copepod populations which in turn may result in impairment of the whole food web.
Collapse
Affiliation(s)
- Marco Picone
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy.
| | - Martina Russo
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Gabriele Giuseppe Distefano
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Marco Baccichet
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Davide Marchetto
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Annamaria Volpi Ghirardini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Anna Lunde Hermansson
- Chalmers University of Technology, Department of Mechanics and Maritime Sciences, Hörselgången 4, 41756 Göteborg, Sweden
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig lluís companys 23, 08010 Barcelona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Girona (UDG), Girona, Spain
| | - Elisa Garcia
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003 Girona, Spain; University of Girona (UDG), Girona, Spain
| | - Elisa Giubilato
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Loris Calgaro
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| | - Kerstin Magnusson
- Swedish Environmental Research Institute (IVL), Kristineberg Marine Research Station, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Maria Granberg
- Swedish Environmental Research Institute (IVL), Kristineberg Marine Research Station, Kristineberg 566, 451 78 Fiskebäckskil, Sweden
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatic, and Statistics, Ca' Foscari University Venice, via Torino 155, 30172 Venezia-Mestre, Italy
| |
Collapse
|
7
|
de Almeida KA, de Moura FR, Lima JV, Garcia EM, Muccillo-Baisch AL, Ramires PF, Penteado JO, da Luz Mathias M, Dias D, da Silva Júnior FMR. Oxidative damage in the Vesper mouse (Calomys laucha) exposed to a simulated oil spill-a multi-organ study. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:502-511. [PMID: 37118609 DOI: 10.1007/s10646-023-02657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Small wild mammals have been used to measure the damage caused by exposure to oil-contaminated soil, including deer mice. However, the study of toxic effects of crude oil using oxidative damage biomarkers in the wild rodent Calomys laucha (Vesper mouse) is absent. This investigation aimed to evaluate the effects of acute exposure to contaminated soil with different concentrations of crude oil (0, 1, 2, 4 and 8% w/w), simulating an accidental spill, using oxidative stress biomarkers in the liver, kidneys, lungs, testes, paw muscle, and lymphocytes of C. laucha. Animals exposed to the contaminated soil showed increases in lipid peroxidation and protein carbonylation at the highest exposure concentrations in most organ homogenates analyzed and also in blood cells, but responses to total antioxidant capacity were tissue-dependent. These results showed that acute exposure to oil-contaminated soil caused oxidative damage in C. laucha and indicate these small mammals may be susceptible to suffer the impacts of such contamination in its occurrence region, threatening the species' survival.
Collapse
Affiliation(s)
- Krissia Aparecida de Almeida
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Fernando Rafael de Moura
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Juliane Ventura Lima
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Edariane Menestrino Garcia
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Paula Florencio Ramires
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Julia Oliveira Penteado
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Maria da Luz Mathias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Deodália Dias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Flavio Manoel Rodrigues da Silva Júnior
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil.
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
8
|
Sørensen L, Schaufelberger S, Igartua A, Størseth TR, Øverjordet IB. Non-target and suspect screening reveal complex pattern of contamination in Arctic marine zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161056. [PMID: 36565880 DOI: 10.1016/j.scitotenv.2022.161056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Although increasing, there is still limited knowledge of the presence of 'contaminants of emerging concern' in Arctic marine biota, particularly in lower trophic species. In the present study, we have applied a novel pipeline to investigate the presence of contaminants in a variety of benthic and pelagic low-trophic organisms: amphipods, copepods, arrow worms and krill. Samples collected in Kongsfjorden in Svalbard in 2018 were subject to extraction and two-dimensional gas chromatography coupled to high-resolution mass spectrometry (GC×GC-HRMS). Tentatively identified compounds included plastic additives, antioxidants, antimicrobials, flame retardants, precursors, production solvents and chemicals, insecticides, and pharmaceuticals. Both legacy contaminants (PAHs, PCBs, PBDEs, hexachlorobenzene) as well as novel and emerging contaminants (triclosan, bisphenol A, and ibuprofen) were quantified in several species using target analysis by GC-MS/MS. The significance of these discoveries is discussed considering the potential for detrimental effects caused by these chemicals, as well as suggested local and distant sources of the components to the Arctic environment.
Collapse
Affiliation(s)
| | - Sonja Schaufelberger
- University of Koblenz-Landau, Institute for Environmental Sciences, Germany; University of Gothenburg, Department of Biological and Environmental Sciences, Sweden
| | - Amaia Igartua
- SINTEF Ocean, Climate and Environment, Trondheim, Norway
| | | | | |
Collapse
|
9
|
Jin F, Wang Y, Yu F, Liu X, Zhang M, Li Z, Yao Z, Cong Y, Wang J. Acute and Chronic Effects of Crude Oil Water-Accommodated Fractions on the Early Life Stages of Marine Medaka ( Oryzias melastigma, McClelland, 1839). TOXICS 2023; 11:236. [PMID: 36977001 PMCID: PMC10053065 DOI: 10.3390/toxics11030236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Oil spill is a major marine environmental pollution issue. Research regarding the long-term effects of oil spills on the early life stage of marine fish is still limited. In this study, the potential adverse impact of crude oil from one oil spill accident which occurred in the Bohai Sea on the early life stages of marine medaka (Oryzias melastigma, McClelland, 1839) was evaluated. A 96-h acute test (larvae) and a 21-d chronic test (embryo-larvae) of water-accommodated fractions (WAFs) from crude oil were conducted, respectively. The results of the acute test showed that only the highest concentration of WAFs (100.00%) significantly affected the mortality of larvae (p < 0.01) and that the 96 h-LC50 was 68.92% (4.11 mg·L-1 expressed as total petroleum hydrocarbons (TPHs)). Larval heart demonstrated histopathological alterations in all WAF-exposed groups. The chronic test results showed that, except for larval mortality, the total hatching success (%)/hatching time of embryos in WAF treatments was not significantly different from those of the control group (p > 0.05), and no malformation was found in surviving larvae after 21 d of exposure. Nevertheless, the exposed embryos and larvae in the highest concentration of WAFs (60.00%) demonstrated significantly reduced heart rate (p < 0.05) and increased mortality (p < 0.01), respectively. Overall, our results indicated that both acute and chronic WAF exposures had adverse impacts on the survival of marine medaka. In the early life stages, the heart of the marine medaka was the most sensitive organ which showed both structural alteration and cardiac dysfunction.
Collapse
Affiliation(s)
- Fei Jin
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Ying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Fuwei Yu
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, China
| | - Xing Liu
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Mingxing Zhang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Zhaochuan Li
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Ziwei Yao
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Yi Cong
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| | - Juying Wang
- Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, No. 42 Linghe Street, Dalian 116023, China
| |
Collapse
|
10
|
Lai A, Clark AM, Escher BI, Fernandez M, McEwen LR, Tian Z, Wang Z, Schymanski EL. The Next Frontier of Environmental Unknowns: Substances of Unknown or Variable Composition, Complex Reaction Products, or Biological Materials (UVCBs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7448-7466. [PMID: 35533312 PMCID: PMC9228065 DOI: 10.1021/acs.est.2c00321] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.
Collapse
Affiliation(s)
- Adelene Lai
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
- Institute
for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany
| | - Alex M. Clark
- Collaborative
Drug Discovery Inc., 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Beate I. Escher
- Helmholtz
Centre for Environmental Research GmbH—UFZ, Permoserstraße 15, 04318 Leipzig, Germany
- Environmental
Toxicology, Center for Applied Geosciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Fernandez
- Environment
and Climate Change Canada, 401 Burrard Street, Vancouver, British Columbia V6C 3R2, Canada
| | - Leah R. McEwen
- Cornell
University, Ithaca, New York 14850, United States
- International
Union of Pure and Applied Chemistry, Research Triangle Park, North Carolina 27709, United States
| | - Zhenyu Tian
- Department
of Chemistry and Chemical Biology, Department of Marine and Environmental
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zhanyun Wang
- Empa—Swiss
Federal Laboratories for Materials Science and Technology, Technology
and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
- Chair
of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Emma L. Schymanski
- Luxembourg
Centre for Systems Biomedicine (LCSB), University
of Luxembourg, 6 avenue du Swing, 4367 Belvaux, Luxembourg
| |
Collapse
|
11
|
Redman AD, Bietz J, Davis JW, Lyon D, Maloney E, Ott A, Otte JC, Palais F, Parsons JR, Wang N. Moving persistence assessments into the 21st century: A role for weight-of-evidence and overall persistence. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:868-887. [PMID: 34730270 PMCID: PMC9299815 DOI: 10.1002/ieam.4548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/06/2021] [Accepted: 10/21/2021] [Indexed: 05/29/2023]
Abstract
Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Jens Bietz
- Clariant Produkte (Deutschland) GmbHSulzbachGermany
| | - John W. Davis
- Dow, Inc.MidlandMichiganUSA
- John Davis Consulting, LLCMidlandMichiganUSA
| | | | | | - Amelie Ott
- Newcastle University, School of EngineeringNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | | | - Frédéric Palais
- SOLVAY, HSE PRA‐PS, RICL—Antenne de GenasSaint‐FonsCedexFrance
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Neil Wang
- TotalEnergies Marketing & ServicesParis la DéfenseFrance
| |
Collapse
|
12
|
Sjøholm KK, Dechesne A, Lyon D, Saunders DMV, Birch H, Mayer P. Linking biodegradation kinetics, microbial composition and test temperature - Testing 40 petroleum hydrocarbons using inocula collected in winter and summer. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:152-160. [PMID: 34985480 DOI: 10.1039/d1em00319d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many factors affect the biodegradation kinetics of chemicals in test systems and the environment. Empirical knowledge is needed on how much test temperature, inoculum, test substances and co-substrates influence the biodegradation kinetics and microbial composition in the test. Water was sampled from the Gudenaa river in winter (2.7 °C) and summer (17 °C) (microbial inoculum) and combined with an aqueous stock solution of >40 petroleum hydrocarbons prepared by passive dosing. This resulted in low-concentration test systems that were incubated for 30 days at 2.7, 12 and 20 °C. Primary biodegradation kinetics, based on substrate depletion relative to abiotic controls, were determined with automated Solid Phase Microextraction coupled to GC/MS. Biodegradation kinetics were remarkably similar for summer and winter inocula when tested at the same temperature, except when cooling summer inoculum to 2.7 °C which delayed degradation relative to winter inoculum. Amplicon sequencing was applied to determine shifts in the microbial composition between season and during incubations: (1) the microbial composition of summer and winter inocula were remarkably similar, (2) the incubation and the incubation temperature had both a clear impact on the microbial composition and (3) the effect of adding >40 petroleum hydrocarbons at low test concentrations was limited but resulted in some proliferation of the known petroleum hydrocarbon degraders Nevskia and Sulfuritalea. Overall, biodegradation kinetics and its temperature dependency were very similar for winter and summer inoculum, whereas the microbial composition was more affected by incubation and test temperature compared to the addition of test chemicals at low concentrations.
Collapse
Affiliation(s)
- Karina Knudsmark Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | | | - David M V Saunders
- Concawe, B-1160 Brussels, Belgium
- Shell Health, Shell International B.V., 2596 HR The Hague, The Netherlands
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|