1
|
Ashrafi P, Nematollahi D, Shabanloo A, Ansari A, Sadatnabi A, Sadeghinia A. Enhanced favipiravir drug degradation using the synergy of PbO 2-based anodic oxidation and Fe-MOF-based cathodic electro-Fenton. ENVIRONMENTAL RESEARCH 2024; 262:119883. [PMID: 39214488 DOI: 10.1016/j.envres.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Favipiravir (FAV) is a widely utilized antiviral drug effective against various viruses, including SARS-CoV-2, influenza, and RNA viruses. This article aims to introduce a novel approach, known as Linear-Paired Electrocatalytic Degradation (LPED), as an efficient technique for the electrocatalytic degradation of emerging pollutants. LPED involves simultaneously utilizing a carbon-Felt/Co-PbO2 anode and a carbon-felt/Co/Fe-MOF-74 cathode, working together to degrade and mineralize FAV. The prepared anode and cathode characteristics were analyzed using XPS, SEM, EDX mapping, XRD, LSV, and CV analyses. A rotatable central composite design-based quadratic model was employed to optimize FAV degradation, yielding statistically desirable results. Under optimized conditions (pH = 5, current density = 4.2 mA/cm2, FAV concentration = 0.4 mM), individual processes of cathodic electro-Fenton and anodic oxidation with a CF/Co-PbO2 anode achieved degradation rates of 58.9% and 89.5% after 120 min, respectively. In contrast, using the LPED strategy resulted in a remarkable degradation efficiency of 98.4%. Furthermore, a cyclic voltammetric study of FAV on a glassy carbon electrode was conducted to gather additional electrochemical insights and rectify previously published data regarding redox behavior, pH-dependent properties, and adsorption activities. The research also offers a new understanding of the LPED mechanism of FAV at the surfaces of both CF/Co-PbO2 and CF/Co/Fe-MOF-74 electrodes, utilizing data from cyclic voltammetry and LC-MS techniques. The conceptual strategy of LPED is generalizable in order to the synergism of anodic oxidation and cathodic electro-Fenton for the degradation of other toxic and resistant pollutants.
Collapse
Affiliation(s)
- Parva Ashrafi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Davood Nematollahi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran.
| | - Amir Shabanloo
- Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amin Ansari
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran; Department of Chemistry, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P 6L2, Canada.
| | - Ali Sadatnabi
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| | - Armin Sadeghinia
- Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, 65178-38683, Iran
| |
Collapse
|
2
|
He W, Bai S, Ye K, Xu S, Dan Y, Chen M, Fang K. Co-Activating Lattice Oxygen of TiO 2-NT and SnO 2 Nanoparticles on Superhydrophilic Graphite Felt for Boosting Electrocatalytic Oxidation of Glyphosate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1824. [PMID: 39591065 PMCID: PMC11597287 DOI: 10.3390/nano14221824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
Glyphosate (GH) wastewater potentially poses hazards to human health and the aquatic environment, due to its persistence and toxicity. A highly superhydrophilic and stable graphite felt (GF)/polydopamine (PDA)/titanium dioxide nanotubes (TiO2-NT)/SnO2/Ru anode was fabricated and characterized for the degradation of glyphosate wastewater. Compared to control anodes, the GF/PDA/TiO2-NT/SnO2/Ru anode exhibited the highest removal efficiency (near to 100%) and a yield of phosphate ions of 76.51%, with the lowest energy consumption (0.088 Wh/L) for degrading 0.59 mM glyphosate (GH) at 7 mA/cm2 in 30 min. The exceptional activity of the anode may be attributed to the co-activation of lattice oxygen in TiO2-NT and SnO2 by coupled Ru, resulting in a significant amount of •O2- and oxygen vacancies as active sites for glyphosate degradation. After electrolysis, small molecular acids and inorganic ions were obtained, with hydroxylation and dephosphorization as the main degradation pathways. Eight cycles of experiments confirmed that Ru doping prominently enhanced the stability of the GF/PDA/TiO2-NT/SnO2/Ru anode due to its high oxygenophilicity and electron-rich ability, which promoted the generation and utilization efficiency of active free radicals and defects-associated oxygen. Therefore, this study introduces an effective strategy for efficiently co-activating lattice oxygen in SnO2 and TiO2-NT on graphite felt to eliminate persistent organophosphorus pesticides.
Collapse
Affiliation(s)
- Wenyan He
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (S.B.); (K.Y.); (S.X.); (M.C.)
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Sheng Bai
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (S.B.); (K.Y.); (S.X.); (M.C.)
| | - Kaijie Ye
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (S.B.); (K.Y.); (S.X.); (M.C.)
| | - Siyan Xu
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (S.B.); (K.Y.); (S.X.); (M.C.)
| | - Yinuo Dan
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (S.B.); (K.Y.); (S.X.); (M.C.)
| | - Moli Chen
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (S.B.); (K.Y.); (S.X.); (M.C.)
| | - Kuo Fang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
3
|
Ulu A, Akkurt Ş, Birhanlı E, Alkan Uçkun A, Uçkun M, Yeşilada Ö, Ateş B. Fabrication, characterization, and application of laccase-immobilized membranes for acetamiprid and diuron degradation. Int J Biol Macromol 2024; 282:136787. [PMID: 39454896 DOI: 10.1016/j.ijbiomac.2024.136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Water and wastewater pollution by acetamiprid and diuron is considered a serious environmental problem. In this study, chitosan (CHS), a naturally occurring bioadsorbent considered ecologically harmless to remove these micropollutants, was developed as a possible carrier to immobilize laccase (Lac) from Trametes trogii. Polyethylene glycol methyl ether (PEGME) was chosen for blending CHS, so a hybrid biocatalyst-based Lac/CHS-PEGME membrane was prepared. The prepared CHS-PEGME and Lac/CHS-PEGME membranes were characterized by Fourier-transformed-infrared (FTIR) spectroscopy, scanning-electron-microscopy (SEM), and X-ray-diffraction (XRD). Pesticide degradation tests with Lac/CHS-PEGME were performed at different contact times and initial concentrations. Acetamiprid degradation was most effective (84 %) at the 12th hour, at an initial concentration of 0.1 mg/L, while diuron degradation was most effective (65 %) at an initial concentration of 6 mg/L and a contact time of 16th hour. Under optimum conditions, the reusability of Lac/CHS-PEGME was found to be 8 cycles for acetamiprid and 5 cycles for diuron. From these results, it is understood that acetamiprid is degraded more quickly and effectively than diuron. Adsorption process data were well fitted to the Langmuir isotherm model and the pseudo-first-order kinetic model. These findings showed that using Lac/CHS-PEGME was a practical and environmentally friendly method for acetamiprid and diuron degradation.
Collapse
Affiliation(s)
- Ahmet Ulu
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| | - Şeyma Akkurt
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Emre Birhanlı
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Aysel Alkan Uçkun
- Department of Environmental Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye.
| | - Miraç Uçkun
- Department of Food Engineering, Faculty of Engineering, Adıyaman University, Adıyaman, Turkiye
| | - Özfer Yeşilada
- Department of Biology, Faculty of Science and Literature, İnönü University, 44280 Malatya, Turkiye
| | - Burhan Ateş
- Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkiye
| |
Collapse
|
4
|
Peng Y, Yan Y, Ma X, Jiang B, Chen R, Feng H, Xia Y. Efficient electrochemical oxidation of antibiotic wastewater using a graphene-loaded PbO 2 membrane anode: Mechanisms and applications. ENVIRONMENTAL RESEARCH 2024; 259:119517. [PMID: 38964585 DOI: 10.1016/j.envres.2024.119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 μm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 μm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.
Collapse
Affiliation(s)
- Yifei Peng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Bowen Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ruya Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China; College of Environment and Resources, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Keshmiri FS, Gilani HG, Kazemi MS. Ultra-fast and ultra-efficient phenol removal from aqueous solution using a nano biocarbon adsorbent by RSM-CCD method: parameters, isotherm, kinetic, ANOVA. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:642. [PMID: 38904840 DOI: 10.1007/s10661-024-12822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The purpose of this research is to investigate the ability of peanut shell activated carbon (PSAC) to adsorb phenol from aqueous solutions. Phenolic wastewater in various industries and their release to the environment are environmental problems. Among the various separation methods, adsorption is an accepted method because of its efficiency, simplicity, cost-effectiveness, and possibility to use different adsorbent materials to achieve maximum adsorption efficiency. Response surface methodology (RSM) was used to minimize the required experiments, modeling, finding the optimal point, and variance analysis. Among the studied variables, pH, adsorbent dosage, and initial concentration are important. The results show that it is possible to completely remove at 300 ppm of phenol concentration and 5 min. Characterization of PSAC was done using Fourier transform infrared spectroscopy spectrum (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), Brunauer-Emmet-Teller (BET), and size analysis. By examining the isotherm models, it was found that the adsorption follows the Langmuir model. The maximum adsorption capacity was 250 mg g-1 based on the Langmuir model. The three combined features of complete removal, ultra-fast adsorption, and high adsorption capacity are the unique features of this nano biocarbon for phenol removal.
Collapse
Affiliation(s)
- Fahimeh Sadat Keshmiri
- Department of Chemistry and Chemical Engineering, Rasht Branch, Islamic Azad University, Rasht, Iran
| | | | - Malihe Samadi Kazemi
- Department of Chemistry, Faculty of Sciences, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran.
| |
Collapse
|
6
|
Qi B, Chen T, Zhang T, Jiang R, Zhang W, Li X. A novel continuous all-weather photo-electric synergistic treatment system for refractory organic compounds and its application in degrading enrofloxacin. CHEMOSPHERE 2023; 329:138632. [PMID: 37030350 DOI: 10.1016/j.chemosphere.2023.138632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
A novel continuous all-weather photo-electric synergistic treatment system was proposed in this study for refractory organic compounds, which overcame the defects of conventional photo-catalytic treatments that rely on light irradiation and thus cannot achieve all-weather continuous treatment. The system used a new photocatalyst (MoS2/WO3/carbon felt) with the characteristics of easy recovery and fast charge transfer. The system was systematically tested in degrading enrofloxacin (EFA) under real environmental conditions in terms of treatment performance, pathways and mechanisms. The results showed that the EFA removal of photo-electric synergy substantially increased by 1.28 and 6.78 times, compared to photocatalysis and electrooxidation, respectively, with an average removal of 50.9% under the treatment load of 832.48 mg m-2 d-1. Possible treatment pathways of EFA and mechanism of the system were found to be mainly the loss of piperazine groups, the cleavage of the quinolone portion and the promotion of electron transfer by bias voltage.
Collapse
Affiliation(s)
- Bin Qi
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tiantian Chen
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Tongfei Zhang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Ruixue Jiang
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Xiaochen Li
- College of Water Conservancy and Civil Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
7
|
Xu P, Wei R, Wang P, Li X, Yang C, Shen T, Zheng T, Zhang G. CuFe 2O 4/diatomite actuates peroxymonosulfate activation process: Mechanism for active species transformation and pesticide degradation. WATER RESEARCH 2023; 235:119843. [PMID: 36934540 DOI: 10.1016/j.watres.2023.119843] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Peroxymonosulfate (PMS) activation is a promising technology for water purification, but the removal performance of multiple pollutant matrices and the mechanism for reactive species transformation in the heterogeneous catalytic system remain ambiguous. Herein, a novel CuFe2O4/diatomite was fabricated for PMS activation to achieve efficient removal of typical pesticides. Uniform distribution of CuFe2O4 on diatomite efficiently alleviated the agglomeration of CuFe2O4 and increased specific surface area (57.20 m2 g-1, 3.8-fold larger than CuFe2O4). CuFe2O4/5% diatomite (5-CFD)/PMS system showed nearly 100% removal efficiency for mixed pesticide solution within 10 min (0.10 g L-1 5-CFD and 0.40 g L-1 PMS) and excellent anti-interference performance towards various coexisting substances (≥90% removal efficiency). The electrochemical measurements confirmed that the lower charge transfer resistance of 5-CFD significantly enhanced the electron-transfer capacity between 5-CFD and PMS, accelerating the reactions among Fe(III)/Fe(II), Cu(II)/Cu(I), and PMS, further generating •OH (261.3 μM), 1O2 (138.8 μM), SO4•- (11.8 μM), and O2•-. The O in reactive oxygen species didn't originate from dissolved oxygen (DO) but PMS, independent of the low solubility of DO and slow diffusion rate of O2 in water. Furthermore, the production of 1O2 went through the process: PMS → O2•- → 1O2, and SO4•- could rapidly convert into •OH. The degradation pathways and the evolution of intermediates were proposed by HPLC-QTOF-MS/MS and DFT calculations. QSAR analysis illustrated that the toxicity became lower with the reaction process. This study provides novel insights into the mechanism for pesticide degradation and active species transformation and the anti-interference capability of systems.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chunyan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyao Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Zheng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Guangshan Zhang
- College of Resource and Environment, Qingdao Engineering Research Center for Rural Environment, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
8
|
Ma X, He C, Yan Y, Chen J, Feng H, Hu J, Zhu H, Xia Y. Energy-efficient electrochemical degradation of ciprofloxacin by a Ti-foam/PbO 2-GN composite electrode: Electrode characteristics, parameter optimization, and reaction mechanism. CHEMOSPHERE 2023; 315:137739. [PMID: 36608891 DOI: 10.1016/j.chemosphere.2023.137739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Reducing energy comsuption is crucial to commercialize electrochemical oxidation technologies. In this study, a novel PbO2 composite electrode (Ti-foam/PbO2-GN) was successfully fabricated based on a porous titanium (Ti) foam substrate and a β-PbO2 active layer embedded with multiple graphene (GN) interlayers, and applied as an anode for energy-efficient pulse electrochemical oxidation of ciprofloxacin (CIP). In contrast to PbO2 and Ti-foam/PbO2 electrodes, the Ti-foam/PbO2-GN electrode surface exhibited a more compact structure, smaller crystal grain size, and greater electrochemical active surface area. CIP removal of 89.7% was obtained with a low energy consumption (EE/O) of 6.17 kWh m-3 under pulse electrolysis conditions with a current density of 25.00 mA cm-2, pulse frequency of 5000 Hz, and pulse duty cycle of 50.0%. Up to 70.7% of the energy was saved in the pulse current mode compared to the direct current mode. Narrowing the electrode spacing to 2 cm facilitated the mass transfer process and enhanced oxidation efficiency. According to the intermediates identified, the pulse electrolysis of CIP primarily involved hydroxylation of the quinolone ring, breaking of the piperazine ring, defluorination, and decarboxylation processes, and a possible degradation mechanism of CIP was proposed. The continuous oxidation performance of CIP and the relatively low leaching of Pb2+ suggested that the Ti-foam/PbO2-GN electrode exhibited excellent stability, repeatability, and safety. The degradation results of CIP in real water also exhibits the great potential of environmental application. As a result, pulse electrochemical oxidation using a Ti-foam/PbO2-GN electrode has proven to be an energy-efficient and promising alternative for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Xiangjuan Ma
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Cong He
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yan Yan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jianming Chen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jinfei Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Hang Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yijing Xia
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
9
|
Ji W, Li W, Zhang TC, Wang Y, Yuan S. Constructing Dimensionally Stable TiO2 Nanotube Arrays/SnO2/RuO2 Anode via Successive Electrodeposition for Efficient Electrocatalytic Oxidation of As(III). Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Wang X, Wang L, Wu D, Yuan D, Ge H, Wu X. PbO 2 materials for electrochemical environmental engineering: A review on synthesis and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158880. [PMID: 36130629 DOI: 10.1016/j.scitotenv.2022.158880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 06/15/2023]
Abstract
Lead dioxide (PbO2) materials have been widely employed in various fields such as batteries, electrochemical engineering, and more recently environmental engineering as anode materials, due to their unique physicochemical properties. Key performances of PbO2 electrodes, such as energy efficiency and space-time yield, are influenced by morphological as well as compositional factors. Micro-nano structure regulation and decoration of metal/non-metal on PbO2 is an outstanding technique to revamp its electrocatalytic activities and enhance environmental engineering efficiency. The aim of this review is to comprehensively summarize the recent research progress in the morphology control, the structure constructions, and the element doping of PbO2 materials, further with many environmental application cases evaluated. Concerning electrochemical environmental engineering, the lead dioxide employed in chemical oxygen demand detection, ozone generators, and wastewater treatment has been comprehensively reviewed. In addition, the future research perspectives, challenges and the opportunities on PbO2 materials for environmental applications are proposed.
Collapse
Affiliation(s)
- Xi Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Luyang Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dandan Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Du Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hang Ge
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
11
|
Duan X, Wang Q, Ning Z, Tu S, Li Y, Sun C, Zhao X, Chang L. Fabrication and Characterization of PEG-In2O3 Modified PbO2 Anode for Electrochemical Degradation of Metronidazole. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
12
|
Ali SM, Emran KM. Nanotechnological Achievements and the Environmental Degradation. AGRICULTURAL AND ENVIRONMENTAL NANOTECHNOLOGY 2023:525-549. [DOI: 10.1007/978-981-19-5454-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Fu R, Zhang PS, Jiang YX, Sun L, Sun XH. Wastewater treatment by anodic oxidation in electrochemical advanced oxidation process: Advance in mechanism, direct and indirect oxidation detection methods. CHEMOSPHERE 2023; 311:136993. [PMID: 36309052 DOI: 10.1016/j.chemosphere.2022.136993] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Electrochemical Advanced Oxidation Process (EAOP) has been applied to the degradation of refractory pollutants in wastewater due to its strong oxidation capacity, high degradation efficiency, simple operation, and mild reaction. Among electrochemical processes, anodic oxidation (AO) is the most widely used and its mechanism is mainly divided into direct oxidation and indirect oxidation. Direct oxidation means that pollutants are oxidized at the anode by direct electron transfer. Indirect oxidation refers to the generation of active species during the electrolytic reaction, which acts on pollutants. The mechanism of AO process is controlled by many factors, including electrode type, electrocatalyst material, wastewater composition, pH, applied current and voltage levels. It is very important to explore the reaction mechanism of electrochemical treatment, which determines the efficiency of the reaction, the products of the reaction, and the extent of reaction. This paper firstly reviews the current research progress on the mechanism of AO process, and summarizes in detail the different mechanisms caused by influencing factors under common AO process. Then, strategies and methods to distinguish direct oxidation and indirect oxidation mechanisms are reviewed, such as intermediate product analysis, electrochemical test analysis, active species detection, theoretical calculation, and the limitations of these methods are analyzed. Finally some suggestions are put forward for the study of the mechanism of electrochemical advanced oxidation.
Collapse
Affiliation(s)
- Rui Fu
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| | - Peng-Shuang Zhang
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| | - Yuan-Xing Jiang
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| | - Lin Sun
- College of Chemistry, Jilin University, ChangChun, 130012, Jilin, PR China.
| | - Xu-Hui Sun
- School of Chemical Engineering, Northeast Electric Power University, 132012, Jilin, PR China.
| |
Collapse
|
14
|
Kamyab H, Yuzir MA, Riyadi FA, Ostadrahimi A, Khademi T, Ghfar AA, Kirpichnikova I. Electrochemical oxidation of palm oil mill effluent using platinum as anode: Optimization using response surface methodology. ENVIRONMENTAL RESEARCH 2022; 214:113993. [PMID: 35944623 DOI: 10.1016/j.envres.2022.113993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
This work investigates the electrochemical oxidation of palm oil mill effluent (POME) treatment using platinum (Pt) as anode and graphite as a cathode. The response surface methodology was used to investigate the relationships between different factors conditions (voltage, electrolysis time and chemical support) and responses of the treatment (chemical oxygen demand reduction, colour removal, and total oil removal). A quadratic mathematical model was chosen for all responses using Box-Behnken Design (BBD) with R2 0.9853 for COD reduction, R2 0.9478 for colour removal and R2 0.9185 for total oil removal. According to Derringer's function desirability, under the optimum condition (Voltage 15, electrolysis time 2 h, and 19.95 mg/L NaCl) of POME treatment, 84% of COD reduction, 98% of colour removal and 99% total oil of removal could be achieved. These results indicate that platinum as an anode material is effective for the electrochemical oxidation treatment of POME.
Collapse
Affiliation(s)
- Hesam Kamyab
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Electric Power Station, Network, and Supply System, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Muhammad Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Fatimah Azizah Riyadi
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | | | - Tayebeh Khademi
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ayman A Ghfar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Irina Kirpichnikova
- Electric Power Station, Network, and Supply System, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| |
Collapse
|
15
|
Hu Z, Guo C, Wang P, Guo R, Liu X, Tian Y. Electrochemical degradation of methylene blue by Pb modified porous SnO 2 anode. CHEMOSPHERE 2022; 305:135447. [PMID: 35753421 DOI: 10.1016/j.chemosphere.2022.135447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
A significant number of pollutants in wastewater can be electrocatalytically oxidized by SnO2-Sb, a relatively inactive electrode. However, the arduous process of environmental remediation due to poor electrochemical performance and short service life of the traditional Ti/SnO2-Sb electrode. In this work the SnO2 electrode with a micron-sized sphere structure was prepared by in-situ hydrothermal. The results of the study that the electrode (Pb-10%) synthesized from the precursor solution in which the Pb:Sn molar ratio is 10% exhibits excellent electrooxidation properties. Impressiveing, the Pb-10% electrode displayed the small charge transfer resistance (10.71 Ω) and the high oxygen evolution potential (2.26 V vs. SCE). Thus, the electrochemical degradation experiment demonstrates that 100 mg L-1 MB was degraded by Pb-10% electrode under the condition of initial pH = 5, and the decolorization rate reached 94.6%. Moreover, the influence of different parameters such as Pb doping amount, initial pH value of solution, initial concentration of MB and inorganic ions on degradation efficiency were also explored, in turn the practical application of electrodes in the field of purifying water resources is optimized. It is worth noting that the service life of the optimized electrode (100 mA cm-2, 0.5 M H2SO4, 90 h) is about 12 times longer than that of the bare electrode (Sn-Sb). Therefore, the high-performance Ti/SnO2-Sb electrode prepared in this work possesses vast application prospects in the electrocatalytic oxidation.
Collapse
Affiliation(s)
- Zhenyu Hu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Chao Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Peng Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| | - Ye Tian
- The First Hospital of Qinhuangdao, 066099, China
| |
Collapse
|
16
|
Jakóbczyk P, Skowierzak G, Kaczmarzyk I, Nadolska M, Wcisło A, Lota K, Bogdanowicz R, Ossowski T, Rostkowski P, Lota G, Ryl J. Electrocatalytic performance of oxygen-activated carbon fibre felt anodes mediating degradation mechanism of acetaminophen in aqueous environments. CHEMOSPHERE 2022; 304:135381. [PMID: 35716709 DOI: 10.1016/j.chemosphere.2022.135381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Carbon felts are flexible and scalable, have high specific areas, and are highly conductive materials that fit the requirements for both anodes and cathodes in advanced electrocatalytic processes. Advanced oxidative modification processes (thermal, chemical, and plasma-chemical) were applied to carbon felt anodes to enhance their efficiency towards electro-oxidation. The modification of the porous anodes results in increased kinetics of acetaminophen degradation in aqueous environments. The utilised oxidation techniques deliver single-step, straightforward, eco-friendly, and stable physiochemical reformation of carbon felt surfaces. The modifications caused minor changes in both the specific surface area and total pore volume corresponding with the surface morphology. A pristine carbon felt electrode was capable of decomposing up to 70% of the acetaminophen in a 240 min electrolysis process, while the oxygen-plasma treated electrode achieved a removal yield of 99.9% estimated utilising HPLC-UV-Vis. Here, the electro-induced incineration kinetics of acetaminophen resulted in a rate constant of 1.54 h-1, with the second-best result of 0.59 h-1 after oxidation in 30% H2O2. The kinetics of acetaminophen removal was synergistically studied by spectroscopic and electrochemical techniques, revealing various reaction pathways attributed to the formation of intermediate compounds such as p-aminophenol and others. The enhancement of the electrochemical oxidation rates towards acetaminophen was attributed to the appearance of surface carbonyl species. Our results indicate that the best-performing plasma-chemical treated CFE follows a heterogeneous mechanism with only approx. 40% removal due to direct electro-oxidation. The degradation mechanism of acetaminophen at the treated carbon felt anodes was proposed based on the detected intermediate products. Estimation of the cost-effectiveness of removal processes, in terms of energy consumption, was also elaborated. Although the study was focussed on acetaminophen, the achieved results could be adapted to also process emerging, hazardous pollutant groups such as anti-inflammatory pharmaceuticals.
Collapse
Affiliation(s)
- Paweł Jakóbczyk
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland
| | - Grzegorz Skowierzak
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland; Department of Analytical Chemistry, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Iwona Kaczmarzyk
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Małgorzata Nadolska
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Anna Wcisło
- Department of Analytical Chemistry, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Katarzyna Lota
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362, Poznan, Poland
| | - Robert Bogdanowicz
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Tadeusz Ossowski
- Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180, Gdańsk, Poland; Department of Analytical Chemistry, University of Gdansk, Bazynskiego 8, 80-309, Gdansk, Poland
| | - Paweł Rostkowski
- NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Grzegorz Lota
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals Division in Poznan, Central Laboratory of Batteries and Cells, Forteczna 12, 61-362, Poznan, Poland; Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Jacek Ryl
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
17
|
Sun Y, Zhang Q, Clark JH, Graham NJD, Hou D, Ok YS, Tsang DCW. Tailoring wood waste biochar as a reusable microwave absorbent for pollutant removal: Structure-property-performance relationship and iron-carbon interaction. BIORESOURCE TECHNOLOGY 2022; 362:127838. [PMID: 36031124 DOI: 10.1016/j.biortech.2022.127838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
This study innovated the concept in designing an efficient and reusable microwave (MW) absorbent through concurrent exploitation of carbon graphitization, oxygen functionalization, and carbothermal iron reduction underpinned by an endothermic co-pyrolysis of wood waste and low-dosage iron. A powerful MW assimilation was accomplished from nanoscale amorphous magnetic particles as well as graphitized microporous carbon-iron skeleton in the biochar composites. Relative to a weak magnetic loss derived from the iron phase, the graphitic carbon architecture with abundant surface functionalities (i.e., CO and CO) exhibited a strong dielectric loss, which was thus prioritized as major active sites during MW reuse. The MW-absorbing biochar demonstrated a fast, robust, and durable removal of a refractory herbicide (2,4-dichlorophenoxy acetic acid) under mild MW irradiation with zero chemical input, low electricity consumption, and negligible Fe dissolution. Overall, this study will foster carbon-neutral industrial wastewater treatment and wood waste valorization.
Collapse
Affiliation(s)
- Yuqing Sun
- School of Agriculture, Sun Yat-sen University, Guangzhou, Guangdong 510275, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - James H Clark
- Green Chemistry Centre of Excellence, University of York, York YO105DD, UK; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Sik Ok
- Korea Biochar Research Centre, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
18
|
Electrochemical degradation of doxycycline in a three-dimensional vermiculite/peroxymonosulfate electrode system: Mechanism, kinetics, and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Rai D, Sinha S. Research trends in the development of anodes for electrochemical oxidation of wastewater. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The review focuses on the recent development in anode materials and their synthesis approach, focusing on their compatibility for treating actual industrial wastewater, improving selectivity, electrocatalytic activity, stability at higher concentration, and thereby reducing the mineralization cost for organic pollutant degradation. The advancement in sol–gel technique, including the Pechini method, is discussed in the first section. A separate discussion related to the selection of the electrodeposition method and its deciding parameters is also included. Furthermore, the effect of using advanced heating approaches, including microwave and laser deposition synthesis, is also discussed. Next, a separate discussion is provided on using different types of anode materials and their effect on active •OH radical generation, activity, and electrode stability in direct and indirect oxidation and future aspects. The effect of using different synthesis approaches, additives, and doping is discussed separately for each anode. Graphene, carbon nanotubes (CNTs), and metal doping enhance the number of active sites, electrochemical activity, and mineralization current efficiency (MCE) of the anode. While, microwave or laser heating approaches were proved to be an effective, cheaper, and fast alternative to conventional heating. The electrodeposition and nonaqueous solvent synthesis were convenient and environment-friendly techniques for conductive metallic and polymeric film deposition.
Collapse
Affiliation(s)
- Devendra Rai
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| | - Shishir Sinha
- Department of Chemical Engineering , Indian Institute of Technology Roorkee , Roorkee , Uttarakhand 247667 , India
| |
Collapse
|
20
|
Zhu L, Li M, Qi H, Sun Z. Using Fe-Cu/HGF composite cathodes for the degradation of Diuron by electro-activated peroxydisulfate. CHEMOSPHERE 2022; 291:132897. [PMID: 34780743 DOI: 10.1016/j.chemosphere.2021.132897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
An iron-copper graphite felt (Fe-Cu/HGF) electrode was successfully prepared by heat treatment and impregnation of graphite felt as the support followed by calcination, and an electro-activated peroxydisulfate (E-PDS) system with Fe-Cu/HGF as the cathode was constructed to degrade Diuron. This system synergistically activated PDS through electrochemical processes and transition metal catalysis. High-valence metal ions could be converted into low-valence metal ions by reduction at the cathode, and low-valence metal ions continuously activated PDS to generate more sulfate radicals (SO4-) and hydroxyl radicals (OH) to accelerate Diuron degradation. The Fe-Cu/HGF composite cathode exhibited a performance superior to graphite felt (RGF) obtained using pretreatment only, including increased hydrophilicity, significantly increased number of defect sites and larger electroactive surface area. Under optimized experimental degradation conditions, Diuron could be completely removed in 35 min, at which time copper ion leaching was not detected in the solution, while the total iron ion concentration was 0.27 mg L-1. Extending the reaction time to 6 h, the amount of total organic carbon was reduced to 32.2%. In addition, the free radicals that degraded Diuron were identified as mainly SO4- and OH with a slightly higher contribution of SO4-. The mechanism and pathways of Diuron degradation in the E-PDS system were determined. The E-PDS system was successfully applied to the degradation of other pollutants and the degradation of Diuron in different simulated water environments. In summary, the E-PDS system using Fe-Cu/HGF as the cathode is a promising treatment method for Diuron-containing wastewater.
Collapse
Affiliation(s)
- Lijing Zhu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Mengya Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Haiqiang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhirong Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing, 100124, PR China.
| |
Collapse
|
21
|
Preparation of high performance superhydrophobic PVDF-PbO2-ZrO2 composite electrode and its application in the degradation of paracetamol and industrial oily wastewater. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Chen Y, Liao D, Lin Y, Deng T, Yin F, Su P, Feng D. Electrochemical degradation performance and mechanism of dibutyl phthalate with hydrophobic PbO 2 electrode. CHEMOSPHERE 2022; 288:132638. [PMID: 34687678 DOI: 10.1016/j.chemosphere.2021.132638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
A polytetrafluoroethylene (PTFE) doped PbO2 anode with a highly hydrophobicity was fabricated by electrodeposition method. In this process, vertically aligned TiO2 nanotubes (TiO2NTs) are formed by the anodic oxidation of Ti plates as an intermediate layer for PbO2 electrodeposition. The characterization of the electrodes indicated that PTFE was successfully introduced to the electrode surface, the TiO2NTs were completely covered with β-PbO2 particles and gave it a large surface area, which also limited the growth of its crystal particles. Compared with the conventional Ti/PbO2 and Ti/TiO2NTs/PbO2 electrode, the Ti/TiO2NTs/PbO2-PTFE electrode has enhanced surface hydrophobicity, higher oxygen evolution potential, lower electrochemical impedance, with more active sites, and generate more hydroxyl radicals (·OH), which were enhanced by the addition of PTFE nanoparticles. The electrocatalytic performance of the three electrodes were investigated using dibutyl phthalate (DBP) as the model pollutant. The efficiency of the DBP removal of the three electrodes was in the order: Ti/TiO2NTs/PbO2-PTFE > Ti/TiO2NTs/PbO2 > Ti/PbO2. The degradation process followed the pseudo-first-order kinetic model well, with rate constants of 0.1326, 0.1266, and 0.1041 h-1 for the three electrodes, respectively. The lowest energy consumption (6.1 kWh g-1) was obtained after 8 h of DBP treatment using Ti/TiO2NTs/PbO2-PTFE compared to Ti/TiO2NTs/PbO2 (6.7 kWh g-1) and Ti/PbO2 (7.4 kWh g-1) electrodes. Moreover, the effects of current density, initial pH and electrolyte concentration were investigated. Finally, the products of the DBP degradation process were verified based on gas chromatography-mass spectrometry analysis, and possible degradation pathways were described.
Collapse
Affiliation(s)
- Yongsheng Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Dexiang Liao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China.
| | - Yue Lin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Tianyu Deng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Penghao Su
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, China
| |
Collapse
|
23
|
Feng J, Tao Q, Lan H, Xia Y, Dai Q. Electrochemical oxidation of sulfamethoxazole by nitrogen-doped carbon nanosheets composite PbO 2 electrode: Kinetics and mechanism. CHEMOSPHERE 2022; 286:131610. [PMID: 34426123 DOI: 10.1016/j.chemosphere.2021.131610] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
In this study, nitrogen-doped carbon nanosheets (NCNSs) were prepared and successfully combined into the PbO2 electrode by the composite electrodeposition technology, thereby NCNS-PbO2 electrode was obtained. The electrochemical degradation of sulfamethoxazole (SMX) in aqueous solution by NCNS-PbO2 electrode was studied. The main influence factors on the degradation of SMX, such as the initial concentration of SMX, current density, electrolyte concentration and initial pH value, were analyzed in detail. Under the optimal process conditions, after 120 min of treatment, the removal ratio of SMX and chemical oxygen demand (COD) reached 99.8 % and 60.7 %, respectively. The results showed that the electrochemical degradation of SMX fitted pseudo-first-order reaction kinetics. The electrochemical performance of NCNS-PbO2 electrode was better than that of PbO2 electrode by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy, as well as the use of cyclic voltammetry and electrochemical impedance spectroscopy for electrochemical performance testing. This was because the doping of nitrogen atoms improved the properties of carbon nanosheets. After the composite, the active sites on the surface of PbO2 were improved, the particle size of PbO2 was reduced, and the electrical conductivity and electrocatalytic activity of the electrode were improved. In addition, the intermediate products were determined by GC-MS method, and the possible degradation pathways of SMX were proposed.
Collapse
Affiliation(s)
- Jieqi Feng
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qibin Tao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Hao Lan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yi Xia
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qizhou Dai
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
24
|
Energy-efficient pulse electrochemical oxidation of Acid Blue 9 using a Ti/SnO2-Sb/α,β-Polytetrafluoroethylene-Fe-PbO2 electrode: Kinetics, mass transfer and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119775] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Needle-trap device packed with the MIL-100(Fe) metal–organic framework for the extraction of the airborne organochlorine pesticides. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106866] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Carbon felt modified with N-doped rGO for an efficient electro-peroxone process in diuron degradation and biodegradability improvement of wastewater from a pesticide manufacture: Optimization of process parameters, electrical energy consumption and degradation pathway. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118962] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Recent Trends in Pharmaceuticals Removal from Water Using Electrochemical Oxidation Processes. ENVIRONMENTS 2021. [DOI: 10.3390/environments8080085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nowadays, the research on the environmental applications of electrochemistry to remove recalcitrant and priority pollutants and, in particular, drugs from the aqueous phase has increased dramatically. This literature review summarizes the applications of electrochemical oxidation in recent years to decompose pharmaceuticals that are often detected in environmental samples such as carbamazapine, sulfamethoxazole, tetracycline, diclofenac, ibuprofen, ceftazidime, ciprofloxacin, etc. Similar to most physicochemical processes, efficiency depends on many operating parameters, while the combination with either biological or other physicochemical methods seems particularly attractive. In addition, various strategies such as using three-dimensional electrodes or the electrosynthesis of hydrogen peroxide have been proposed to overcome the disadvantages of electrochemical oxidation. Finally, some guidelines are proposed for future research into the applications of environmental electrochemistry for the degradation of xenobiotic compounds and micropollutants from environmental matrices. The main goal of the present review paper is to facilitate future researchers to design their experiments concerning the electrochemical oxidation processes for the degradation of micropollutants/emerging contaminants, especially, some specific drugs considering, also, the existing limitations of each process.
Collapse
|
28
|
Optimization of 2-Chlorophenol Removal Using Ultrasound/Persulfate: Prediction by RSM Method, Biodegradability Improvement of Petrochemical Refinery Wastewater. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06084-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|