1
|
Zhao D, Wang H, Wang Z, Lu S. Understanding competitive Cu 2+ and Zn 2+ adsorption onto functionalized cellulose fiber via experimental and theoretical approach. Int J Biol Macromol 2024; 273:132782. [PMID: 38825284 DOI: 10.1016/j.ijbiomac.2024.132782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Amidoxime groups were successfully introduced to develop a novel amidoxime-functionalized cellulose fiber (AO-Cell) for absorptive removal of heavy metal ions in wastewater. The chemical structure, and the competitive adsorption of Cu2+ and Zn2+ by AO-Cell were investigated by experiments study, Density functional theory (DFT) and molecular dynamic (MD) simulation. The results showed the N and O atoms in the amidoxime group can spontaneously interact with Cu2+ and Zn2+ through sharing long pair electrons to generate stable coordination structure, which was the dominant adsorption mechanism. Besides, the enlarged surface area, improved hydrophilicity and dispersion offered by AO-Cell facilitate the adsorption process by increasing the accessibility of absorption sites. As results of these synergetic modification, AO-Cell can remain effective in a wide pH range (1-6) and reach adsorption equilibrium within 60 min. At optimal conditions, the achieved theoretical adsorption capacity is as high as 84.81 mg/g for Cu2+ and 61.46 mg/g for Zn2+ in the solution with multiple ions. The competition between Cu2+ and Zn2+ in occupying the absorption sites arises from the difference in the metallic ion affinity and covalent index with the adsorbent as demonstrated by the MD analysis. Importantly, AO-Cell demonstrated favorable recyclability after up to 10 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Dezhi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China.
| | - Hexiang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066000, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066000, China
| | - Zheng Wang
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Lu
- School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Naderi N, Ganjali F, Eivazzadeh-Keihan R, Maleki A, Sillanpää M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120670. [PMID: 38531142 DOI: 10.1016/j.jenvman.2024.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
3
|
Lei H, Song S, Pan N, Zou H, Wang X, Tuo X. Redox-active phytic acid-based self-assembled hybrid material for enhanced uranium adsorption from highly acidic solution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133227. [PMID: 38091800 DOI: 10.1016/j.jhazmat.2023.133227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/26/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024]
Abstract
Achieving efficient uranium adsorption from highly acidic wastewater is still considered challenging. Here, an inorganic-organic hybridized self-assembly material (rPFE-10) with redox activity was constructed by phytic acid (PA), ethylenediamine (EDA), and Fe(II) via a facile one-pot route, and further applied for U(VI) removal. In the static adsorption experiment, rPFE-10 achieved the maximum U(VI) adsorption capacity of 717.1 mg/g at the optimal pH of 3.5. It also performed preeminently in a highly acidic condition of pH = 1.0, with the highest adsorption capacity of 551.2 mg/g and an equilibrium time of 30 min. Moreover, rPFE-10 exhibited a pH-responsive adsorption selectivity for U(VI) and An-Ln (S(U(VI)) and S(An-Ln)), which increased to 69 % and 94 % respectively as pH decreased from 3.0 to 1.0. Additionally, the spectral analysis revealed a reconstruction mechanism induced by multiple synergistic adsorption, in which U(VI) exchange with EDA+/2+ and Fe2+/3+ and earned suitable coordination geometry and ligand environment to coordinate with PA (mainly P-OH), while partial U(VI) is reduced by Fe(II) in framework. This work not only highlights the facile strategy for enhanced U(VI) retention in highly acidic solution, but expands the potential application of supramolecular self-assembly material in treatment of nuclear wastewater.
Collapse
Affiliation(s)
- Hao Lei
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China
| | - Shilong Song
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hao Zou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaoqiang Wang
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Xianguo Tuo
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, China; School of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong, China.
| |
Collapse
|
4
|
Fang X, Zhang D, Chang Z, Li R, Meng S. Phosphorus removal from water by the metal-organic frameworks (MOFs)-based adsorbents: A review for structure, mechanism, and current progress. ENVIRONMENTAL RESEARCH 2024; 243:117816. [PMID: 38056614 DOI: 10.1016/j.envres.2023.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Efficacious phosphate removal is essential for mitigating eutrophication in aquatic ecosystems and complying with increasingly stringent phosphate emission regulations. Chemical adsorption, characterized by simplicity, prominent treatment efficiency, and convenient recovery, is extensively employed for profound phosphorus removal. Metal-organic frameworks (MOFs)-derived metal/carbon composites, surpassing the limitations of separate components, exhibit synergistic effects, rendering them tremendously promising for environmental remediation. This comprehensive review systematically summarizes MOFs-based materials' properties and their structure-property relationships tailored for phosphate adsorption, thereby enhancing specificity towards phosphate. Furthermore, it elucidates the primary mechanisms influencing phosphate adsorption by MOFs-based composites. Additionally, the review introduces strategies for designing and synthesizing efficacious phosphorus capture and regeneration materials. Lastly, it discusses and illuminates future research challenges and prospects in this field. This summary provides novel insights for future research on superlative MOFs-based adsorbents for phosphate removal.
Collapse
Affiliation(s)
- Xiaojie Fang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Di Zhang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Key Laboratory of Black Soil Protection and Restoration, Harbin, Heilongjiang, 150030, China.
| | - Zhenfeng Chang
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ruoyan Li
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Shuangshuang Meng
- Department of Resources and Environmental Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| |
Collapse
|
5
|
Chen Y, Yin X, Zheng N, Lin Z, Fujita T, Ning S, Chen Y, Wang X. Flexible self-supporting Na 3MnTi(PO 4) 3@C fibers for uranium extraction from seawater by electro sorption. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132664. [PMID: 37778313 DOI: 10.1016/j.jhazmat.2023.132664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
As an eco-friendly technique with the superior adsorption performance, electroadsorption has shown great potential for application in uranium (U(VI)) recovery in recent years. However, the electrodes used in the electrosorption generally suffer the adsorbent to be loaded on the conductors, which greatly limited the adsorption performance of the electrodes for uranyl ions. In present study, a flexible self-supporting Na3MnTi(PO4)3@C fibers (NMTP@C fibers) electrode material was rationally designed and prepared by electrostatic spinning method and annealing technique, and its ability to capture U(VI) efficiently was preliminarily demonstrated by batch adsorption and electro sorption. The plentiful phosphate groups provide sufficient active sites for adsorption, while the axially continuous electron conduction and radially short-range ion transport give NMTP@C fibers fast charge/ion transport capability. The NMTP@C fiber can remove 99% of 5 ppm U(VI) in seawater by electro absorption within 1 h. After several cycles of adsorption under seawater conditions, the adsorbent can still maintain a stable adsorption capacity. The adsorption mechanism of NMTP@C nanofibers for U(VI) was investigated by XPS, FT-IR, Raman, SEM-EDS, and XRD, which was electrostatic interactions and surface complexation. These results suggest that NMTP@C fibers are promising high-capacity adsorbents for efficient and selective capture of U(VI) from seawater.
Collapse
Affiliation(s)
- Yuliang Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China.
| | - Ningchao Zheng
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China
| | - Zheyang Lin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China
| | - Toyohisa Fujita
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China
| | - Shunyan Ning
- School of Nuclear Science and Technology, University of South China, 28 Changsheng West Road, Hengyang 421001, PR China
| | - Yanliang Chen
- Engineering Research Center of Nuclear Technology Application (East China Institute of Technology), Ministry of Education, Nanchang 330013, PR China
| | - Xinpeng Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, 100 Daxue East Road, Nanning 530004, PR China.
| |
Collapse
|
6
|
Zhang D, Fang L, Liu L, Zhao B, Hu B, Yu S, Wang X. Uranium extraction from seawater by novel materials: A review. Sep Purif Technol 2023; 320:124204. [DOI: doi.org/10.1016/j.seppur.2023.124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
7
|
Guo W, Yan L, Chen Y, Ren X, Shen Y, Zhou Y, Qiu M, Hu B. Effective elimination of hexavalent chromium and lead from solution by the modified biochar with MgMn 2O 4 nanoparticles: adsorption performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96350-96359. [PMID: 37572256 DOI: 10.1007/s11356-023-29264-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
Heavy metal pollution is one of the environmental problems that need to be solved urgently. The adsorption method is thought as the most effective and economical treatment technology. Nature biochar usually showed unsatisfactory adsorption capacity due to its relatively small adsorption capacity and slow adsorption rate. The metal of Mn has been widely applied in the modification of biochar, which could effectively improve the adsorption capacity of biochar. However, leaching of Mn2+ on the adsorbent materials would appear during the adsorption process. And it would increase the risk of secondary pollution. The multifunctional binary modified biochar could improve the adsorption capacity of environmental pollutant removal. In addition, it could also act as a metal support carrier, reducing the risk of secondary pollution. A novel effective biochar loaded by Mg-Mn binary oxide nanoparticles (MgMn2O4@Biochar) was prepared and applied for the Cr(VI) and Pb(II) removal in aqueous solution. The characteristic of MgMn2O4@Biochar was analyzed by SEM, TEM, FTIR, and XRD. The irregular and somewhat flaky shaped particles of different shape and sizes clustered on the surface of MgMn2O4@Biochar appeared. Abundant functional groups of O-H, -C-OH, C-O, and C-OOH could be observed on the surface of MgMn2O4@Biochar. The elements of Mg and Mn elements besides of C, O, and Si elements were presented on the surface of MgMn2O4@Biochar. The wt% of C, O, Mg, Mn, and Si were 42.82%, 48.99%, 2.83%, 4.44%, and 0.93%, respectively. The operational parameters had an important influence on adsorption capacity of Cr(VI) and Pb(II) removal. The results showed that the adsorption capacity of MgMn2O4@Biochar for Cr(VI) and Pb(II) would reach 33.5 mg/g and 536 mg/g, respectively, within 360 min. Additionally, the adsorption processes of Cr(VI) and Pb(II) in solution could be described with pseudo-second-order. For Cr(VI), the Langmuir model was suitable to the adsorption process. However, the adsorption process of Pb(II) in solution could be described with Freundlich model. Furthermore, it could be concluded that the possible mechanism of Cr(VI) and Pb(II) removal by MgMn2O4@Biochar was physical adsorption, surface complexation reaction, and electrostatic adsorption.
Collapse
Affiliation(s)
- Weijuan Guo
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Ling Yan
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
- Bureau of Ecology and Environment of Shaoxing City, Shaoxing, 312000, People's Republic of China
| | - Yujun Chen
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Xinyu Ren
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yiyang Shen
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yefeng Zhou
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing, 312000, People's Republic of China
| |
Collapse
|
8
|
Yin W, Zhao TL, Wang YH, Yao QZ, Zhou GT. Mn 3O 4@polyaniline nanocomposite with multiple active sites to capture uranium(VI) and iodide: synthesis, performance, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:30130-30143. [PMID: 36427123 DOI: 10.1007/s11356-022-24073-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
A major challenge for radioactive wastewater treatment and associated environmental remediation is how to simultaneously remove cationic and anionic radionuclides. Herein, a series of Mn3O4@polyaniline (Mn3O4@PANI) nanocomposites were successfully prepared and used to remove U(VI) and I- from aqueous solution, two highly concomitant species in nuclear pollution settings. Batch adsorption experiments reveal that the component Mn3O4 is predominantly responsible for U(VI) removal, but PANI for I-. The nanocomposite with 24.2 wt% Mn3O4 possesses high removal percentages (> 85%) either for U(VI) or I- over a wide pH range, fast removal kinetics, and excellent adsorption selectivity at high concentrations of competing ions. Benefiting from the contributions of the two components and the high adsorption affinities, the nanocomposite achieves the simultaneous removal to coexisting U(VI) and I-, with a maximum adsorption capacity 102.6 mg/g for U(VI) and 126.1 mg/g for I-. X-ray photoelectron spectroscopy (XPS) results reveal that the U(VI) adsorption occurs via coordination bonding with Mn-O, -NH- , and =N- groups in the nanocomposite, whereas I- adsorption proceeds mainly through I anionic species exchange with Cl- and interactions with π-bonds in PANI, as well as the electrostatic attraction onto Mn3O4. Considering the excellent performance and multiple active sites, the Mn3O4@PANI nanocomposite is promising to remove practical radioactive U(VI) and I-.
Collapse
Affiliation(s)
- Wei Yin
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Tian-Lei Zhao
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Han Wang
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Qi-Zhi Yao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Gen-Tao Zhou
- Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
- CAS Center for Excellence in Comparative Planetology, Hefei, 230026, China.
| |
Collapse
|
9
|
Zuo Y, Xia Y, Lu W, Li Y, Xiao Y, Gao S, Zhou Z, Xu H, Feng X, Li C, Yu Y. A multifunctional black phosphorus nanosheet-based immunomagnetic bio-interface for heterogeneous circulating tumor cell capture and simultaneous self-identification in gastric cancer patients. NANOSCALE 2023; 15:3872-3883. [PMID: 36722904 DOI: 10.1039/d2nr04277k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A single epithelial cell adhesion molecule (EpCAM) for circulating tumor cell (CTCs) isolation has been proved to be low in efficiency as it fails to recognize EpCAM-negative CTCs. Meanwhile, the current immunocytochemical (ICC) identification strategy for the captured cells is tedious and time-consuming. To address these issues, we designed a dual-labeled fluorescent immunomagnetic nanoprobe (BP-Fe3O4-AuNR/Apt), by loading magnetic Fe3O4 nanoparticles and gold nanorods (AuNRs) onto black phosphorus (BP) nanosheets and then linking them with Cy3-labeled EpCAM and Texas red-labeled tyrosine protein kinase 7 (PTK7) aptamers, which created a high-performance bio-interface for efficient, heterogeneous CTC capture and rapid self-identification with high accuracy. As few as 5 CTCs could be captured from 1.0 mL PBS, mixed cell solution and lysed blood. What's more, the presence of BP and AuNRs on this capturing interface also allowed us to preliminarily investigate the potential photothermal therapeutic effect of the probe toward CTC elimination. The applicability of the probe was further demonstrated in gastric cancer patients. By detecting the number of CTCs in the blood of gastric cancer patients, the correlations between the CTC number and the disease stage, as well as distant metastasis were systematically explored.
Collapse
Affiliation(s)
- Yifan Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Wenwen Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yue Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yang Xiao
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Shuai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhiyi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Xingqing Feng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
10
|
Chen Z, He X, Li Q, Yang H, Liu Y, Wu L, Liu Z, Hu B, Wang X. Low-temperature plasma induced phosphate groups onto coffee residue-derived porous carbon for efficient U(VI) extraction. J Environ Sci (China) 2022; 122:1-13. [PMID: 35717075 DOI: 10.1016/j.jes.2021.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 06/15/2023]
Abstract
For the continuous utilization of nuclear energy and efficient control of radioactive pollution, low-cost materials with high efficient U(VI) removal are of great importance. In this study, low temperature plasma method was applied for the successful modification of O-phosphorylethanolamine (O-PEA) on the porous carbon materials. The produced materials (Cafe/O-PEA) could adsorb U(VI) efficiently with the maximum sorption capacity of 648.54 mg/g at 1 hr, T=298 K, and pH=6.0, much higher than those of most carbon-based composites. U(VI) sorption was mainly controlled by strong surface complexation. From FTIR, SEM-EDS and XPS analyses, the sorption of U(VI) was related to the complexation with -NH2, phosphate and -OH groups on Cafe/O-PEA. The low temperature plasma method was an efficient, environmentally friendly and low-cost method for surface modification of materials for the effective enrichment of U(VI) from aqueous solutions.
Collapse
Affiliation(s)
- Zhongshan Chen
- School of Life Science, Shaoxing University, Shaoxing 312000, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xuan He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Qian Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lining Wu
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China; College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
11
|
Zhang C, Shen Q, Su Y, Jin R. Efficient heavy metal recycling and water reuse from industrial wastewater using new reusable and inexpensive polyphenylene sulfide derivatives. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Zhao W, Chi H, Zhang X, Wang Y, Li T. Cellulose/silsesquioxane grafted Ti3C2Tx MXene for synergistically enhanced adsorption of uranium. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Rapid and selective recovery of Ag(I) from simulative electroplating effluents by sulfydryl-rich covalent organic framework (COF-SH) with high adsorption capacity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Efficient adsorptive and reductive removal of U(VI) and Se(IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
de Araujo LG, Vieira LC, Canevesi RLS, da Silva EA, Watanabe T, de Padua Ferreira RV, Marumo JT. Biosorption of uranium from aqueous solutions by Azolla sp. and Limnobium laevigatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45221-45229. [PMID: 35146605 DOI: 10.1007/s11356-022-19128-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The main goal of this study was to assess alternatives to the current challenges on environmental quality and circular economy. The former is here addressed by the treatment of radioactively contaminated solutions, and the latter by using abundant and low-cost biomass. In this paper, we examine the biosorption of hexavalent uranium (U(VI)) in a batch system using the macrophytes Limnobium laevigatum and Azolla sp. by three operational parameters: biomass dose, metal ion concentration, and contact time. Simulated solutions were firstly addressed with two biomasses, followed by studies with real liquid organic radioactive waste (LORW) with Azolla sp. The batch experiments were carried out by mixing 0.20 g biomass in 10 mL of the prepared solution or LORW. The total contact time employed for the determination of the equilibrium times was 240 min, and the initial U(VI) concentration was 0.63 mmol L-1. The equilibrium times were 15 min for L. laevigatum and 30 min for Azolla sp. respectively. A wide range of initial U(VI) concentrations (0.25-36 mmol L-1) was then used to assess the adsorption capacity of each macrophyte. Isotherm models validated the adsorption performance of the biosorption process. Azolla sp. presented a much higher U(VI) uptake (0.474 mmol g-1) compared to L. laevigatum (0.026 mmol g-1). When in contact with LORW, Azolla sp. removed much less uranium, indicating an adsorption capacity of 0.010 mmol g-1. In conclusion, both biomasses, especially Azolla sp., can be used in the treatment of uranium-contaminated solutions.
Collapse
Affiliation(s)
- Leandro Goulart de Araujo
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil.
| | - Ludmila Cabreira Vieira
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| | - Rafael Luan Sehn Canevesi
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645 - Jardim La Salle, Toledo, PR, 85903-000, Brazil
| | - Edson Antonio da Silva
- Universidade Estadual do Oeste do Paraná, Rua da Faculdade 645 - Jardim La Salle, Toledo, PR, 85903-000, Brazil
| | - Tamires Watanabe
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| | | | - Júlio Takehiro Marumo
- IPEN/CNEN, Av. Prof. Lineu Prestes, Instituto de Pesquisas Energéticas e Nucleares, 2242 - Cidade Universitária, Sao Paulo, SP, 05508-000, Brazil
| |
Collapse
|
16
|
Melamine sponge loading improves the separation performance of magnetic hydroxyapatite for Pb(Ⅱ) adsorption. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Reduction mechanism of Au(III) species adsorbed on δ-MnO2. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Lv D. Layered double hydroxides functionalized by carbonaceous materials: from preparation to energy and environmental applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30865-30891. [PMID: 35094279 DOI: 10.1007/s11356-021-18179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Along with the exponential demand for energy and pollution-free-environment, layered double hydroxides (LDHs) have gained extensive explorations because of their diverse nanostructures and tunable elemental compositions. However, the applications of LDHs are hindered by their poor activity, sluggish mass transfer, and aggregation. LDHs functionalized by carbonaceous materials (CMs) (LDH-CM) are expected to overcome the above disadvantages and even generate more excellent performance. This review first analyzes the research evolvement of LDH-CM composites during the past 25 years. Next, the advantages of LDH-CM composites are highlighted, such as morphology optimization, high electrical conductivity, more stable, good heat, and mass transfer performance. Following the synthetic strategies, including chemical assembly of LDHs and CMs, direct growth of LDH on CMs (two-step nucleation and growth and surface-confined growth) and direct CM formation on LDHs are fully discussed. Then, the recent progress achieved in LDH-CM composites for the application of energy storage and environmental protection is summarized in detail. In particular, the review illustrates the reasons why these constructing strategies can improve the performance of LDH-CM composites. Finally, challenges and future research prospects of LDH-CM composites are highlighted.
Collapse
Affiliation(s)
- Dong Lv
- National Natural Science Foundation of China, Beijing, 100085, People's Republic of China.
| |
Collapse
|
19
|
Niu CP, Zhang CR, Cui WR, Yi SM, Liang RP, Qiu JD. A conveniently synthesized redox-active fluorescent covalent organic framework for selective detection and adsorption of uranium. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127951. [PMID: 34894515 DOI: 10.1016/j.jhazmat.2021.127951] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/19/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Uranium is a key element in the nuclear industry and also a global environmental contaminant with combined highly toxic and radioactive. Currently, the materials based on post-modification of amidoxime have been developed for uranium detection and adsorption. However, the affinity of amidoxime group for vanadium is stronger than that of uranium, which is the main challenge hindering the practical application of amidoxime-based adsorbents. Herein, we synthesized a fluorescent covalent organic framework (TFPPy-BDOH) through integrating biphenyl diamine and pyrene unit into the π-conjugated framework. TFPPy-BDOH has an excellent selectivity to uranium due to the synergistic effect of nitrogen atom in the imine bond and hydroxyl groups in conjugated framework. It can achieve ultra-fast fluorescence response time (2 s) and ultra-low detection limit (8.8 nM), which may be attributed to its intrinsic regular porous channel structures and excellent hydrophilicity. More excitingly, TFPPy-BDOH can chemically reduce soluble U (VI) to insoluble U (IV), and release the binding site to adsorb additional U (VI), achieving high adsorption capacity of 982.6 ± 49.1 mg g-1. Therefore, TFPPy-BDOH can overcome the challenges faced by current amidoxime-based adsorbents, making it as a potential adsorbent in practical applications.
Collapse
Affiliation(s)
- Cheng-Peng Niu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Cheng-Rong Zhang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Shun-Mo Yi
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China; Engineering Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, Pingxiang University, Pingxiang 337055, China.
| |
Collapse
|
20
|
Foster C, Shaw S, Neill TS, Bryan N, Sherriff N, Natrajan LS, Wilson H, Lopez-Odriozola L, Rigby B, Haigh SJ, Zou YC, Harrison R, Morris K. Hydrotalcite Colloidal Stability and Interactions with Uranium(VI) at Neutral to Alkaline pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2576-2589. [PMID: 35166554 PMCID: PMC9098172 DOI: 10.1021/acs.langmuir.1c03179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In the United Kingdom, decommissioning of legacy spent fuel storage facilities involves the retrieval of radioactive sludges that have formed as a result of corrosion of Magnox nuclear fuel. Retrieval of sludges may re-suspend a colloidal fraction of the sludge, thereby potentially enhancing the mobility of radionuclides including uranium. The colloidal properties of the layered double hydroxide (LDH) phase hydrotalcite, a key product of Magnox fuel corrosion, and its interactions with U(VI) are of interest. This is because colloidal hydrotalcite is a potential transport vector for U(VI) under the neutral-to-alkaline conditions characteristic of the legacy storage facilities and other nuclear decommissioning scenarios. Here, a multi-technique approach was used to investigate the colloidal stability of hydrotalcite and the U(VI) sorption mechanism(s) across pH 7-11.5 and with variable U(VI) surface loadings (0.01-1 wt %). Overall, hydrotalcite was found to form stable colloidal suspensions between pH 7 and 11.5, with some evidence for Mg2+ leaching from hydrotalcite colloids at pH ≤ 9. For systems with U present, >98% of U(VI) was removed from the solution in the presence of hydrotalcite, regardless of pH and U loading, although the sorption mode was affected by both pH and U concentrations. Under alkaline conditions, U(VI) surface precipitates formed on the colloidal hydrotalcite nanoparticle surface. Under more circumneutral conditions, Mg2+ leaching from hydrotalcite and more facile exchange of interlayer carbonate with the surrounding solution led to the formation of uranyl carbonate species (e.g., Mg(UO2(CO3)3)2-(aq)). Both X-ray absorption spectroscopy (XAS) and luminescence analysis confirmed that these negatively charged species sorbed as both outer- and inner-sphere tertiary complexes on the hydrotalcite surface. These results demonstrate that hydrotalcite can form pseudo-colloids with U(VI) under a wide range of pH conditions and have clear implications for understanding the uranium behavior in environments where hydrotalcite and other LDHs may be present.
Collapse
Affiliation(s)
- Chris Foster
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Thomas S. Neill
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nick Bryan
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- National
Nuclear Laboratory, Chadwick
House, Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K.
| | - Nick Sherriff
- National
Nuclear Laboratory, Chadwick
House, Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K.
| | - Louise S. Natrajan
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Hannah Wilson
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Laura Lopez-Odriozola
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Bruce Rigby
- Sellafield
Ltd., Hinton House, Birchwood Park Avenue, Risley, Warrington, Cheshire WA3
6GR, U.K.
| | - Sarah J. Haigh
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Yi-Chao Zou
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Robert Harrison
- Nuclear
Fuel
Centre of Excellence, Department of Mechanical, Aerospace and Civil
Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K.
| | - Katherine Morris
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
21
|
Tan Y, Wan X, Ni X, Wang L, Zhou T, Sun H, Wang N, Yin X. Efficient removal of Cd (II) from aqueous solution by chitosan modified kiwi branch biochar. CHEMOSPHERE 2022; 289:133251. [PMID: 34896419 DOI: 10.1016/j.chemosphere.2021.133251] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Production of cost-efficient composite materials from low-cost modified biochar for the removal of Cd (II) from wastewater is much needed to meet the growing needs of industrial wastewater treatments. A novel chitosan-modified kiwi branch biochar (CHKB) was fabricated as low-cost modified biochar for the removal of Cd (II) from aqueous solution. Batch adsorption and characterization experiments indicated that the modification of kiwi biochar (KB) by chitosan remarkably improved its adsorption performance. The results revealed that the adsorption isotherms can be best described by a Langmuir model and that a pseudo-second-order model fits the Cd (II) adsorption kinetics well, which indicates that it is a monolayer process controlled by chemisorption. CHKB exhibited a Langmuir maximum adsorption capacity of Cd (II) (126.58 mg g-1), whereas that of KB was only 4.26 mg g-1. The adsorption ability of CHKB was improved by increasing the surface area and an abundance of surface functional groups (-OH, -NH, CO, etc.). The cation exchange, electrostatic interaction, surface complexation, and precipitation were the main mechanisms in the sorption of Cd (II) on CHKB. Excellent adsorption performance, low cost, and environmental-friendliness made CHKB a fantastic adsorbent for the removal of Cd (II) in wastewater.
Collapse
Affiliation(s)
- Yuehui Tan
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xirui Wan
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xue Ni
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Le Wang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Ting Zhou
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China
| | - Nong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Tianjin, 300191, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling, 712100, China.
| |
Collapse
|
22
|
Effective separation of uranium(VI) from wastewater using a magnetic carbon as a recyclable adsorbent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Ge T, Shen L, Li J, Zhang Y, Zhang Y. Morphology-controlled hydrothermal synthesis and photocatalytic Cr(VI) reduction properties of α-Fe2O3. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128069] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Guo X, Yang H, Wang J. Ion cross-linking assisted synthesis of ZIF-8/chitosan/melamine sponge with anti-biofouling activity for enhanced uranium recovery. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01203g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ZIF-8/chitosan/melamine sponge (CMZ8) uranium adsorbent was prepared using chitosan and zinc ions as adjuvants to achieve the integration of anti-fouling, adsorption and separation properties.
Collapse
Affiliation(s)
- Xuejie Guo
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, PR China
| | - Haocheng Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, PR China
| | - Jun Wang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, PR China
| |
Collapse
|
25
|
Liu F, Hua S, Wang C, Hu B. Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal. CHEMOSPHERE 2022; 287:132199. [PMID: 34555582 DOI: 10.1016/j.chemosphere.2021.132199] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 05/18/2023]
Abstract
Herein, using dialdehyde waste paper (DAWP) as a cross-linking agent to immobilize persimmon tannin (PT) was first used to remove the U(VI) and Cr(VI) via the "waste control by waste" concept. The microscopic and macroscopic surface properties of the as-prepared adsorbent was characterized by the advanced characterization techniques. Factors that affected the elimination process such as variable pH, coexistence ions and equilibrium time were investigated by batch techniques. The results showed that the maximal removal capacities of U(VI) and Cr(VI) on DAWP-PT were 242.3 mg/g (pH = 6.0) and 178.7 mg/g (pH = 2.0) at 298 K, which exhibited competitiveness with most of the reported solid materials. Meanwhile, adsorption data were fitted perfectly to the Langmuir and Pseudo-second-order equations, which indicated that the monolayer and homogenous chemisorption dominated the removal process. The SEM-EDX, DFT and XPS analysis conformed that adsorption of U(VI) was mainly via surface complexation, while the elimination of Cr(VI) was a redox reaction process, and about 65.33% of Cr(III) and 34.67% of Cr(VI) co-existed onto the surface of DAWP-PT. Thus, this study would provide a high-efficiency and low-cost adsorbent for radionuclide and heavy metal treatment.
Collapse
Affiliation(s)
- Fenglei Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Shan Hua
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Chao Wang
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| |
Collapse
|
26
|
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, Rajesh Banu J. Algal-based system for removal of emerging pollutants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 344:126245. [PMID: 34743994 DOI: 10.1016/j.biortech.2021.126245] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.
Collapse
Affiliation(s)
- Rashmi Gondi
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
27
|
Wang Z, Zhang L, Zhang K, Lu Y, Chen J, Wang S, Hu B, Wang X. Application of carbon dots and their composite materials for the detection and removal of radioactive ions: A review. CHEMOSPHERE 2022; 287:132313. [PMID: 34592206 DOI: 10.1016/j.chemosphere.2021.132313] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 05/18/2023]
Abstract
Radioactive ions with high-heat release or long half-life could cause long-term influence on environment and they might enter the food chain to damage human body for their toxicity and radioactivity. It is of great importance to develop methods and materials to detect and remove radioactive ions. Carbon dots and their composite materials has been applied widely in many fields due to their plentiful raw materials, facile synthesis and functional process, unique optical property and abundant functional groups. This comprehensive review focuses on the preparation of CDs and composite materials for the detection and adsorption of radioactive ions. Firstly, the recent-developed synthetic methods for CDs were summarized briefly, including hydrothermal/solvothermal, microwave, electrochemistry, microplasma, chemical oxidation methods, focusing on the influence of CDs properties. Secondly, the synthetic methods for CDs composite materials were classified to four categories and summarized generally. Thirdly, the application of CDs for radioactive ions detection and adsorption were explored and concluded including uranium, iodine, europium, strontium, samarium et al. Finally, the detection and adsorption mechanism for radioactive ions were searched and the perspective and outlook of CDs for detection and adsorption radioactive ions have been proposed based on our understanding.
Collapse
Affiliation(s)
- Zhe Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; College of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Lingyu Zhang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Kangjie Zhang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yuexiang Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Haidian District, Beijing, 100084, PR China.
| | - Jing Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Haidian District, Beijing, 100084, PR China
| | - Shuqin Wang
- College of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Baowei Hu
- College of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiangke Wang
- The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; College of Life Science, Shaoxing University, Shaoxing, 312000, PR China.
| |
Collapse
|
28
|
Akl ZF. Theoretical and experimental studies on uranium(vi) adsorption using phosphine oxide-coated magnetic nanoadsorbent. RSC Adv 2021; 11:39233-39244. [PMID: 35492472 PMCID: PMC9044479 DOI: 10.1039/d1ra04515f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
In this study, novel Cyanex-923-coated magnetite nanoparticles (Fe3O4@Cyanex-923) were prepared, comprehensively characterized, and employed for uranium(vi) ion adsorption from aqueous solutions. FTIR and TGA data confirmed that Fe3O4 has successfully gained Cyanex-923 surface functionality. Particle size and morphological studies via DLS, HR-TEM, and SEM showed uniform-dispersed quasi-spherical nanoparticles with a mean diameter of ca. 44 nm. Magnetism measurement data revealed the superparamagnetic properties of the Fe3O4@Cyanex-923 nanoadsorbent. The effect of different experimental settings on the adsorption efficiency was studied to determine the best operational conditions. The experimental results were analyzed using Langmuir, Freundlich, and Temkin isotherms; where the adsorption data obeyed the Langmuir model showing a theoretical adsorption capacity of 429.185 mg g-1 at 298 K. Kinetics data analysis revealed a fast adsorption process that could reach equilibrium within 60 min and is well-fitted to the pseudo-2nd-order model. Temperature affected the adsorption process and the thermodynamic data indicated that uranium(vi) adsorption was spontaneous and exothermic. Fe3O4@Cyanex-923 nanoparticles displayed a good regeneration behavior over three sequential adsorption-desorption cycles. The Fe3O4@Cyanex-923 nanoadsorbent showed a high uranium adsorption capacity, fast equilibration time, economic nature, good reusability, and easy separation; making it a promising candidate for uranium(vi) removal from nuclear waste streams.
Collapse
Affiliation(s)
- Zeinab F Akl
- Egyptian Atomic Energy Authority P.O. Box 11762 Cairo Egypt
| |
Collapse
|
29
|
Synthesis of novel reduced graphene oxide decorated β-cyclodextrin epichlorohydrin composite and its application for Cr(VI) removal: Batch and fixed-bed studies. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119630] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Purification of uranium-contaminated radioactive water by adsorption: A review on adsorbent materials. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119675] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Abdel Maksoud M, Sami N, Hassan H, Awed A. Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Bao L, Cai Y, Liu Z, Li B, Bian Q, Hu B, Wang X. High Sorption and Selective Extraction of Actinides from Aqueous Solutions. Molecules 2021; 26:molecules26237101. [PMID: 34885684 PMCID: PMC8658866 DOI: 10.3390/molecules26237101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
The selective elimination of long-lived radioactive actinides from complicated solutions is crucial for pollution management of the environment. Knowledge about the species, structures and interaction mechanism of actinides at solid–water interfaces is helpful to understand and to evaluate physicochemical behavior in the natural environment. In this review, we summarize recent works about the sorption and interaction mechanism of actinides (using U, Np, Pu, Cm and Am as representative actinides) on natural clay minerals and man-made nanomaterials. The species and microstructures of actinides on solid particles were investigated by advanced spectroscopy techniques and computational theoretical calculations. The reduction and solidification of actinides on solid particles is the most effective way to immobilize actinides in the natural environment. The contents of this review may be helpful in evaluating the migration of actinides in near-field nuclear waste repositories and the mobilization properties of radionuclides in the environment.
Collapse
Affiliation(s)
- Linfa Bao
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Yawen Cai
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Zhixin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
- Correspondence:
| | - Bingfeng Li
- Power China Sichuan Electric Power Engineering Co., Ltd., Chengdu 610041, China;
| | - Qi Bian
- Shaoxing ZeYuan Science Technology Ltd., Shaoxing 312000, China;
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| | - Xiangke Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China; (L.B.); (Y.C.); (B.H.); (X.W.)
| |
Collapse
|
33
|
Preparation and performance of silver-incorporated antibacterial amidoximated electrospun nanofiber for uranium extraction from seawater. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Zhang CZ, Shen QQ, Niu MX, Ni MR. Computational Design and Templated Synthesis of Porous Polyether Frameworks with N and O Adsorption Sites for Efficiently Chelating Heavy Metal Ions. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chao-Zhi Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qian-Qian Shen
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Meng-Xiao Niu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Meng-Ran Ni
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
35
|
Wang H, Liu R, Wang H, Hu B, Qiu M. High effective enrichment of U(VI) from aqueous solutions on versatile crystalline carbohydrate polymer-functionalized graphene oxide. Dalton Trans 2021; 50:14009-14017. [PMID: 34546242 DOI: 10.1039/d1dt02497c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The removal of uranium on various sorbents has been widely employed in recent times. However, the limited sorption capacities of these sorbents inhibit the actual application of the radionuclide in actual environments. The development of a novel material with high sorption capacity and superior regeneration for the removal of uranium is highly desirable. Therefore, a versatile class of crystalline carbohydrate polymers (COF) was prepared from organic compounds. Moreover, COF-functionalized graphene oxide (COF/GO) was synthesized and tested for the removal of U(VI) from aqueous solutions. The batch characterization showed that COF was vertically oriented on the surface of GO using diboronic acid as nucleation sites. The maximum removal capacity of U(VI) on COF/GO reached 117.67 mg g-1, and was attributed to a huge void ratio and various oxygen-bearing functional groups. In addition, the inner-sphere surface-complexation dominated the U(VI) removal, and the adsorption mechanism of inner-sphere surface-complexation was transferred into surface precipitation with increasing reaction time. COF/GO can be converted into conductive carbon and reduced GO (C/rGO) nanocomposite, which has high specific capacitance. These results suggested that GO-based materials can be considered as promising candidates for the enrichment of U(VI) and energy storage.
Collapse
Affiliation(s)
- Hai Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Renrong Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Huifang Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, P.R. China.
| |
Collapse
|
36
|
Guo K, Cheng C, Chen L, Xie J, Li S, He S, Xiao F. Uranium enrichment performence and uranium stress mechanism of Deinococcus radiodurans. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-08018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|