1
|
Kong J, Yan S, Cao X, Zhang Y, Ran C, Chen X, Yang S, Li S, Zhang L, He H. Quantitative source apportionment and health risk assessment for polycyclic aromatic hydrocarbon and their derivatives in indoor dust from housing and public buildings of a mega-city in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137057. [PMID: 39754876 DOI: 10.1016/j.jhazmat.2024.137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Indoor dust can adsorb various pollutants and long-term deposition can significantly impact air quality and human health. This study investigated the occurrence, source apportionment, and health risks associated with polycyclic aromatic hydrocarbons (PAHs) and their derivatives (d-PAHs) in indoor dust, by focusing on residential and public buildings in Nanjing, China. The concentration of 16 PAHs and 27 d-PAHs ranged from 511 to 5472 ng/g and from 422 to 2904 ng/g, with the most abundant compounds being fluoranthene and 1,2-benz[a]anthraquinone, respectively. The total concentrations observed in residences and station halls were higher than in student dormitory and offices. The primary source of PAHs and d-PAHs was identified as coal combustion by self-organizing map combined with receptor models, including principal component analysis-multiple linear regression (PCA-MLR) and positive matrix factorization (PMF). Compared with PCA-MLR, PMF demonstrated superior performance and was recommended as the preferred model for quantitative source analysis. PAHs and d-PAHs in indoor dust may pose a high incremental lifetime carcinogenic risk (˃ 1 × 10-4) through inhalation and dermal exposure based on Monte Carlo simulation. PAH derivatives posed a risk of 70 % of the total target compounds, although their concentration only accounted for 30 %. Notably, children exhibited a higher risk through ingestion than adults, which can be attributed to hand-to-mouth and object-to-mouth contact behaviors. This work helps to understand PAHs and d-PAHs in urban indoor dust from both outdoor environments and indoor activities, offering an innovative perspective for tracing indoor environmental pollution sources and risks.
Collapse
Affiliation(s)
- Jijie Kong
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Sirui Yan
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Xiaoyu Cao
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Yuteng Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Chengling Ran
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Xianxian Chen
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shaogui Yang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China
| | - Limin Zhang
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing 210023, China.
| |
Collapse
|
2
|
Zhang X, Wang X, Wu F, Liang W, Wang S, Liang J, Zhao X, Wu F. Machine learning models to predict the bioaccessibility of parent and substituted polycyclic aromatic hydrocarbons (PAHs) in food: Impact on accurate health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136102. [PMID: 39423650 DOI: 10.1016/j.jhazmat.2024.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Food intake is the primary pathway for polycyclic aromatic hydrocarbons (PAHs) to enter the human body. Once ingested, PAHs tend to accumulate, posing health risks. To accurately assess the risk of PAHs from food, concentrations of 10 parent PAHs (PPAHs) and 15 substituted PAHs (SPAHs) were detected across 34 commonly consumed foods. Results indicated that SPAHs concentrations (3.89-11.6 ng/g dw) were higher than PPAH concentrations (1.66-3.43 ng/g dw) in shrimp and shellfish and freshwater fish. Four machine learning algorithms were used to predict the bioaccessibility of PAHs in foods, with the random forest model performing the best (R2 =0.987, RMSE=5.99). Feature variable importance analysis revealed that lipid and protein contents in food are critical variables influencing PAH bioaccessibility. Subsequently, the bioaccessibility of 25 PAHs in various foods was predicted to explore its impact on health risk assessment. Consequently, the carcinogenic risks considering bioaccessibility (5.62 ×10-5-7.12 ×10-5) was about an order of magnitude lower than that ignoring bioaccessibility (1.52 ×10-4-1.69 ×10-4), yet it still exceeded 10⁻6, indicating potential carcinogenic risks. Although PPAHs and alkylated PAHs were predominant in foods, 6-nitrochrysene was the main compound inducing both non-carcinogenic and carcinogenic risks owing to its high toxicity. This study developed a novel method for assessing pollutant bioaccessibility and evaluating its impact on health risk assessment, which provides a valuable model for managing massive hazardous pollutants and is essential for improving the accuracy of health risk assessment.
Collapse
Affiliation(s)
- Xiao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaolei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fei Wu
- College of Artificial Intelligence and Automation, Hohai University, Nanjing 211100, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sixian Wang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jinglin Liang
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
3
|
Alghamdi MA, Hassan SK, Shetaya WH, Al Sharif MY, Nawab J, Khoder MI. Polycyclic aromatic hydrocarbons in indoor mosques dust in Saudi Arabia: Levels, source apportionment, human health and carcinogenic risk assessment for congregators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174331. [PMID: 38945247 DOI: 10.1016/j.scitotenv.2024.174331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Mosques are important places for Muslims where they perform their prayers. The congregators are exposed to hazardous pollutants such as polycyclic aromatic hydrocarbons (PAHs) associated with dust. However, studies on PAHs exposure in religious places are scarce. Air-condition filter (ACF) dust can correspond to air quality to a certain extent, since dust particles derived from indoor and outdoor places stick to it. Therefore, the present study aimed to evaluate the 16 EPA PAHs in ACF dust from mosques to determine their levels, profiles, sources and risks. Average Σ16 PAHs concentrations were 1039, 1527, 2284 and 5208 ng/g in AC filter dust from mosques in residential (RM), suburban (SM), urban (UM) and car repair workshop (CRWM), respectively, and the differences were statistically significant (p < 0.001). Based on the molecular diagnostic PAH ratios, PAHs in mosques dust is emitted from local incomplete fuel combustion, as well as complete fossil fuels combustion sources (pyrogenic), petroleum spills, crude and fuel oil, traffic emissions, and other possible sources of industrial emissions in different functional areas. The incremental lifetime cancer risks (ILCRs) values for children and adults across the different types of mosques follow the order: CRWM > UM > SM > RM. ILCRs values for both children and adults were found in order: dermal contact > ingestion > inhalation. The cancer risk levels via ingestion for children were relatively higher than the adults. The values of cancer risk for children and adults via dermal contact and ingestion (except in RM) were categorized in the 'potentially high risk' category (> 10-4). The mean values of total cancer risks (CR) for children (5.74 × 10-3) and adults (5.07 × 10-3) in mosques also exceeded the accepted threat value (>10-4). Finally, it is recommended that regular and frequent monitoring of PAHs should be carried out in mosques to improve the quality and maintain the health of congregators around the globe.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia.
| | - Salwa K Hassan
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Waleed H Shetaya
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| | - Marwan Y Al Sharif
- Department of Environment, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science & Technology, Kohat, Pakistan
| | - Mamdouh I Khoder
- Air Pollution Research Department, Environment and Climate Change Research Institute, National Research Centre, El Behooth Str., Dokki, Giza 12622, Egypt
| |
Collapse
|
4
|
Jagić K, Dvoršćak M, Tariba Lovaković B, Klinčić D. Polybrominated diphenyl ethers in paired dust-breast milk samples: Levels, predictors of contamination, and health risk assessment for infants and mothers. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104547. [PMID: 39218329 DOI: 10.1016/j.etap.2024.104547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
An integrated study on the levels of 7 polybrominated diphenyl ethers (PBDEs) in house dust and breast milk samples from women (N = 30) living in these households was conducted. ∑PBDEs ranged from
Collapse
Affiliation(s)
- Karla Jagić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Marija Dvoršćak
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Blanka Tariba Lovaković
- Division of Toxicology, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia
| | - Darija Klinčić
- Division of Environmental Hygiene, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb 10001, Croatia.
| |
Collapse
|
5
|
Sultana D, Kauffman D, Castorina R, Paulsen MH, Bartlett R, Ranjbar K, Gunier RB, Aguirre V, Rowen M, Garban N, DeGuzman J, She J, Patterson R, Simpson CD, Bradman A, Hoover S. The East Bay Diesel Exposure Project: a biomonitoring study of parents and their children in heavily impacted communities. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:827-835. [PMID: 38102301 PMCID: PMC11446841 DOI: 10.1038/s41370-023-00622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Diesel exhaust (DE) exposures pose concerns for serious health effects, including asthma and lung cancer, in California communities burdened by multiple stressors. OBJECTIVE To evaluate DE exposures in disproportionately impacted communities using biomonitoring and compare results for adults and children within and between families. METHODS We recruited 40 families in the San Francisco East Bay area. Two metabolites of 1-nitropyrene (1-NP), a marker for DE exposures, were measured in urine samples from parent-child pairs. For 25 families, we collected single-day spot urine samples during two sampling rounds separated by an average of four months. For the 15 other families, we collected daily spot urine samples over four consecutive days during the two sampling rounds. We also measured 1-NP in household dust and indoor air. Associations between urinary metabolite levels and participant demographics, season, and 1-NP levels in dust and air were evaluated. RESULTS At least one 1-NP metabolite was present in 96.6% of the urine samples. Detection frequencies for 1-NP in dust and indoor air were 97% and 74%, respectively. Results from random effect models indicated that levels of the 1-NP metabolite 6-hydroxy-1-nitropyrene (6-OHNP) were significantly higher in parents compared with their children (p-value = 0.005). Urinary 1-NP metabolite levels were generally higher during the fall and winter months. Within-subject variability was higher than between-subject variability (~60% of total variance versus ~40%, respectively), indicating high short-term temporal variability. IMPACT Biomonitoring, coupled with air monitoring, improves understanding of hyperlocal air pollution impacts. Results from these studies will inform the design of effective exposure mitigation strategies in disproportionately affected communities.
Collapse
Affiliation(s)
- Daniel Sultana
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
| | - Duyen Kauffman
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Rosemary Castorina
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Michael H Paulsen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Russell Bartlett
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Kelsey Ranjbar
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
| | - Robert B Gunier
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Victor Aguirre
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
| | - Marina Rowen
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Natalia Garban
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
| | - Josephine DeGuzman
- Environmental Health Laboratory Branch, California Department of Public Health, Richmond, CA, USA
| | - Jianwen She
- Environmental Health Laboratory Branch, California Department of Public Health, Richmond, CA, USA
| | - Regan Patterson
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Asa Bradman
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA.
- Department of Public Health, University of California, Merced, CA, USA.
| | - Sara Hoover
- Office of Environmental Health Hazard Assessment (OEHHA), California Environmental Protection Agency, Oakland, CA, USA
| |
Collapse
|
6
|
Dvoršćak M, Živančev J, Jagić K, Buljovčić M, Antić I, Đurišić-Mladenović N, Klinčić D. Contamination levels, influencing factors, and risk assessment of polybrominated diphenyl ethers in house dust of northern Serbia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25033-25045. [PMID: 38466382 DOI: 10.1007/s11356-024-32836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of compounds that, due to their applications, are considered mainly indoor contaminants. To obtain the first information about the presence of PBDEs in Serbia, dust samples (n = 50) were collected in settlements in the northern Serbian province of Vojvodina. The selected/target congeners (BDE-28, 47, 99, 100, 153, 154, and 183) were extracted from house dust by microwave-assisted extraction technique, and purified extracts were analyzed on a dual-column gas chromatograph with micro-electron capture detectors. A wide range of ΣPBDEs was detected (0.295 to 394 ng g-1 dust), which reflects large differences in contamination among the examined homes. For the majority of samples (72%), ΣPBDEs were lower than 5 ng g-1 indicating that people living in Vojvodina province are exposed to low concentrations of PBDEs present in their households. Based on principal component analysis (PCA), balcony areas and age of the house positively correlate with the PBDE congeners with higher detection frequencies (≥ 50%), namely, with BDE-99, BDE-153, and BDE-183. Statistically significant positive correlation (p < 0.01) was obtained for BDE-99 and the number of household's members. Estimated daily intakes (EDItot) were calculated for ingestion and dermal absorption of dust for two age groups-adults and toddlers. These are the first data on PBDE status in the area of the Western Balkan, and the health risk assessment indicates that PBDE levels obtained in household dust do not pose a risk for human health.
Collapse
Affiliation(s)
- Marija Dvoršćak
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Karla Jagić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia.
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21 000, Novi Sad, Serbia
| | - Darija Klinčić
- Institute for Medical Research and Occupational Health, Ksaverska c. 2, Zagreb, Croatia
| |
Collapse
|
7
|
Zhang X, Wang X, Liang W, Liu M, Wang X, Zhao X. The occurrence, sources, and health risks of substituted polycyclic aromatic hydrocarbons (SPAHs) cannot be ignored. ENVIRONMENT INTERNATIONAL 2024; 183:108390. [PMID: 38150805 DOI: 10.1016/j.envint.2023.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/29/2023]
Abstract
Similar to parent polycyclic aromatic hydrocarbons (PPAHs), substituted PAHs (SPAHs) are prevalent in the environment and harmful to humans. However, they have not received much attention. This study investigated the occurrence, distribution, and sources of 10 PPAHs and 15 SPAHs in soil, water, and indoor and outdoor PM2.5 and dust in high-exposure areas (EAH) near industrial parks and low-exposure areas (EAL) far from industrial parks. PAH pollution in all media was more severe in the EAH than in the EAL. All SPAHs were detected in this study, with alkylated and oxygenated PAHs being predominant. Additionally, 3-OH-BaP and 1-OH-Pyr were detected in all dust samples in this study, and 6-N-Chr, a compound with carcinogenicity 10 times higher than that of BaP, was detected at high levels in all tap water samples. According to the indoor-outdoor ratio, PAHs in indoor PM2.5 in the EAH mainly originated from indoor pollution sources; however, those in the EAL were simultaneously affected by indoor-outdoor air exchange and indoor sources. Most target PAHs tended to deposit from air to dust, and this tendency was significantly negatively associated with the octanol-air partitioning coefficient of PAHs. SPAHs in the environment are primarily derived from the petroleum industry and the mixed combustion of gasoline, biomass, and coal. The toxicity equivalence factors of SPAHs were predicted using QSAR models to assess their lifetime carcinogenic risk (ILCR). The ILCRtotal from PAHs for adults in the EAH was >10-4. Though the levels of 6-N-Chr and 1-Me-Pyr in the environment were markedly lower than those of PPAHs, their ILCRs from PM2.5 inhalation and dermal contact with water exceeded 10-6. This study is significant for recognizing and controlling the health risks associated with SPAHs in humans.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaolei Wang
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Weigang Liang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Liu
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Wang
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
8
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
9
|
Fuentes-Ferragud E, Miralles P, López A, Ibáñez M, Coscollà C. Non-target screening and human risk assessment for adult and child populations of semi-volatile organic compounds in residential indoor dust in Spain. CHEMOSPHERE 2023; 340:139879. [PMID: 37598947 DOI: 10.1016/j.chemosphere.2023.139879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/06/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
In this work, an analytical strategy based on non-target screening of semi-volatile organic compounds and subsequent risk assessment for adult and child populations has been conducted for the first time in household indoor dust samples in Spain. The methodology was based on a microwave-assisted extraction followed by gas chromatography coupled to high resolution mass spectrometry determination, using a hybrid quadrupole-orbitrap analyzer. The procedure was applied to 19 residential indoor dust samples, collected in different Spanish regions (namely Galicia, La Rioja, Catalunya, the Balearic Islands, and the Valencian Region). From the generated data, 4067 features were obtained, of which 474 compounds were tentatively identified with a high level of identification confidence (probable structure by library spectrum match or confirmed by reference standard), using a restrictive set of identification criteria. Most of the identified chemicals were natural products, metabolites, additives, and substances with industrial applications in the field of foods, cosmetics, pharmaceuticals, pesticides, and plastics. Finally, risk assessment was carried out by applying the threshold of toxicological concern approach, showing that risk to adult and child populations associated with the presence of the identified substances in the indoor dust was not expected, although the existence of indoor environments with conditions of potential risk cannot be discarded under a worst-case scenario approach.
Collapse
Affiliation(s)
- Esther Fuentes-Ferragud
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain; Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Av. Sos Baynat S/N, 12071, Castelló de la Plana, Spain
| | - Pablo Miralles
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain.
| | - Antonio López
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Av. Sos Baynat S/N, 12071, Castelló de la Plana, Spain
| | - Clara Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO-Public Health), Av. Catalunya 21, 46020, Valencia, Spain
| |
Collapse
|
10
|
Liu C, Hou HS. Physical exercise and persistent organic pollutants. Heliyon 2023; 9:e19661. [PMID: 37809764 PMCID: PMC10558913 DOI: 10.1016/j.heliyon.2023.e19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to the legacy and emerging persistent organic pollutants (POPs) incessantly has become an important threat to individual health, which is closely related to neurodevelopment, endocrine and cardiovascular homeostasis. Exercise, on the other hand, has been consistently shown to improve physical fitness. Whereas associations between traditional air pollutants, exercise and lung function have been thoroughly reviewed, reviews on associations between persistent organic pollutants and exercise are scarce. Hence, a literature review focused on exercise, exposure to POPs, and health risk assessment was performed for studies published from 2004 to 2022. The purpose of this review is to provide an overview of exposure pathways and levels of POPs during exercise, as well as the impact of exercise on health concerns attributable to the redistribution, metabolism, and excretion of POPs in vivo. Therein lies a broader array of exercise benefits, including insulin sensitizing, mitochondrial DNA repair, lipid metabolism and intestinal microecological balance. Physical exercise is conducive to reduce POPs body burden and resistant to health hazards of POPs generally. Besides, individual lipid metabolism condition is a critical factor in evaluating potential link in exercise, POPs and health effects.
Collapse
Affiliation(s)
- Chang Liu
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| | - Hui sheng Hou
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| |
Collapse
|
11
|
Li Q, Cheng L, Jin X, Liu L, Shangguan J, Chang S, Sun R, Shang Y, Lv Q, Li J, Zhang G. Chlorinated paraffins in multimedia during residential interior finishing: Occurrences, behavior, and health risk. ENVIRONMENT INTERNATIONAL 2023; 178:108072. [PMID: 37406371 DOI: 10.1016/j.envint.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Though with bioaccumulation and toxicity, chlorinated paraffins (CPs) are still high produced and widely utilized in various daily necessities for extender plasticization and flame retardation. CPs can be released during the reprocessing processes of finishing materials and distributed in multi-environmental media. Herein, concentrations and compositions of CPs in four representative media including interior finishing materials, PM10, total suspended particulate (TSP), and dust samples collected from eight interior finishing stages were studied. Unexpectedly, CP concentrations in ceramic tiles was found to be high with a mean value of 7.02 × 103 μg g-1, which could be attributed to the presence of CPs in the protective wax coated on ceramic tiles surfaces. Furthermore, the pollution characteristics of short-chain and medium-chain CPs (SCCPs and MCCPs) in those samples were inconsistent. According to the investigation regarding Kdust-TSP and [Formula: see text] , the occurrence and distribution of CPs in indoor atmospheric particles (PM10 and TSP) and dust were highly affected by reprocessing processes (cutting, hot melting, etc.) compared to that in the finishing materials. Moreover, dermal contact was the primary pathway of CP exposure for the occupational population (interior construction workers) for most interior finishing stages, and the interior finishing process is the prime CP exposure period for the occupational groups. As suggested by our assessment, though hardly posing an immediate health risk, CPs exposure still presents unneglected adverse health effects, which calls for adequate personal protections during interior finishing, especially in developing countries.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China.
| | - Lei Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Xinjie Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Linjie Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Shixiang Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Ruoxi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yihan Shang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
12
|
Abdulrahman N, Honda TJ, Ali A, Abdulrahman N, Vrinceanu D, Shishodia S. Impacts of Indoor Dust Exposure on Human Colonic Cell Viability, Cytotoxicity and Apoptosis. TOXICS 2023; 11:633. [PMID: 37505597 PMCID: PMC10383473 DOI: 10.3390/toxics11070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
INTRODUCTION Environmental exposure to indoor dust is known to be associated with myriad health conditions, especially among children. Established routes of exposure include inhalation and non-dietary ingestion, which result in the direct exposure of gastrointestinal epithelia to indoor dust. Despite this, little prior research is available on the impacts of indoor dust on the health of human gastrointestinal tissue. METHODS Cultured human colonic (CCD841) cells were exposed for 24 h to standard trace metal dust (TMD) and organic contaminant dust (OD) samples at the following concentrations: 0, 10, 25, 50, 75, 100, 250, and 500 µg/mL. Cell viability was assessed using an MTT assay and protease analysis (glycyl-phenylalanyl-aminofluorocoumarin (GF-AFC)); cytotoxicity was assessed with a lactate dehydrogenase release assay, and apoptosis was assessed using a Caspase-Glo 3/7 activation assay. RESULTS TMD and OD decreased cellular metabolic and protease activity and increased apoptosis and biomarkers of cell membrane damage (LDH) in CCD841 human colonic epithelial cells. Patterns appeared to be, in general, dose-dependent, with the highest TMD and OD exposures associated with the largest increases in apoptosis and LDH, as well as with the largest decrements in metabolic and protease activities. CONCLUSIONS TMD and OD exposure were associated with markers of reduced viability and increased cytotoxicity and apoptosis in human colonic cells. These findings add important information to the understanding of the physiologic effects of indoor dust exposure on human health. The doses used in our study represent a range of potential exposure levels, and the effects observed at the higher doses may not necessarily occur under typical exposure conditions. The effects of long-term, low-dose exposure to indoor dust are still not fully understood and warrant further investigation. Future research should explore these physiological mechanisms to further our understanding and inform public health interventions.
Collapse
Affiliation(s)
- Noura Abdulrahman
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Trenton J Honda
- School of Clinical and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ayat Ali
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Nabras Abdulrahman
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Daniel Vrinceanu
- Department of Physics, Texas Southern University, Houston, TX 77004, USA
| | - Shishir Shishodia
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| |
Collapse
|
13
|
Gondwal TK, Mandal P. Characterization of organic contaminants associated with road dust of Delhi NCR, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51906-51919. [PMID: 36820981 DOI: 10.1007/s11356-023-25762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Hydrophobic organic contaminated polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and CHNS (carbon, hydrogen, nitrogen and sulphur species) are explosively associated with road dust particles. A few organic contaminants are toxic in nature and have an unpleasant effect on human health. The International Agency for Research on Cancer (IARC), the US Department of Health and Human Services (HHS) and the United States-Environmental Protection Agency has considered several PAHs and PCBs as carcinogens for human beings. In the proposed study, the anthropogenic contaminants present in road dust were assessed in six representative diversified sites i.e. industrial, commercial, office, residential, construction and traffic intersection in Delhi NCR, India. Roadside dust samples were gathered in premonsoon, monsoon and postmonsoon seasons and characterized for PAHs, PCBs and CHNS. The concentration of total PAHs (16 Nos) and PCBs (6 Nos) of the selected sites ranged from 0.27 µg/kg to 605.80 µg/kg and 0.01 µg/kg to 41.26 µg/kg, respectively. The Fourier transform infrared spectroscopy-attenuated total reflectance study suggested that the presence of O = C = O, Si-O, carbonyl, acidic or aliphatic esters group were associated with road dust particles. Hydrogen and sulphur concentrations were not detected in the selected road dust samples. Carbon and nitrogen concentrations varied from 2.24% to 16.82% and 0.69% to 14.5%, respectively, seasonally. In the premonsoon season, road dust was distinguishably contaminated as compared to monsoon and postmonsoon season, which might be due to movement of contaminated road dust from adjacent locations. It was perceived that Delhi NCR organic contamination in road dust was much below as compared to other countries. It may be concluded that due to the presence of significant amounts of carbon and nitrogen concentrations in the road dust, to a greater extent, road dust can be fertile and might be advantageous for green belt development to mitigate air pollution. The utilization of road dust will further bring down the burden of landfill sites and may lead towards sustainability.
Collapse
Affiliation(s)
- Tarang Kumar Gondwal
- Widmans Laboratory, IMT Manesar, Gurugram, Haryana, 122050, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
- CSIR-NEERI, Zonal Centre, New Delhi, 110 028, India
| | - Papiya Mandal
- CSIR-NEERI, Zonal Centre, New Delhi, 110 028, India.
| |
Collapse
|
14
|
Wang X, Wang X, Qi J, Gong S, Wang C, Li L, Fan L, Liu H, Cao Y, Liu M, Han X, Su L, Yao X, Tysklind M, Wang X. Levels, distribution, sources and children health risk of PAHs in residential dust: A multi-city study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160760. [PMID: 36513232 DOI: 10.1016/j.scitotenv.2022.160760] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are typical residential pollutants mainly from biofuel combustion that impose inevitable risk to children. The PAHs in residential dust is universal in most Chinese households with an obvious public health concern. METHODS In this observational study, a total of 235 residential dust samples from 8 Chinese cities (Panjin, Shijiazhuang, Lanzhou, Luoyang, Xi'an, Wuxi, Mianyang, and Shenzhen) were collected from April 2018 to March 2019, which were extracted and analyzed for 16 priority PAHs by HPLC/FD-UV. Diagnostic ratios, hierarchical clustering analysis and principal component analysis were applied simultaneously for source apportionments. Incremental lifetime cancer risk was employed to estimate children's health risks based on the assumed exposure scenarios. Spearman correlation, Mann-Whitney U test, Kruskal-Wallis H test and Partial Least Squares were used to screen the factors affecting the concentration of PAHs in residential dust. RESULTS The median concentration of ∑16PAHs in residential dust from 8 cities was 44.11 μg/g (0.04 - 355.79 μg/g). ∑16PAHs were found both higher in dust samples in heating season and from downwind households only in Mianyang (p < 0.05). The leading two sources of PAHs were combustion processes and automobile exhaust emissions based on four principal components that accounted for 74.29 % of the total variance. Indoor air environmental factors, household characteristics, and residents' behavioral lifestyles may be the influencing factors of residential dust PAHs. The carcinogenic risk of children aged 0 - 5 years, under the moderate exposure level of PAHs in residential dust, exceeded the acceptable level (10-5 - 10-4 for dermal contact and 10-6 - 10-5 for ingestion). CONCLUSIONS There was serious PAHs pollution in residential dust under actual living conditions in eight cities across China. More evidence-based measures were needed to control PAHs pollution to safeguard children's health according to appointed sources and influencing factors in residential dust.
Collapse
Affiliation(s)
- Xinqi Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xiaoli Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Jing Qi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Shuhan Gong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Chong Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Li Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Lin Fan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Hang Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Yun Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Mengmeng Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xu Han
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Mats Tysklind
- Department of Chemistry, Umea University, SE-901 87 Umea, Sweden.
| | - Xianliang Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
15
|
Yu X, Liu B, Yu Y, Li H, Li Q, Cui Y, Ma Y. Polybrominated diphenyl ethers (PBDEs) in household dust: A systematic review on spatio-temporal distribution, sources, and health risk assessment. CHEMOSPHERE 2023; 314:137641. [PMID: 36584828 DOI: 10.1016/j.chemosphere.2022.137641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Much attention has been paid on polybrominated diphenyl ethers (PBDEs) in household dust due to their ubiquitous occurrences in the environment. Based on the data from 59 articles sampled from 2005 to 2020, we investigated the spatio-temporal distribution, sources, and health risk of 8 PBDE homologues in household dusts worldwide. BDE-209 is the predominant PBDE in household dusts, followed by BDE-99 and BDE-47. The total concentrations of PBDEs (∑8PBDEs) are found to be high in household dusts sampled from 2005 to 2008 and show a significant decline trend from 2009 to 2016 (p < 0.05) and a little upward tendency from 2017 to 2020. The concentrations of PBDEs in household dusts vary greatly in different countries of the world. The use of penta-BDE is the main source of three to five bromo-biphenyl ether monomers contributing 17.4% of ∑8PBDEs, while BDE-209 and BDE-183 are derived from the use of household appliances contributing 82.6% of ∑8PBDEs. Ingestion is the main exposure route for adults and toddlers, followed by dermal contact. The values of hazard index (HI) exposed to PBDEs in household dusts are all less than 1 for both adults and toddlers, indicating a low non-cancer risk. The incremental lifetime cancer risks (ILCRs) of BDE-209 are less than 10-6 for both adults and toddlers, suggesting a negligible risk. However, the total carcinogenic risk of toddlers is higher than that of adults, indicating that much attention should be paid to toddlers exposed to BDE-209 in household dust.
Collapse
Affiliation(s)
- Xin Yu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - He Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Qiuyan Li
- Jilin Chunguang Environmental Protection Technology Co., LTD, Changchun, 130032, China
| | - Yuan Cui
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Yuqin Ma
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
16
|
Besis A, Avgenikou A, Pantelaki I, Serafeim E, Georgiadou E, Voutsa D, Samara C. Hazardous organic pollutants in indoor dust from elementary schools and kindergartens in Greece: Implications for children's health. CHEMOSPHERE 2023; 310:136750. [PMID: 36241110 DOI: 10.1016/j.chemosphere.2022.136750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Children spend a significant portion of their day in school, where they may be exposed to hazardous organic compounds accumulated in indoor dust. The aim of this study was to evaluate the concentrations of major hazardous organic contaminants in dust collected from kindergartens and elementary schools in Northern Greece (n = 20). The sum concentrations of 20 targeted polybrominated diphenyl ether congeners (∑20PBDEs) in dust varied from 58 ng g-1 to 1480 ng g-1, while the sum of 4 novel brominated fire retardants (∑4NBFRs) ranged from 28 ng g-1 to 555 ng g-1. Correspondingly, the sum concentrations of phthalate esters (∑9PAEs) ranged between 265 μg g-1 and 2120 μg g-1, while the sum of organophosphate esters (∑11OPEs) was found between 2890 ng g-1 and 16,100 ng g-1. Finally, the sum concentrations of polycyclic aromatic hydrocarbons (∑16PAHs) were found within in the range 212 ng g-1 and 6960 ng g-1. Exposure to indoor dust contaminant via inhalation, ingestion and dermal absorption was investigated for children and adults (teachers). Carcinogenic and non-carcinogenic risks were also estimated. Children's estimated intakes of individual hazardous chemicals via the three exposure routes, were lower than the available health-based reference values.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.
| | - Anna Avgenikou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Ioanna Pantelaki
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Serafeim
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Eleni Georgiadou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Dimitra Voutsa
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| |
Collapse
|
17
|
Othman N, Ismail Z, Selamat MI, Sheikh Abdul Kadir SH, Shibraumalisi NA. A Review of Polychlorinated Biphenyls (PCBs) Pollution in the Air: Where and How Much Are We Exposed to? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13923. [PMID: 36360801 PMCID: PMC9657815 DOI: 10.3390/ijerph192113923] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) were widely used in industrial and commercial applications, until they were banned in the late 1970s as a result of their significant environmental pollution. PCBs in the environment gained scientific interest because of their persistence and the potential threats they pose to humans. Traditionally, human exposure to PCBs was linked to dietary ingestion. Inhalational exposure to these contaminants is often overlooked. This review discusses the occurrence and distribution of PCBs in environmental matrices and their associated health impacts. Severe PCB contamination levels have been reported in e-waste recycling areas. The occurrence of high PCB levels, notably in urban and industrial areas, might result from extensive PCB use and intensive human activity. Furthermore, PCB contamination in the indoor environment is ten-fold higher than outdoors, which may present expose risk for humans through the inhalation of contaminated air or through the ingestion of dust. In such settings, the inhalation route may contribute significantly to PCB exposure. The data on human health effects due to PCB inhalation are scarce. More epidemiological studies should be performed to investigate the inhalation dose and response mechanism and to evaluate the health risks. Further studies should also evaluate the health impact of prolonged low-concentration PCB exposure.
Collapse
Affiliation(s)
- Naffisah Othman
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Zaliha Ismail
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Mohamad Ikhsan Selamat
- Department of Public Health Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Siti Hamimah Sheikh Abdul Kadir
- Department of Biochemistry, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| | - Nur Amirah Shibraumalisi
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA Sungai Buloh Campus, Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
18
|
Degrendele C, Prokeš R, Šenk P, Jílková SR, Kohoutek J, Melymuk L, Přibylová P, Dalvie MA, Röösli M, Klánová J, Fuhrimann S. Human Exposure to Pesticides in Dust from Two Agricultural Sites in South Africa. TOXICS 2022; 10:629. [PMID: 36287909 PMCID: PMC9610731 DOI: 10.3390/toxics10100629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 05/14/2023]
Abstract
Over the last decades, concern has arisen worldwide about the negative impacts of pesticides on the environment and human health. Exposure via dust ingestion is important for many chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion, which was compared to inhalation and soil ingestion. Indoor dust samples were collected from thirty-eight households and two schools located in two agricultural regions in South Africa and were analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations in the dust levels of individual pesticides were found. Significant spatial variations were observed for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim, chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important (>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in future human exposure assessment to pesticides.
Collapse
Affiliation(s)
- Céline Degrendele
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Aix-Marseille University, CNRS, LCE, 13003 Marseille, France
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Petr Šenk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | | | - Jiří Kohoutek
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lisa Melymuk
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Mohamed Aqiel Dalvie
- Centre for Environmental and Occupational Health Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Martin Röösli
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Samuel Fuhrimann
- University of Basel, 4002 Basel, Switzerland
- Swiss Tropical and Public Health Institute (Swiss TPH), 4002 Basel, Switzerland
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 Utrecht, The Netherlands
| |
Collapse
|
19
|
Jakovljević I, Dvoršćak M, Jagić K, Klinčić D. Polycyclic Aromatic Hydrocarbons in Indoor Dust in Croatia: Levels, Sources, and Human Health Risks. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11848. [PMID: 36231149 PMCID: PMC9565587 DOI: 10.3390/ijerph191911848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Compounds that contribute to indoor pollution are regularly investigated due to the fact that people spend most of their time indoors. Worldwide investigations have shown that polycyclic aromatic hydrocarbons (PAHs) are present in indoor dust, but to the best of our knowledge, this paper reports for the first time the presence of PAHs in Croatian households. Eleven PAHs were analysed in house dust samples collected in the city of Zagreb and surroundings (N = 66). Their possible indoor sources and the associated health risks were assessed. Total mass fraction of detected PAHs ranged from 92.9 ng g-1 to 1504.1 ng g-1 (median 466.8 ng g-1), whereby four-ring compounds, Flu and Pyr, contributed the most. DahA was the only compound that did not show statistically significantly positive correlation with other analysed PAHs, indicating that it originated from different sources. Based on diagnostic ratios and principal component analysis (PCA), mixed sources contributed to PAHs levels present in Croatian households. Although our results indicate that Croatian house dusts are weakly polluted with PAHs, total ILCR values calculated for children and adults revealed that people exposed to the highest mass fractions of PAHs measured in this area are at elevated cancer risk.
Collapse
Affiliation(s)
- Ivana Jakovljević
- Environmental Hygiene Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Marija Dvoršćak
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Karla Jagić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Darija Klinčić
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
20
|
Herrero M, González N, Rovira J, Marquès M, Domingo JL, Abalos M, Abad E, Nadal M. Health risk assessment of polychlorinated biphenyls (PCBs) in baby clothes. A preliminary study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119506. [PMID: 35605829 DOI: 10.1016/j.envpol.2022.119506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Clothes may contain a large range of chemical additives and other toxic substances, which may eventually pose a significant risk to human health. Since they are associated with pigments, polychlorinated biphenyls (PCBs) may be especially relevant. On the other hand, infants are very sensitive to chemical exposure and they may wear some contact and colored textiles for a prolonged time. Consequently, a specific human health risk assessment is required. This preliminary study was aimed at analyzing the concentrations of PCBs in ten bodysuits purchased in on-line stores and local retailers. The concentrations of 12 dioxin-like and 8 non-dioxin-like PCB congeners were determined by gas chromatography coupled to high resolution mass spectrometry, with detection limits ranging between 0.01 and 0.13 pg/g. The dermal absorption to PCBs of children at different ages (6 months, 1 year and 3 years old) was estimated, and the non-cancer and cancer risks were evaluated. Total levels of PCBs ranged from 74.2 to 412 pg/g, with a mean TEQ concentration of 13.4 pg WHO-TEQ/kg. Bodysuits made of organic cotton presented a total mean PCB concentration substantially lower than clothes made of regular cotton (11.0 vs. 15.8 pg WHO-TEQ/kg). The dermal absorption to PCBs for infants was calculated in around 3·10-5 pg WHO-TEQ/kg·day, regardless the age. This value is > 10,000-fold lower than the dietary intake of PCBs, either through breastfeeding or food consumption. Furthermore, this exposure value would not pose any health risks for the infants wearing those bodysuits. Anyhow, as it is a very preliminary study, this should be confirmed by analyzing larger sets of textile samples. Further investigations should be also focused on the co-occurrence of PCBs and other toxic chemicals (i.e., formaldehyde, bisphenols and aromatic amines) in infant clothes.
Collapse
Affiliation(s)
- Marta Herrero
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| | - Manuela Abalos
- CSIC, Institute of Environmental Assessment and Water Research, Laboratory of Dioxins, C. Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Esteban Abad
- CSIC, Institute of Environmental Assessment and Water Research, Laboratory of Dioxins, C. Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Martí Nadal
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain
| |
Collapse
|
21
|
Živančev J, Antić I, Buljovčić M, Đurišić-Mladenović N. A case study on the occurrence of polycyclic aromatic hydrocarbons in indoor dust of Serbian households: Distribution, source apportionment and health risk assessment. CHEMOSPHERE 2022; 295:133856. [PMID: 35122819 DOI: 10.1016/j.chemosphere.2022.133856] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
This study was conducted in order to obtain the first insight into the occurrence, potential sources, and health risks of polycyclic aromatic hydrocarbons (PAHs) in indoor dust. Samples (n = 47) were collected from households in four settlements in the northern Serbian province of Vojvodina. Total concentrations of 16 EPA priority PAHs in the dust samples varied from 140 to 8265 μg kg-1. Mean and median values for all samples were 1825 and 1404 μg kg-1, respectively. According to the international guidelines for indoor environment, PAH content can be regarded as normal (<500 μg kg-1) for ∼6% of the samples, high (500-5000 μg kg-1) for ∼87% of the samples, and very high (5000-50000 μg kg1) for ∼6% of the samples. In all settlements, PAHs with 4 rings were the most prevalent (accounting for 40-53% of the total PAHs). They were followed by 3-ringed PAHs (29-40%), which indicates rather uniform PAH profiles in the analyzed dust. Based on diagnostic ratios, principal component analysis (PCA), and positive matrix factorization (PMF), pyrogenic sources, such as vehicle emissions and wood combustion were the dominant sources of PAHs in analyzed samples. Health risk assessment, which included incidental ingesting, inhaling and skin contact with PAHs in the analyzed dust, was evaluated by using the incremental lifetime cancer risk (ILCR) model. Median total ILCR was 3.88E-04 for children, and 3.73E-04 for adults. Results revealed that major contribution to quite high total ILCRs was brought by dermal contact and ingestion. Total cancer risk for indoor dust indicated that 85% of the studied locations exceeded 10-4. This implies risk of high concern, with potential adverse health effects. The results are valuable for future observation of PAHs in indoor environment. They are also useful for regional authorities who can use them to create policies which control sources of pollution.
Collapse
Affiliation(s)
- Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia.
| | - Igor Antić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Maja Buljovčić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar Cara Lazara 1, 21000, Novi Sad, Serbia
| |
Collapse
|
22
|
Guo X, Fan Z, Zhu H, Chen X, Wang M, Fu H. Willingness to Pay for Healthy Housing During the COVID-19 Pandemic in China: Evidence From Eye-Tracking Experiment. Front Public Health 2022; 10:855671. [PMID: 35372210 PMCID: PMC8965038 DOI: 10.3389/fpubh.2022.855671] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/17/2022] [Indexed: 01/04/2023] Open
Abstract
Healthy housing can set its occupants completely in good physical, mental and social conditions, but there is a lack of research in China on the public's willingness to pay (WTP) for healthy housing. From the perspective of cognitive psychology, this study constructs an analytical framework based on the model of "theory of planned behavior" (TPB), the theory of selective information exposure, and the model of "emotions as social information," while exploring the effect mechanism of the online reviews on the public's WTP for healthy housing during COVID-19 pandemic. In combination with eye-tracking experiments and subjective reports, physiological, psychological and behavioral multimodal data on WTP of 65 participants for healthy housing are collected. Partial least squares structural equation modeling (PLS-SEM) is adopted to analyze the formation effect mechanism of the public's WTP for healthy housing. This study acquires the following results: (i) Information attentiveness to online reviews on different valence information of healthy housing as obtained in eye tracking experiments delivers significant effect on attitude, subjective norm (SN) and perceived behavioral control (PBC), but has no direct effect on the public's WTP for healthy housing; (ii) Hypotheses from TPB model are verified. attitude, PBC and SN can all make significant effect on WTP for healthy housing, with attitude showcasing the most prominent effect; and (iii) In terms of the mediating effect, information attentiveness can deliver significant indirect effect on WTP through attitude.
Collapse
Affiliation(s)
- Xiaotong Guo
- School of Management, Xi'an University of Architecture and Technology, Xi'an, China
- Laboratory of Neuromanagement in Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Zhaoyang Fan
- School of Management, Xi'an University of Architecture and Technology, Xi'an, China
- Laboratory of Neuromanagement in Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Hong Zhu
- School of Management, Xi'an University of Architecture and Technology, Xi'an, China
- Laboratory of Neuromanagement in Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiangyang Chen
- School of Marxism, Xi'an University of Architecture and Technology, Xi'an, China
| | - Mengmeng Wang
- School of Management, Xi'an University of Architecture and Technology, Xi'an, China
- Laboratory of Neuromanagement in Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Hanliang Fu
- Laboratory of Neuromanagement in Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
23
|
Falandysz J, Loganathan B, Nakano T. Novel approaches and trends in the analytics of halogenated POPs. CHEMOSPHERE 2022; 290:133308. [PMID: 34919916 DOI: 10.1016/j.chemosphere.2021.133308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Bommanna Loganathan
- Murray State University, Department of Chemistry and Watershed Studies Institute, Murray, KY, 42071, USA.
| | - Takeshi Nakano
- Osaka University, Research Center for Environmental Preservation, 2-4 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|