1
|
Costa HPS, Duarte EDV, da Silva FV, da Silva MGC, Vieira MGA. Green synthesis of carbon nanotubes functionalized with iron nanoparticles and coffee husk biomass for efficient removal of losartan and diclofenac: Adsorption kinetics and ANN modeling studies. ENVIRONMENTAL RESEARCH 2024; 251:118733. [PMID: 38521353 DOI: 10.1016/j.envres.2024.118733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
The presence of emerging contaminants in wastewater poses a global environmental challenge, requiring the development of innovative materials or methods for their treatment. This study focused on the production of green functionalized carbon nanotubes (CNTs) and using them in the adsorption of the pharmaceuticals Losartan (LOS) and Diclofenac (DIC). The efficiency of the methodology was verified by characterization techniques. Elemental composition analysis indicated a significant increase in the iron content after the green functionalization, proving the effectiveness of the method. Thermogravimetric analysis showed similar thermal degradation profiles for pristine CNTs and functionalized CNTs, indicating better post-functionalization thermal stability. BET analysis revealed mesoporous characteristics of CNTs, with increased surface area and pore volumes after functionalization. X-Ray diffraction confirmed the preservation of the lattice structure of the CNTs post-functionalization and post-adsorption, with changes in peak broadening suggesting surface modifications. LOS and DIC adsorption were evaluated via kinetic studies at four different concentrations (0.1-0.4 mmol/L) that were best represented by the pseudo-second order model, suggesting chemisorption mechanisms, with faster and higher uptakes for DIC (0.084-0.261 mmol/g; teq = 5 min) when compared to LOS (0.058-0.235 mmol/g; teq = 20 min). The curves were also studied via artificial neural networks (ANN) and revealed that the best ANN architecture for representing the experimental data is a network with [3 5 5 2] neurons trained using the Bayesian-Regularization algorithm and the Log-sigmoid (hidden layers) and Linear (output layer) transfer functions. The desorption study showed that CaCl2 had better performance in CNT regeneration, reaching its removal capacity above 50% up to 3 cycles, for both pharmaceuticals. These findings reveal the potential of the developed material as a promising adsorbent for targeted removal of pollutants, contributing to advances in the remediation of emerging contaminants and the application of artificial intelligence in adsorption research.
Collapse
Affiliation(s)
- Heloisa P S Costa
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Emanuele D V Duarte
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Flávio V da Silva
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Meuris G C da Silva
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil
| | - Melissa G A Vieira
- School of Chemical Engineering, University of Campinas, Av. Albert Einstein, 500, Campinas, São Paulo, Brazil.
| |
Collapse
|
2
|
Li HY, Makatsoris C, Forbes B. Particulate bioaerogels for respiratory drug delivery. J Control Release 2024; 370:195-209. [PMID: 38641021 DOI: 10.1016/j.jconrel.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
The bioaerogel microparticles have been recently developed for respiratory drug delivery and attract fast increasing interests. These highly porous microparticles have ultralow density and hence possess much reduced aerodynamic diameter, which favour them with greatly enhanced dispersibility and improved aerosolisation behaviour. The adjustable particle geometric dimensions by varying preparation methods and controlling operation parameters make it possible to fabricate bioaerogel microparticles with accurate sizes for efficient delivery to the targeted regions of respiratory tract (i.e. intranasal and pulmonary). Additionally, the technical process can provide bioaerogel microparticles with the opportunities of accommodating polar, weak polar and non-polar drugs at sufficient amount to satisfy clinical needs, and the adsorbed drugs are primarily in the amorphous form that potentially can facilitate drug dissolution and improve bioavailability. Finally, the nature of biopolymers can further offer additional advantageous characteristics of improved mucoadhesion, sustained drug release and subsequently elongated time for continuous treatment on-site. These fascinating features strongly support bioaerogel microparticles to become a novel platform for effective delivery of a wide range of drugs to the targeted respiratory regions, with increased drug residence time on-site, sustained drug release, constant treatment for local and systemic diseases and anticipated better-quality of therapeutic effects.
Collapse
Affiliation(s)
- Hao-Ying Li
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| | - Charalampos Makatsoris
- Department of Engineering, Faculty of Natural & Mathematical Sciences, King's College London, WC2R 2LS, United Kingdom
| | - Ben Forbes
- Institute of Pharmaceutical Science, King's College London, London SE1 9NH, United Kingdom.
| |
Collapse
|
3
|
Banaei A, Saadat A, Gharibzadeh N, Ghasemi PP. Synthesis and characterization of new composite from modified silica-coated MnFe 2O 4 nanoparticles for removal of tetracycline from aqueous solution. RSC Adv 2024; 14:14170-14184. [PMID: 38690111 PMCID: PMC11058457 DOI: 10.1039/d4ra01007h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024] Open
Abstract
In this study, a new composite from silica coated MnFe2O4 nanoparticles, diethylenetriamine, 3-chloropropyl trimethoxysilane and Mg-Al Layered Double Hydroxide (Mg-Al LDH/DETA/CPTMS/SCNPs) composite was synthesized. The Mg-Al LDH/DETA/CPTMS/SCNPs composite was examined by Fourier transform infrared spectrometer (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDS), X-ray diffraction (XRD), Thermogravimetric Analysis (TGA) and Vibrating Sample Magnetometry (VSM). The synthesized composite exhibited magnetic property with a saturation magnetization of 0.40 emu g-1. The Mg-Al LDH/DETA/CPTMS/SCNPs composite was utilized as a successful adsorbent for removal of tetracycline from aqueous solutions. The effect of various operation factors such as initial drug concentration, adsorbent dosage, pH and contact time were investigated. The optimized variable conditions such as adsorbent dose of 60 mg L-1, drug concentration of 100 mg L-1, pH = 7 and contact time 30 min were obtained. For describing the adsorption isotherms, the Langmuir, Freundlich and Temkin adsorption models were utilized. The results indicated that the adsorption isotherm is in good agreement with Langmuir model. According to the Langmuir analysis, the maximum adsorption capacity (qm) of the Mg-Al LDH/DETA/CPTMS/SCNPs composite for tetracycline was obtained to be 40.16 mg g-1. The kinetic studies revealed that the adsorption in all cases to be a pseudo second-order process. The negative value of ΔG° and the positive value of ΔH° showed the adsorption process to be spontaneous and endothermic.
Collapse
Affiliation(s)
- Alireza Banaei
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | - Afshin Saadat
- Department of Chemistry, Germi Branch, Islamic Azad University Germi Iran
| | - Negar Gharibzadeh
- Department of Chemistry, Payame Noor University P. O. Box 19395-3697 Tehran Iran
| | | |
Collapse
|
4
|
Ndankou CSD, Ștefan DS, Nsami NJ, Daouda K, Bosomoiu M. Evaluation of Phenobarbital Adsorption Efficiency on Biosorbents or Activated Carbon Obtained from Adansonia Digitata Shells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1591. [PMID: 38612106 PMCID: PMC11012463 DOI: 10.3390/ma17071591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
The removal of pharmaceutically active compounds present in relatively low concentration in wastewater is critical. This is because they have a severe, negative impact on life and the environment. To address this issue, adsorption was used, which is an effective wastewater treatment method for removing substances found in low concentrations in water. This study compared the adsorption performance of active carbon to three biosorbents derived from Adansonia digitata shells. The adsorbents were prepared and characterized using TGA, SEM, EDX, and FTIR analyses and pHPZC. To better understand the adsorption process, equilibrium and reaction kinetics studies were conducted. The effect of contact time, initial phenobarbital concentration, adsorbent mass, and pH was investigated in static conditions. The adsorption results revealed that the biosorbent B3 has a higher affinity for the eliminated compound, with an equilibrium time of 60 min and an adsorption capacity of 47.08 mg/g at an initial concentration of 50 mg/L. The experimental data are consistent with Langmuir and Sips adsorption isotherm models, and with the pseudo-second order and Elovich models for kinetics description. This indicates strong interactions between the adsorbent materials and the pharmaceutical micropollutant. Based on these findings, it appears that, among the tested materials, B3 biosorbent is the most efficient for removing phenobarbital present in low concentrations in water.
Collapse
Affiliation(s)
- Charnella Stevine Dibandjo Ndankou
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (C.S.D.N.); (D.S.Ș.)
- Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon; (N.J.N.); (K.D.)
| | - Daniela Simina Ștefan
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (C.S.D.N.); (D.S.Ș.)
| | - Ndi Julius Nsami
- Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon; (N.J.N.); (K.D.)
| | - Kouotou Daouda
- Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon; (N.J.N.); (K.D.)
| | - Magdalena Bosomoiu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (C.S.D.N.); (D.S.Ș.)
| |
Collapse
|
5
|
Pan B, Liao M, Zhao Y, Lv Y, Qin J, Sharma VK, Wang C. Visible light activation of ferrate(VI) by oxygen doped ZnIn 2S 4/black phosphorus nanolayered heterostructure: Accelerated oxidation of trimethoprim. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132413. [PMID: 37666167 DOI: 10.1016/j.jhazmat.2023.132413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
The increasing consumption of antibiotics and their subsequent release to wastewater or groundwater and ultimately to the water supply (or drinking water) has great concerns. This paper presents a visible light (VL) activated ferrate(VI) (FeVIO42-, Fe(VI)) system to degrade the selected antibiotic, trimethoprim (TMP), efficiently. An oxygen doped ZnIn2S4 nanosheet (O-ZIS) coupled with a black phosphorus (BP) heterostructure (O-ZIS/BP), is fabricated by a simple electrostatic self-assembly method. The O-ZIS/BP photocatalyst is comprehensively characterized by surface and analytical techniques, which show superior separation efficiency of the photoinduced charge carriers in the heterostructure. A VL-O-ZIS/BP-Fe(VI) system achieves more than 80% removal in 1.0 min and complete removal of TMP in 3.0 min. Comparatively, only ⁓7% and ⁓24% of TMP are degraded by O-ZIS/BP and Fe(VI) in 1.0 min, respectively. The degradation experiments using probe molecules of reactive species and electron paramagnetic resonance (EPR) measurements reveal involvement of superoxide (O2-•), hydroxyl radical (•OH), and iron(V)/iron (IV) (FeV/FeIV) species in the mechanism of TMP degradation. Oxidized products of TMP are identified and reaction pathways are given. Theoretical calculations predict the initial attack on the TMP molecule by the reactive species in the VL-O-ZIS/BP-Fe(VI) system. The activation of Fe(VI) by VL-heterostructure photocatalysts accelerates the degradation of antibiotics, demonstrating its potential for water depollution.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Miao Liao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yanli Zhao
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuzhu Lv
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX 77843, USA.
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| |
Collapse
|
6
|
Rehman MU, Taj MB, Carabineiro SAC. Biogenic adsorbents for removal of drugs and dyes: A comprehensive review on properties, modification and applications. CHEMOSPHERE 2023; 338:139477. [PMID: 37442388 DOI: 10.1016/j.chemosphere.2023.139477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
This comprehensive review explores the potential and versatility of biogenic materials as sustainable and environmentally benign alternatives to conventional adsorbents for the removal of drugs and dyes. Biogenic adsorbents derived from plants, animals, microorganisms, algae and biopolymers have bioactive compounds that interact with functional groups of pollutants, resulting in their binding with the sorbent. These materials can be modified mechanically, thermally and chemically to enhance their adsorption properties. Biogenic hybrid composites, which integrate the characteristics of more than one material, have also been fabricated. Additionally, microorganisms and algae are analyzed for their ability to uptake pollutants. Various influential factors that contribute to the adsorption process are also discussed. The challenge, limitations and future prospects for research are reviewed and bridging gap between large scale application and laboratory scale. This comprehensive review, involves a combination of various biogenic adsorbents, going beyond the existing literature where typically only specific adsorbents are reported. The review also covers the isotherms, kinetics, and desorption studies of biogenic adsorbents, providing an improved framework for their effective use in removing pharmaceuticals and dyes from wastewater.
Collapse
Affiliation(s)
- Mobeen Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Babar Taj
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| |
Collapse
|
7
|
Farghal HH, Tawakey SH, Amer WA, Ayad MM, Madkour TM, El-Sayed MMH. Polypyrrole- and Polyaniline-Coated Cotton Fabrics as Efficient Adsorbents for the Pharmaceutical Water Contaminants Diclofenac and Salicylic Acid. Polymers (Basel) 2023; 15:3563. [PMID: 37688189 PMCID: PMC10490524 DOI: 10.3390/polym15173563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emerging pharmaceutical contaminants diclofenac (DCF) and salicylic acid (SA) pose potential hazards to humans and living organisms due to their persistence in water environments. In this work, the conductive polymers polypyrrole (PPY) and polyaniline (PANI) were successfully coated on cotton fabrics, as confirmed by FTIR and SEM measurements. The coated fabrics efficiently removed DCF at pH 5.3 and SA at pH 4, with removal efficiencies that exceeded 90% and 70%, respectively. Adsorption was rapid for most of the tested contaminant-fabric systems and reached equilibrium within 20-30 min. The best adsorption performance for both contaminants was shown on the PPY-coated fabrics, which yielded adsorption capacities of about 65 and 21 mg/g for DCF and SA, respectively. This could be explained by molecular modeling simulations, which mostly estimated higher total cohesive energy densities for adsorption on the PPY-coated fabrics than on the PANI-coated ones. The adsorption mechanism involved both coulombic electrostatic attractions and non-coulombic van der Waals and π-π stacking. The fabrics could be reused for three adsorption-desorption cycles. Immobilization of the conductive polymers on cotton fabrics provides a facile method for their handling and collection during adsorption and regeneration cycles while maintaining their multi-functionality in adsorbing different contaminants.
Collapse
Affiliation(s)
- Hebatullah H. Farghal
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, P.O. Box 74, Cairo 11835, Egypt; (H.H.F.); (T.M.M.)
| | - Samar H. Tawakey
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (S.H.T.); (W.A.A.); or (M.M.A.)
| | - Wael A. Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (S.H.T.); (W.A.A.); or (M.M.A.)
- Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain
| | - Mohamad M. Ayad
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (S.H.T.); (W.A.A.); or (M.M.A.)
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria 21934, Egypt
| | - Tarek M. Madkour
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, P.O. Box 74, Cairo 11835, Egypt; (H.H.F.); (T.M.M.)
| | - Mayyada M. H. El-Sayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, P.O. Box 74, Cairo 11835, Egypt; (H.H.F.); (T.M.M.)
| |
Collapse
|
8
|
Bhuyan A, Ahmaruzzaman M. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39377-39417. [PMID: 36752919 DOI: 10.1007/s11356-023-25707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.
Collapse
Affiliation(s)
- Anindita Bhuyan
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
9
|
Beiranvand M, Farhadi S, Mohammadi-Gholami A. Adsorptive removal of tetracycline and ciprofloxacin drugs from water by using a magnetic rod-like hydroxyapatite and MIL-101(Fe) metal-organic framework nanocomposite. RSC Adv 2022; 12:34438-34453. [PMID: 36545621 PMCID: PMC9709805 DOI: 10.1039/d2ra06213e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A novel porous nanocomposite composed of hydroxyapatite nanorods (HAP), a MIL-101(Fe) metal-organic framework, and Fe3O4 nanoparticles was successfully fabricated in this work. The magnetic HAP/MIL-101(Fe)/Fe3O4 ternary nanocomposite was identified by various techniques, namely FT-IR spectroscopy, XRD, Raman spectroscopy, SEM, EDX, TEM, BET specific surface area, zeta potential, and VSM measurements. Tetracycline (TC) and ciprofloxacin (CIP) aqueous solutions were used to evaluate the adsorption performance of the resulting HAP/MIL-101(Fe)/Fe3O4 composite. The adsorption rate and capacity of HAP/MIL-101(Fe)/Fe3O4 were increased as compared with HAP, MIL-101(Fe), and HAP/MIL-101(Fe) samples due to the increased attraction. The influence of initial drug concentration, adsorbent dosage, temperature, and pH on the adsorption process was investigated. The results showed that the removal efficiencies of HAP/MIL-101(Fe)/Fe3O4 for TC and CIP were 95% and 93%, under the determined optimum conditions: pH of 7, drug concentration of 50 mg L-1, adsorbent dosage of 30 mg, and temperature of 25 °C. The maximum adsorption capacities of HAP/MIL-101(Fe)/Fe3O4 for TC and CIP were 120.48 mg g-1 and 112.35 mg g-1, respectively. Reusability of the prepared nanocomposite was easily achieved up to three times without significant change in its structure. As a result, the synthesized magnetic nanocomposite can be reused as a suitable absorbent for TC and CIP removal from aqueous solutions.
Collapse
Affiliation(s)
- Maryam Beiranvand
- Department of Chemistry, Lorestan UniversityKhorramabad68151-44316Iran
| | - Saeed Farhadi
- Department of Chemistry, Lorestan UniversityKhorramabad68151-44316Iran
| | | |
Collapse
|
10
|
Microwave-assisted hydrothermal preparation of magnetic hydrochar for the removal of organophosphorus insecticides from aqueous solutions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Sanguanpak S, Shongkittikul W, Saengam C, Chiemchaisri W, Chiemchaisri C. TiO 2-immobilized porous geopolymer composite membrane for removal of antibiotics in hospital wastewater. CHEMOSPHERE 2022; 307:135760. [PMID: 35931265 DOI: 10.1016/j.chemosphere.2022.135760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/07/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This experimental research proposes an environment-friendly and low-cost porous geopolymer composite membrane (PGCM) to treat antibiotics in hospital wastewater. The proposed PGCM consisted of two layers: a porous support layer and a dense coating layer. The dense coating layer was synthesized by incorporating variable TiO2 content (0, 2, 6, and 10 wt%) into the geopolymer matrix. The dense coating layer was of hierarchical mesoporous structure with 700 μm in thickness and adhered to the porous support layer. The average pore size, total pore volume, and open porosity of the dense coating layer decreased with an increase in TiO2, resulting in reduced water permeability. The PGCM was applied to remove six target antibiotics including amoxicillin, ciprofloxacin, norfloxacin, sulfamethoxazole, tetracycline, and trimethoprim in real hospital wastewater. By comparison, the PGCM with 10 wt% TiO2 achieved the highest antibiotic removal efficiencies, with the adsorption and combined adsorption/photodegradation removal efficiencies for the target antibiotics of 38-75% and 74-86%, respectively. The novelty of this research lies in the use of a tailor-made porous geopolymer composite membrane incorporated with TiO2 photooxidation as a single-step treatment of recalcitrant antibiotics contained in hospital wastewater.
Collapse
Affiliation(s)
- Samunya Sanguanpak
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Witaya Shongkittikul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Chitsuphang Saengam
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Wilai Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Chart Chiemchaisri
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
12
|
Pan B, Zhou L, Qin J, Wang C, Ma X, Sharma VK. Oxidation of micropollutants by visible light active graphitic carbon nitride and ferrate(VI): Delineating the role of surface delocalized electrons. CHEMOSPHERE 2022; 307:135886. [PMID: 35926741 DOI: 10.1016/j.chemosphere.2022.135886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The treatment of recalcitrant micropollutants in water remains challenging. Ferrate(VI) (FeVIO42-, Fe(VI)) has emerged as a green oxidant to oxidize organic molecules, however, its reactivity with recalcitrant micropollutants are sluggish. Our results demonstrate enhanced oxidation of carbamazepine (CBZ) by three types of visible light-responsive graphitic carbon nitride (g-C3N4) photocatalyst in absence and presence of ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. The g-C3N4 photocatalysts were prepared by thermal process using urea, thiourea, and melamine and were named as CN-U, CN-T, and CN-M, respectively. The degradation efficiency of CBZ, in both visible light-g-C3N4 and visible light-g-C3N4-FeVIO42- systems followed the order of CN-U > CN-T > CN-M. The mechanisms for this trend was elucidated by measuring physiochemical properties of the microstructures with various surface and analytical techniques. Results suggest the dominating role of specific surface area and surface delocalized electrons of microstructures in degrading CBZ. Crystallinity, morphology, and surface functional groups may not directly associate with CBZ degradation. The CN-U has higher specific surface area and surface delocalized electrons than CN-T and CN-M and therefore the highest degradation efficiency of CBZ. The surface electrons likely generated O2●- and 1O2 in the visible light-g-C3N4 system. The additional oxidants, FeV and FeIV in the visible light-g-C3N4- FeVIO42- system led to higher degradation efficiency than the visible light-g-C3N4 system. Results suggest that the surfaces of g-C3N4 may be prepared preferentially with high levels of delocalized electrons at the surface of microstructures to enhance degradation of micropollutants.
Collapse
Affiliation(s)
- Bao Pan
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China; Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX, 77843, USA
| | - Linxing Zhou
- Key Laboratory of Chemical Additives for China National Light Industry, School of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jiani Qin
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Rd., College Station, TX, 77843, USA.
| |
Collapse
|
13
|
Vinayagam V, Murugan S, Kumaresan R, Narayanan M, Sillanpää M, Viet N Vo D, Kushwaha OS, Jenis P, Potdar P, Gadiya S. Sustainable adsorbents for the removal of pharmaceuticals from wastewater: A review. CHEMOSPHERE 2022; 300:134597. [PMID: 35439481 DOI: 10.1016/j.chemosphere.2022.134597] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Over the previous three decades, the worldwide use of pharmaceuticals has surged by more than 2.5 times. Although being considered essential to save many lives, pharmaceuticals have also emerged as a large source of complex environmental contaminants in recent decades. Consequently, the pharmaceuticals and their breakdown products are ending up into the water bodies thus progressively contaminating them and the surrounding environments. Based on recent studies concentrations in water sources are typically >0.1 μg/l and the concentration in treated water is typically >0.05 μg/l. These pharma drugs are removed from aquatic systems by processes such as oxidation, Ultraviolet degradation, reverse osmosis and nano-filtration. However, hazardous sludge creation, incomplete removal, expensive capital and operating costs, and the need for professional operating and maintenance personnel have all limited the economic sustainability of these systems. As a result, the presence of pharmaceuticals in water necessitates even more advanced technologies of purification to harvest clean water, yet present approaches are constrained by their high costs, low reusability, and disposal issues. Here, we review sustainable adsorbents for the removal of pharmaceuticals from wastewater. In this comprehensive review, an evaluation of water contamination caused by pharmaceutical compounds is discussed. An overview of current research on the employment of sustainable adsorbents for the removal of the major pharmaceuticals prevalent in water sources. Numerous aspects of high adsorption efficiencies of these pharmaceutical compounds with such sustainable adsorbents were observed; however, other factors, such as adsorbent regeneration and cost evaluation, must be taken into account in order to assess the true applicability of adsorbents.
Collapse
Affiliation(s)
- Vignesh Vinayagam
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Shrima Murugan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Rishikeswaran Kumaresan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Meyyappan Narayanan
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Chennai, Tamil Nadu, 602117, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; Zhejiang Rongsheng Environmental Protection Paper Co. Ltd, No. 588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Dai Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Viet Nam.
| | - Omkar Singh Kushwaha
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, Tamil Nadu, 600036, India.
| | - Ponraj Jenis
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 119077
| | - Pratik Potdar
- Department of Chemical Engineering, Columbia University, New York, 10027, United States
| | - Shreyans Gadiya
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
14
|
Badar Z, Shanableh A, El-Keblawy A, Mosa KA, Semerjian L, Mutery AA, Hussain MI, Bhattacharjee S, Tsombou FM, Ayyaril SS, Ahmady IM, Elnaggar A, Mousa M, Semreen MH. Assessment of Uptake, Accumulation and Degradation of Paracetamol in Spinach ( Spinacia oleracea L.) under Controlled Laboratory Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131626. [PMID: 35807584 PMCID: PMC9269112 DOI: 10.3390/plants11131626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 05/25/2023]
Abstract
The occurrence and persistence of pharmaceuticals in the food chain, particularly edible crops, can adversely affect human and environmental health. In this study, the impacts of the absorption, translocation, accumulation, and degradation of paracetamol in different organs of the leafy vegetable crop spinach (Spinacia oleracea) were assessed under controlled laboratory conditions. Spinach plants were exposed to 50 mg/L, 100 mg/L, and 200 mg/L paracetamol in 20% Hoagland solution at the vegetative phase in a hydroponic system. Exposed plants exhibited pronounced phytotoxic effects during the eight days trial period, with highly significant reductions seen in the plants' morphological parameters. The increasing paracetamol stress levels adversely affected the plants' photosynthetic machinery, altering the chlorophyll fluorescence parameters (Fv/Fm and PSII), photosynthetic pigments (Chl a, Chl b and carotenoid contents), and composition of essential nutrients and elements. The LC-MS results indicated that the spinach organs receiving various paracetamol levels on day four exhibited significant uptake and translocation of the drug from roots to aerial parts, while degradation of the drug was observed after eight days. The VITEK® 2 system identified several bacterial strains (e.g., members of Burkhulderia, Sphingomonas, Pseudomonas, Staphylococcus, Stenotrophomonas and Kocuria) isolated from spinach shoots and roots. These microbes have the potential to biodegrade paracetamol and other organic micro-pollutants. Our findings provide novel insights to mitigate the risks associated with pharmaceutical pollution in the environment and explore the bioremediation potential of edible crops and their associated microbial consortium to remove these pollutants effectively.
Collapse
Affiliation(s)
- Zarreen Badar
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
| | - Abdallah Shanableh
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
- Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Ali El-Keblawy
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Department of Biology, Faculty of Science, Al-Arish University, Al-Arish 45511, Egypt
| | - Kareem A. Mosa
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Department of Biotechnology, Faculty of Agriculture, Al-Azhar University, Cairo 11751, Egypt
| | - Lucy Semerjian
- Department of Environmental Health Sciences, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Abdullah Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Human Genetics and Stem Cells Research Group, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Molecular Genetics Lab, Biotechnology Lab, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Muhammad Iftikhar Hussain
- Department of Plant Biology and Soil Science, Campus Lagoas Marcosende, Universidad de Vigo, 36310 Vigo, Spain;
| | - Sourjya Bhattacharjee
- Department of Civil and Environmental Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - François Mitterand Tsombou
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
- Departmento de Biología Vegetal, Universidad de Málaga, 29016 Málaga, Spain
| | - Sefeera Sadik Ayyaril
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
| | - Islam M. Ahmady
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (K.A.M.); (A.A.M.); (F.M.T.); (I.M.A.)
| | - Attiat Elnaggar
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Muath Mousa
- Research Institute of Science and Engineering (RISE), University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (A.E.-K.); (S.S.A.); (A.E.); (M.M.)
| | - Mohammad H. Semreen
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
15
|
Azuma T, Nakano T, Koizumi R, Matsunaga N, Ohmagari N, Hayashi T. Evaluation of the Correspondence between the Concentration of Antimicrobials Entering Sewage Treatment Plant Influent and the Predicted Concentration of Antimicrobials Using Annual Sales, Shipping, and Prescriptions Data. Antibiotics (Basel) 2022; 11:472. [PMID: 35453223 PMCID: PMC9027251 DOI: 10.3390/antibiotics11040472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
The accuracy and correspondence between the measured concentrations from the survey and predicted concentrations on the basis of the three types of statistical antimicrobial use in Japan was evaluated. A monitoring survey of ten representative antimicrobials: ampicillin (APL), cefdinir (CDN), cefpodoxime proxetil (CPXP), ciprofloxacin (CFX), clarithromycin (CTM), doxycycline (DCL), levofloxacin (LFX), minocycline (MCL), tetracycline (TCL), and vancomycin (VMC), in the influent of sewage treatment plant (STP) located in urban areas of Japan, was conducted. Then, the measured values were verified in comparison with the predicted values estimated from the shipping volumes, sales volumes, and prescription volumes based on the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB). The results indicate that the correspondence ratios between the predicted concentrations calculated on the basis of shipping and NDB volumes and the measured concentrations (predicted concentration/measured concentration) generally agreed for the detected concentration of antimicrobials in the STP influent. The correspondence ratio on the basis of shipping volume was, for CFX, 0.1; CTM, 2.9; LFX, 0.5; MCL, 1.9; and VMC, 1.7, and on the basis of NDB volume the measured concentration was CFX, 0.1; CTM, 3.7; DCL, 0.4; LFX, 0.7; MCL, 1.9; TCL, 0.6; and VMC, 1.6. To our knowledge, this is the first report to evaluate the accuracy of predicted concentrations based on sales, shipping, NDB statistics and measured concentrations for antimicrobials in the STP influent.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
| | - Takashi Nakano
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Ryuji Koizumi
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Nobuaki Matsunaga
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
| | - Norio Ohmagari
- AMR Clinical Reference Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; (R.K.); (N.M.); (N.O.)
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Tetsuya Hayashi
- Department of Environment and Health Sciences, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki 569-1094, Japan;
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, Osaka 559-0033, Japan
| |
Collapse
|