1
|
Wu Y, Chen X, Liao Q, Xiao N, Li Y, Huang Z, Xie S. Development of binderless fiberboard from poplar wood residue with Trametes hirsuta. CHEMOSPHERE 2024; 362:142638. [PMID: 38897320 DOI: 10.1016/j.chemosphere.2024.142638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
The utilization of agricultural and forestry residues for the development and preparation of green binderless fiberboard (BF) is an effective way to realize high-value utilization of lignocellulose biomass resources. This study focuses on the fabrication of BF with excellent mechanical and waterproof properties, utilizing poplar wood residue (PWR) as raw material and Trametes hirsuta as a pretreatment method. During the fermentation process, lignin-degrading enzymes and biological factors, such as sugars, were produced by T. hirsuta, which activated lignin by depolymerizing lignin bonds and modifying structural functional groups, and forming new covalent bonds between poplar fibers, ultimately enhancing adhesion. Additionally, the activated lignin molecules and sugar molecules coalesce under high temperatures and pressures, forming a dense carbonization layer that bolsters the mechanical properties of the fiberboard and effectively shields it from rapid water infiltration. The bio-pretreated BF for 10 days shows a MOR and MOE of up to 36.1 Mpa and 3704.3 Mpa, respectively, which is 261% and 247.8% higher than that of the bio-untreated fiberboard, and the water swelling ratio (WSR) rate is only 5.6%. Chemical composition analysis revealed that repolymerization occurred among lignin, cellulose, and hemicellulose, especially the molecular weight of lignin changed significantly, with the Mw of lignin increasing from 312066 g/mol to 892362 g/mol, and then decreasing to 825021 g/mol. Mn increased from 277790 g/mol to 316987.5 g/mol and then decreased to 283299.5 g/mol at 21 days. Compared to other artificial fiberboards prepared through microbial pretreatment, the BF prepared by microorganisms in this study exhibited the highest mechanical properties among the poplar wood biobased panels.
Collapse
Affiliation(s)
- Yanling Wu
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Xianrui Chen
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China; Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| | - Qingzhao Liao
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Ning Xiao
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Yanming Li
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Zhimin Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China.
| | - Shangxian Xie
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning, 530007, PR China; Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
| |
Collapse
|
2
|
Ye H, Wu Y, Jin X, Wu J, Gan L, Li J, Cai L, Liu C, Xia C. Creation of Wood-Based Hierarchical Superstructures via In Situ Growth of ZIF-8 for Enhancing Mechanical Strength and Electromagnetic Shielding Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400074. [PMID: 38381058 PMCID: PMC11077680 DOI: 10.1002/advs.202400074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Given the escalating prevalence of electromagnetic pollution, there is an urgent need for the development of high-performance electromagnetic interference (EMI) shielding materials. Herein, wood-based electromagnetic shielding materials have gained significant popularity due to their exceptional performance as building materials. In this study, a novel wood-based composite with electromagnetic shielding properties is developed. Through the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) crystals on wood fibers, coupled with uniform integration of carbon nanotubes (CNTs), a multifunctional composite named ZIF-8/Poplar-CNT composite is synthesized via a one-step thermoforming process. The incorporation of CNTs endows the composites with excellent EMI shielding effectiveness (EMI SE). Among these elements, despite ZIF-8 crystals not possessing intrinsic electromagnetic shielding functionality, their distinctive dodecahedral structure proves adept at scattering and reflecting electromagnetic waves within the composites, further improving the electromagnetic shielding effect. Hence, the ZIF-8/Poplar-CNT composite (56.95 dB) has ≈10 dB higher EMI SE compared to that of the composites without ZIF-8 crystals. Meanwhile, ZIF-8 crystals endow the materials with excellent tensile strength (54.84 MPa, enhanced by 4 times). Moreover, the introduction of Zn2+ provides superior antibacterial properties. The potential applications of ZIF-8/Poplar-CNT composites extend to diverse areas such as building decoration, electronic products, and medical equipment.
Collapse
Affiliation(s)
- Haoran Ye
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Ying Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Xin Jin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Jiamin Wu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Lu Gan
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Jianzhang Li
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Liping Cai
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| | - Chuangwei Liu
- Key Lab for Anisotropy and Texture of MaterialsSchool of Materials Science and EngineeringNortheastern UniversityShenyang110819China
| | - Changlei Xia
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest ResourcesInternational Innovation Center for Forest Chemicals and MaterialsCollege of Materials Science and EngineeringNanjing Forestry UniversityNanjingJiangsu210037China
| |
Collapse
|
3
|
Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, Ge S. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122830. [PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
Collapse
Affiliation(s)
- Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India
| | - Haoran Ye
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Ma Q, Zheng G, Jiang J, Fan W, Ge S. Recycling of Waste Bamboo Biomass and Papermaking Waste Liquid to Synthesize Sodium Lignosulfonate/Chitosan Glue-Free Biocomposite. Molecules 2023; 28:6058. [PMID: 37630310 PMCID: PMC10459139 DOI: 10.3390/molecules28166058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The development of the paper industry has led to the discharge of a large amount of papermaking waste liquid containing lignosulfonate. These lignin black liquids cause a lot of pollution in nature, which runs counter to the current environmental protection strategy under the global goal. Through the development and use of lignosulfonate in papermaking waste liquid to increase the utilization of harmful substances in waste liquid, we aim to promote waste liquid treatment and reduce environmental pollution. This paper proposes a new strategy to synthesize novel glue-free biocomposites with high-performance interfacial compatibility from papermaking by-product sodium lignosulfonate/chitosan (L/C) and waste bamboo. This L/C bamboo biocomposite material has good mechanical properties and durability, low formaldehyde emissions, a high recovery rate, meets the requirements of wood-based panels, and reduces environmental pollution. This method is low in cost, has the potential for large-scale production, and can effectively reduce the environmental pollution of the paper industry, promoting the recycling of biomass and helping the future manufacture of glue-free panels, which can be widely used in the preparation of bookcase, furniture, floor and so on.
Collapse
Affiliation(s)
- Qingzhi Ma
- The Archives, Henan Agricultural University, Zhengzhou 450002, China
| | - Guiyang Zheng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (J.J.)
| | - Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (J.J.)
| | - Wei Fan
- School of Textile Science and Engineering & Key Laboratory of Functional Textile Material and Product of Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (G.Z.); (J.J.)
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410100, China
| |
Collapse
|
5
|
Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, Zhang J, Liew RK, Foong SY, Chong WWF, Lam SS, Verma M, Ng HS, Sonne C, Ge S. Recent advances in the control of volatile organic compounds emissions from indoor wood-based panels: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163741. [PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
Collapse
Affiliation(s)
- Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China.
| | - Lei Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Feifei Song
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Yi Ren
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Jijuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
6
|
Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, Sonne C, Chong WWF, Lam SS, Xie Y, Li J, Ge S. Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength. ENVIRONMENTAL RESEARCH 2023; 218:114967. [PMID: 36455630 DOI: 10.1016/j.envres.2022.114967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
We analyzed the problematic textile fiber waste as potential precursor material to produce multilayer cotton fiber biocomposite. The properties of the products were better than the current dry bearing type particleboards and ordinary dry medium-density fiberboard in terms of the static bending strength (67.86 MPa), internal bonding strength (1.52 MPa) and water expansion rate (9.57%). The three-layer, four-layer and five-layer waste cotton fiber composite (WCFC) were tried in the experiment, the mechanical properties of the three-layer WCFC are insufficient, the five-layer WCFC is too thick and the four-layer WCFC had the best comprehensive performance. The cross-section morphology of the four-layer WCFC shows a dense structure with a high number of adhesives attached to the fiber. The hardness and stiffness of the four-layer cotton fiber composite enhanced by the high crystallinity of cellulose content, and several chemical bondings were presence in the composites. Minimum mass loss (30%) and thermal weight loss rate (0.70%/°C) was found for the four-layer WCFC. Overall, our findings suggested that the use of waste cotton fiber (WCF) to prepare biocomposite with desirable physical and chemical properties is feasible, and which can potentially be used as building material, furniture and automotive applications.
Collapse
Affiliation(s)
- Yang Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinxuan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haoran Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yequan Sheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yihui Zhou
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410000, China
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310, Johor, Malaysia.
| | - Yanfei Xie
- People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410000, China.
| |
Collapse
|
7
|
Huo H, Song F, Yang Y, Zhang L, Zhang X, Zhang J, Yue K, Zhang Z. Preparation of Environmentally Friendly Glueless Boxwood Timber by Acidic Environmental Treatment and High-Temperature Pressing. Polymers (Basel) 2022; 15:polym15010011. [PMID: 36616366 PMCID: PMC9823392 DOI: 10.3390/polym15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In the context of high-quality development, environmental issues are being paid more and more attention to, and the release of free formaldehyde has become a major problem that needs to be solved. Glueless plywood mainly adopts natural substances as raw materials, without adding chemical products, such as resin adhesives, and it does not contain harmful substances, such as formaldehyde. Glueless plywood is a green product that causes no pollution in the environment and no harm to the human body. In this study, the corresponding weak-phase components in boxwood were pre-delivered by an acidic environmental treatment, and the high-temperature and high-pressure compacting process produced a glueless boxwood panel with excellent water resistance and mechanical properties, while remaining environmentally friendly.
Collapse
Affiliation(s)
- Hongfei Huo
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
- Green Furniture Engineering Technology Research Center of National Forestry and Grassland Administration, Changsha 410004, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, China
| | - Feifei Song
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
- Green Furniture Engineering Technology Research Center of National Forestry and Grassland Administration, Changsha 410004, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, China
| | - Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
- Green Furniture Engineering Technology Research Center of National Forestry and Grassland Administration, Changsha 410004, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, China
| | - Lei Zhang
- Dongyang Furniture Research Institute, Dongyang 322100, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
- Green Furniture Engineering Technology Research Center of National Forestry and Grassland Administration, Changsha 410004, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, China
| | - Jijuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
- Green Furniture Engineering Technology Research Center of National Forestry and Grassland Administration, Changsha 410004, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, China
| | - Kong Yue
- School of Civil Engineering, Nanjing University of Technology, Nanjing 210000, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha 410004, China
- Green Furniture Engineering Technology Research Center of National Forestry and Grassland Administration, Changsha 410004, China
- Green Home Engineering Technology Research Center in Hunan, Changsha 410004, China
- Correspondence:
| |
Collapse
|
8
|
Zuo S, Shi J, Wu Y, Yuan Y, Xie H, Gan L, Van Le Q, Le HS, Zhang D, Li J, Xia C. Low carbon footprint preparation of MXene incorporated lignocellulosic fibers for high thermal conductivity applications. ENVIRONMENTAL RESEARCH 2022; 215:114213. [PMID: 36055393 DOI: 10.1016/j.envres.2022.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
New wood-based composite materials with thermal conductivity are greatly desired in the fields of packaging materials for electronic components. In this study, a new multifunctional composite material (M@FC) is prepared by simply blending clay-like Ti3C2Tx MXene and delignified wood fibers together, and then followed by an infusing epoxy resin with environmentally friendly vacuum assisted resin transfer molding (VARTM) process. The resulting M@FC (0.92 W m-1 K-1) possesses superior thermal conductivity as compared to natural wood (0.099 W m-1 K-1) and most polymers. Furthermore, after the VARTM process, the structure of the M@FC is tighter, and thus showing excellent mechanical properties (tensile strength of 93.0 MPa and flexural strength of 172.7 MPa). In addition, good water resistance and excellent flame retardant property are observed for M@FC. The improvement of thermal conductivity provides the possibility for its application for packaging materials in electronic components. This study using waste wood as the important component provides a new idea for carbon cycling and recycling of natural resources.
Collapse
Affiliation(s)
- Shida Zuo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Jiangjing Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| | - Yan Yuan
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Lu Gan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hoang Sinh Le
- VN-UK Institute for Research and Executive Education, University of Danang, Danang City, 550000, Viet Nam
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, Jiangsu, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; DeHua TB New Decoration Materials Co., Ltd., Huzhou, Zhejiang, 313200, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China; DeHua TB New Decoration Materials Co., Ltd., Huzhou, Zhejiang, 313200, China.
| |
Collapse
|