1
|
Absalan F, Hatam F, Prévost M, Barbeau B, Bichai F. Climate change and future water demand: Implications for chlorine and trihalomethanes management in water distribution systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120470. [PMID: 38422852 DOI: 10.1016/j.jenvman.2024.120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/30/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
The global change in surface water quality calls for increased preparedness of drinking water utilities. The increasing frequency of extreme climatic events combined with global warming can impact source and treated water characteristics such as temperature and natural organic matter. On the other hand, water saving policies in response to water and energy crisis in some countries can aggravate the situation by increasing the water residence time in the drinking water distribution system (DWDS). This study investigates the individual and combined effect of increased dissolved organic carbon (DOC), increased temperature, and reduced water demand on fate and transport of chlorine and trihalomethanes (THMs) within a full-scale DWDS in Canada. Chlorine and THM prediction models were calibrated with laboratory experiments and implemented in EPANET-MATLAB toolkit for prediction in the DWDS under different combinations of DOC, temperature, and demand. The duration of low chlorine residuals (<0.2 mg/L) and high THM (>80 μg/L) periods within a day in each scenario was reported using a reliability index. Low-reliability zones prone to microbial regrowth or high THM exposure were then delineated geographically on the city DWDS. Results revealed that water demand reduction primarily affects chlorine availability, with less concern for THM formation. The reduction in nodal chlorine reliability was gradual with rising temperature and DOC of the treated water and reducing water demand. Nodal THM reliability remained unchanged until certain thresholds were reached, i.e., temperature >25 °C for waters with DOC <1.52 mg/L, and DOC >2.2 mg/L for waters with temperature = 17 °C. At these critical thresholds, an abrupt network-wide THM exceedance of 80 μg/L occurred. Under higher DOC and temperature levels in future, employing the proposed approach revealed that increasing the applied chlorine dosage (which is a conventional method used to ensure sufficient chlorine coverage) results in elevated exposure toTHMs and is not recommended. This approach aids water utilities in assessing the effectiveness of different intervention measures to solve water quality problems, identify site-specific thresholds leading to major decreases in system reliability, and integrate climate adaptation into water safety management.
Collapse
Affiliation(s)
- Faezeh Absalan
- Drinking Water Chair, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, CP 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| | - Fatemeh Hatam
- Drinking Water Chair, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, CP 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| | - Michèle Prévost
- Drinking Water Chair, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, CP 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| | - Benoit Barbeau
- Drinking Water Chair, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, CP 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| | - Françoise Bichai
- Drinking Water Chair, Department of Civil, Geological, and Mining Engineering, Polytechnique Montréal, CP 6079, Succ. Centre-Ville, Montreal, QC H3C 3A7, Canada.
| |
Collapse
|
2
|
Assefa E, Jabasingh A, Mulugeta E, Dessalegne M, Teju E. Impact of source water quality on total organic carbon and trihalomethane removal efficiency in a water treatment plant: A case study of Upper Awash, Ethiopia. JOURNAL OF WATER AND HEALTH 2024; 22:337-349. [PMID: 38421628 PMCID: wh_2024_276 DOI: 10.2166/wh.2024.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This study addresses the limited understanding of factors affecting the efficiency of water treatment plants in reducing trihalomethane (THM) formation through total organic carbon (TOC) removal, highlighting significant challenges in improving treatment effectiveness. The aim of this study was to examine the influence of water quality on the efficiency of water treatment plants to remove TOC and reduce THM formation. Linear regression and correlation analyses were conducted to examine the relationship between water quality parameters and THM concentrations. The results showed that there was a negative relationship between turbidity, metals, and TOC concentration with TOC removal efficiency. Positive correlations were found between parameters and the formation of THMs in water. Of these parameters, water temperature was observed to have relatively less influence on THM formation. It was observed that seasonal variations in water quality affect the efficiency of TOC removal and THM content in treated water. THM levels in chlorinated water were found to be within the permissible range of the World Health Organization's drinking water quality guidelines. However, it is still important to maintain continuous monitoring and take measures to reduce THMs. The model demonstrated a strong correlation (R2 = 0.906) between predicted and measured THM values.
Collapse
Affiliation(s)
- Emeru Assefa
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia E-mail:
| | - Anuradha Jabasingh
- Chemical and Biochemical Engineering, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyobel Mulugeta
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Meseret Dessalegne
- Ethiopian Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Endale Teju
- Department of Chemistry, College of Natural and Computational Sciences, Haramaya University, Haramaya, Ethiopia
| |
Collapse
|
3
|
Xiao R, Yang X, Fang C, Zhang R, Chu W. Total organic halogen (TOX) in drinking water: Occurrence, correlation analysis, and precursor removal during drinking water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167445. [PMID: 37777131 DOI: 10.1016/j.scitotenv.2023.167445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Total organic halogen (TOX) in drinking water provides a measurement of the overall organic halogenated disinfection by-products (DBPs) formed during disinfection. Yangtze River Delta is one of the regions with the highest population density, the fastest urbanization process, and the most severe water pollution in China. Collecting water samples from full-scale drinking water treatment plants (DWTPs) in this region, this study firstly surveyed TOX occurrence in drinking water. Besides, the correlation of TOX formation potential (TOXFP) and trihalomethane formation potential (THMFP) with general water quality parameters (e.g., dissolved organic carbon [DOC], UV254, and specific ultraviolet absorbance) and the removal efficiencies of TOX precursors by different water treatment processes were also investigated. TOX levels in DWTP effluents (i.e., finished water) ranged from 29 to 165 μg/L (median 67 μg/L), and those in simulated distribution system waters ranged from 101 to 276 μg/L (median 158 μg/L). There were generally higher linear regression coefficient values for raw water (R2 = 0.51-0.88) than for treated water (R2 = 0.33-0.64) in terms of the relationship between DBP formation potentials and general parameters. However, a relatively stronger correlation between THMFP and TOXFP was observed for treated water (R2 = 0.80, p < 0.001) than for raw water (R2 = 0.64, p < 0.001). The overall treatment efficiencies of investigated parameters in DWTPs generally followed the order of UV254 > DOC > TOX precursors > THM precursors. Notably, the overall removal rates of DOC and TOX precursors in summer (averaging 59 % and 54 %, respectively) were obviously higher than those in winter (averaging 39 % and 38 %, respectively), which was assumed to be related to the seasonal variation of bioactivity in sand filter. These results could expand the knowledge of TOX in drinking water, and provide valuable perspectives to water industry and DBP research.
Collapse
Affiliation(s)
- Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Xu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Ruihua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Qiu C, He W, Li Y, Jiang F, Pan Y, Zhang M, Lin D, Zhang K, Yang Y, Wang W, Hua P. Formation of halogenated disinfection byproducts in chlorinated real water during making hot beverage: Effect of sugar addition. CHEMOSPHERE 2022; 305:135417. [PMID: 35750228 DOI: 10.1016/j.chemosphere.2022.135417] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Chlorine disinfection is widely applied in drinking water treatment plant to inactivate pathogens in drinking water, but it unintentionally reacts with organic matter present in source waters and generates halogenated disinfection byproducts (DBPs). Sugar is one of the most commonly used seasoning in our diet. The addition of sugar could significantly improve the taste of the beverages; however, the effects of sugar on DBP formation and transformation remain unknown. In this study, the effects of sugar type and dose on the halogenated DBP formation in chlorinated boiled real tap water were evaluated during making hot beverages. We found that sugar can react with chlorine residual in tap water and generate halogenated DBPs. As the most commonly used table sugar, the addition of sucrose in the water sample at 100 or 500 mg/L as C could increase the level of total organic halogen (TOX) by ∼35%, when compared with the boiled tap water sample without sugar addition. In addition, fifteen reported and new polar brominated and chlorinated DBPs were detected and proposed from the reaction between chlorine and sucrose; accordingly, the corresponding transformation pathways were also proposed. Moreover, the DBP formation in the chlorinated boiled real tap water samples with the addition of xylose, glucose, sucrose, maltose and lactose were also investigated. By comparing with the TOX levels in the water samples with different sugar addition and their calculated TOX risk indexes, it was suggested that applying xylose as a sweetener in beverages could not only obtain a relatively high sweetness but also minimize the adverse effect inducing by halogenated DBPs during making hot beverages.
Collapse
Affiliation(s)
- Chuyin Qiu
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Weiting He
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Meihui Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Daying Lin
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Kaili Zhang
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yanduo Yang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wen Wang
- School of Environmental Science & Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Pei Hua
- School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
5
|
A Sustainable Decision Support System for Drinking Water Systems: Resiliency Improvement against Cyanide Contamination. INFRASTRUCTURES 2022. [DOI: 10.3390/infrastructures7070088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Maintaining drinking water quality is considered important in building sustainable cities and societies. On the other hand, water insecurity is an obstacle to achieving sustainable development goals based on the issues of threatening human health and well-being and global peace. One of the dangers threatening water sources is cyanide contamination due to industrial wastewater leakage or sabotage. The present study investigates and provides potential strategies to remove cyanide contamination by chlorination. In this regard, the main novelty is to propose a sustainable decision support system for the dirking water system in a case study in Iran. First, three scenarios have been defined with low ([CN−] = 2.5 mg L−1), medium ([CN−] = 5 mg L−1), and high ([CN−] = 7.5 mg L−1) levels of contamination. Then, the optimal chlorine dosage has been suggested as 2.9 mg L−1, 4.7 mg L−1, and 6.1 mg L−1, respectively, for these three scenarios. In the next step, the residual cyanide was modelled with mathematical approaches, which revealed that the Gaussian distribution has the best performance accordingly. The main methodology was developing a hybrid approach based on the Gaussian model and the genetic algorithm. The outcomes of statistical evaluations illustrated that both injected chlorine and initial cyanide load have the greatest effects on residual cyanide ions. Finally, the proposed hybrid algorithm is characterized by the multilayer perceptron algorithm, which can forecast residual cyanide anion with a regression coefficient greater than 0.99 as a soft sensor. The output can demonstrate a strong positive relationship between residual cyanide- (RCN−) and injected chlorine. The main finding is that the proposed sustainable decision support system with our hybrid algorithm improves the resiliency levels of the considered drinking water system against cyanide treatments.
Collapse
|