1
|
Song Q, Zhang Y, Ju C, Zhao T, Meng Q, Cong J. Microbial strategies for effective microplastics biodegradation: Insights and innovations in environmental remediation. ENVIRONMENTAL RESEARCH 2024; 263:120046. [PMID: 39313172 DOI: 10.1016/j.envres.2024.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Microplastics (MPs), diminutive yet ubiquitous fragments arising from the degradation of plastic waste, pervade environmental matrices, posing substantial risks to ecological systems and trophic dynamics. This review meticulously examines the origins, distribution, and biological impacts of MPs, with an incisive focus on elucidating the molecular and cellular mechanisms underpinning their toxicity. We highlight the indispensable role of microbial consortia and enzymatic pathways in the oxidative degradation of MPs, offering insights into enhanced biodegradation processes facilitated by innovative pretreatment methodologies. Central to our discourse is the interplay between MPs and biota, emphasizing the detoxification capabilities of microbial metabolisms and enzymatic functions in ameliorating MPs' deleterious effects. Additionally, we address the practical implementations of MP biodegradation in environmental remediation, advocating for intensified research to unravel the complex biodegradation pathways and to forge effective strategies for the expeditious elimination of MPs from diverse ecosystems. This review not only articulates the pervasive challenges posed by MPs but also positions microbial strategies at the forefront of remedial interventions, thereby paving the way for groundbreaking advancements in environmental conservation.
Collapse
Affiliation(s)
- Qianqian Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Yun Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Cuiping Ju
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, 266000, China
| | - Tianyu Zhao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Qingxuan Meng
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China
| | - Jing Cong
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
2
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
3
|
Rodríguez-Varela R, Yaka R, Pochon Z, Sanchez-Pinto I, Solaun JL, Naidoo T, Guinet B, Pérez-Ramallo P, Lagerholm VK, de Anca Prado V, Valdiosera C, Krzewińska M, Herrasti L, Azkarate A, Götherström A. Five centuries of consanguinity, isolation, health, and conflict in Las Gobas: A Northern Medieval Iberian necropolis. SCIENCE ADVANCES 2024; 10:eadp8625. [PMID: 39196943 PMCID: PMC11352919 DOI: 10.1126/sciadv.adp8625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/19/2024] [Indexed: 08/30/2024]
Abstract
Between the 8th and 11th centuries CE, the Iberian Peninsula underwent profound upheaval due to the Umayyad invasion against the Visigoths, resulting in population shifts and lasting demographic impacts. Our understanding of this period is hindered by limited written sources and few archaeogenetic studies. We analyzed 33 individuals from Las Gobas, a necropolis in northern Spain, spanning the 7th to 11th centuries. By combining archaeological and osteological data with kinship, metagenomics, and ancestry analyses, we investigate conflicts, health, and demography of these individuals. We reveal intricate family relationships and genetic continuity within a consanguineous population while also identifying several zoonoses indicative of close interactions with animals. Notably, one individual was infected with a variola virus phylogenetically clustering with the northern European variola complex between ~885 and 1000 CE. Last, we did not detect a significant increase of North African or Middle East ancestries over time since the Islamic conquest of Iberia, possibly because this community remained relatively isolated.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Reyhan Yaka
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Zoé Pochon
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Iban Sanchez-Pinto
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - José Luis Solaun
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
- Ancient DNA Unit, Science for Life Laboratory, Stockholm, Sweden
| | - Benjamin Guinet
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Patxi Pérez-Ramallo
- Department of Archaeology and Cultural History, NTNU University Museum, Trondheim, Norway
- isoTROPIC Research Group, Department of Archaeology, Max Planck Institute of Geoanthropology, Jena, Germany
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | | | - Cristina Valdiosera
- Universidad de Burgos, Departamento de Historia, Geografía y Comunicaciones, Burgos, Spain
| | - Maja Krzewińska
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Lourdes Herrasti
- Departamento de Antropología, Sociedad de Ciencias Aranzadi, Donostia-San Sebastián, Spain
| | - Agustín Azkarate
- Departamento de Geografía, Prehistoria y Arqueología, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
- GPAC, C. I. Micaela Portilla, University of the Basque Country, UPV/EHU, Vitoria-Gasteiz, Spain
| | - Anders Götherström
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Thamizharasan A, Aishwarya M, Mohan V, Krishnamoorthi S, Gajalakshmi S. Assessment of microbial flora and pesticidal effect of vermicast generated from Azadirachta indica (neem) for developing a biofertilizer-cum-pesticide as a single package. Microb Pathog 2024; 192:106690. [PMID: 38759935 DOI: 10.1016/j.micpath.2024.106690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.
Collapse
Affiliation(s)
- A Thamizharasan
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - M Aishwarya
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - V Mohan
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Krishnamoorthi
- Institute of Forest Genetics and Tree Breeding, Coimbatore, Tamil Nadu, India
| | - S Gajalakshmi
- Centre for Pollution Control and Environmental Engineering, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
5
|
Boctor J, Pandey G, Xu W, Murphy DV, Hoyle FC. Nature's Plastic Predators: A Comprehensive and Bibliometric Review of Plastivore Insects. Polymers (Basel) 2024; 16:1671. [PMID: 38932021 PMCID: PMC11207432 DOI: 10.3390/polym16121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Unprecedented plastic production has resulted in over six billion tons of harmful waste. Certain insect taxa emerge as potential agents of plastic biodegradation. Through a comprehensive manual and bibliometric literature analysis, this review analyses and consolidates the growing literature related to insect-mediated plastic breakdown. Over 23 insect species, representing Coleoptera, Lepidoptera, and 4 other orders, have been identified for their capacity to consume plastic polymers. Natural and synthetic polymers exhibit high-level similarities in molecular structure and properties. Thus, in conjunction with comparative genomics studies, we link plastic-degrading enzymatic capabilities observed in certain insects to the exaptation of endogenous enzymes originally evolved for digesting lignin, cellulose, beeswax, keratin and chitin from their native dietary substrates. Further clarification is necessary to distinguish mineralisation from physicochemical fragmentation and to differentiate microbiome-mediated degradation from direct enzymatic reactions by insects. A bibliometric analysis of the exponentially growing body of literature showed that leading research is emerging from China and the USA. Analogies between natural and synthetic polymer's degradation pathways will inform engineering robust enzymes for practical plastic bioremediation applications. By aggregating, analysing, and interpreting published insights, this review consolidates our mechanistic understanding of insects as a potential natural solution to the escalating plastic waste crisis.
Collapse
Affiliation(s)
- Joseph Boctor
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Gunjan Pandey
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Environment, Acton, ACT 2601, Australia;
| | - Wei Xu
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
| | - Daniel V. Murphy
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Frances C. Hoyle
- Bioplastics Innovation Hub, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (W.X.); (D.V.M.); (F.C.H.)
- SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
6
|
Burelo M, Hernández-Varela JD, Medina DI, Treviño-Quintanilla CD. Recent developments in bio-based polyethylene: Degradation studies, waste management and recycling. Heliyon 2023; 9:e21374. [PMID: 37885729 PMCID: PMC10598529 DOI: 10.1016/j.heliyon.2023.e21374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Nowadays, the tendency to replace conventional fossil-based plastics is increasing considerably; there is a growing trend towards alternatives that involve the development of plastic materials derived from renewable sources, which are compostable and biodegradable. Indeed, only 1.5 % of whole plastic production is part of the small bioplastics market, even when these materials with a partial or full composition from biomass are rapidly expanding. A very interesting field of investigation is currently being developed in which the disposal and processing of the final products are evaluated in terms of reducing environmental harm. This review presents a compilation of polyethylene (PE) types, their uses, and current problems in the waste management of PE and recycling. Particularly, this review is based on the capabilities to synthesize bio-based PE from natural and renewable sources as a replacement for the raw material derived from petroleum. In addition to recent studies in degradation on different types of PE with weight loss ranges from 1 to 47 %, the techniques used and the main changes observed after degradation. Finally, perspectives are presented in the manuscript about renewable and non-renewable polymers, depending on the non-degradable, biodegradable, and compostable behavior, including composting recent studies in PE. In addition, it contributes to the 3R approaches to responsible waste management of PE and advancement towards an environmentally friendly PE.
Collapse
Affiliation(s)
- Manuel Burelo
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Josué David Hernández-Varela
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Dora I. Medina
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| | - Cecilia D. Treviño-Quintanilla
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Nuevo Leon, Mexico
| |
Collapse
|
7
|
Goli VSNS, Singh DN. Effect of ultrasonication conditions on polyethylene microplastics sourced from landfills: A precursor study to establish guidelines for their extraction from environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132230. [PMID: 37562353 DOI: 10.1016/j.jhazmat.2023.132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/09/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Establishing concentration of microplastics (MPs), designated as CMP, in aqueous, semi-solid and solid samples originating from unscientifically created landfills/dumpsites (UCLDs) and engineered landfills (ELFs) is of utmost importance to assess their impact on the geoenvironment. However, the accuracy of CMP will be guided by the extraction efficiency of MPs from these samples. The extraction of MPs from semi-solid and solid samples of UCLDs/ELFs would be cumbersome, mainly due to their trapping in solid aggregates (including organic matter). Such aggregates need to be dispersed to release the MPs, which can be achieved through the assistance of ultrasonication (US) in the presence of an appropriate dispersing agent. However, mere dispersion of solid aggregates during the US might not result in the complete release of MPs adhered (AMPs) to MPs native (NMPs) to these samples. This is because MPs would adhere to the surface of the adjacent ones due to various physical-mechanical-thermal-chemical processes that prevail in landfills. Hence, guidelines for US-assisted extraction of MPs should be developed by considering an approach that would ensure (i) cleaning of NMPs' surface and (ii) release of AMPs without damaging the former. This necessitates understanding the influence of US parameters such as energy applied (Eus), time (tus) and direct/indirect exposure of NMPs from landfills that would control CMP. In this context, the influence of above mentioned US parameters on the (i) surface cleaning of polyethylene NMPs and (ii) release of AMPs and their concentrations (CAMP) was investigated. It was observed that Eus equal to 500 kJ/L during the indirect method of US would result in surface cleaning of NMPs and complete release of AMPs without damaging the farmer's structure. The present work acts as a precursor study to establish the guidelines for the US-assisted extraction of MPs in environmental samples. Also, a generalized relationship between Eus and CAMP, which can be employed to study the impact of landfill type on the release of MPs during the US was developed.
Collapse
Affiliation(s)
| | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|
8
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
9
|
Muralidharan M, Gayathri KV, Kumar PS, Preethi DS, Kavitha R, Rajagopal R, Rangasamy G. Mixed polyaromatic hydrocarbon degradation by halotolerant bacterial strains from marine environment and its metabolic pathway. ENVIRONMENTAL RESEARCH 2023; 216:114464. [PMID: 36208785 DOI: 10.1016/j.envres.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Accidents involving diesel oil spills are prevalent in sea- and coastal regions. Polycyclic aromatic hydrocarbons (PAHs) can be adsorbed in soil and constitute a persistent contaminant due to their poor water solubility and complex breakdown. PAHs pollution is a pervasive environmental concern that poses serious risks to human life and ecosystems. Thus, it is the need of the hour to degrade and decontaminate the toxic pollutant to save the environment. Among all the available techniques, microbial degradation of the PAHs is proving to be greatly beneficial and effective. Bioremediation overcomes the drawbacks of most physicochemical procedures by eliminating numerous organic pollutants at a lower cost in ambient circumstances and has therefore become a prominent remedial option for pollutant removal, including PAHs. In the present study, we have studied the degradation of Low molecular Weight and High Molecular Weight PAH in combination by bacterial strains isolated from a marine environment. Optimum pH, temperature, carbon, and nitrogen sources, NaCl concentrations were found for efficient degradation using the isolated bacterial strains. At 250 mg/L concentration of the PAH mixture an 89.5% degradation was observed. Vibrio algiolytcus strains were found to be potent halotolerant bacteria to degrade complex PAH into less toxic simple molecules. GC-MS and FTIR data were used to probe the pathway of degradation of PAH.
Collapse
Affiliation(s)
- Manasa Muralidharan
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - K Veena Gayathri
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam-603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
| | - D S Preethi
- Department of Biotechnology, Stella Maris College (Autonomous), Chennai, India
| | - R Kavitha
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India; Department of Chemistry, Madras Christian College (Autonomous), Chennai, India
| | - Revathy Rajagopal
- Department of Chemistry, Stella Maris College (Autonomous), Chennai, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| |
Collapse
|
10
|
Characterization of Cellulose-Degrading Bacteria Isolated from Soil and the Optimization of Their Culture Conditions for Cellulase Production. Appl Biochem Biotechnol 2022; 194:5060-5082. [PMID: 35687308 DOI: 10.1007/s12010-022-04002-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
The characterization of bacteria with hydrolytic potential significantly contributes to the industries. Six cellulose-degrading bacteria were isolated from mixture soil samples collected at Kingfisher Lake and the University of Manitoba campus by Congo red method using carboxymethyl cellulose agar medium and identified as Paenarthrobacter sp. MKAL1, Hymenobacter sp. MKAL2, Mycobacterium sp. MKAL3, Stenotrophomonas sp. MKAL4, Chryseobacterium sp. MKAL5, and Bacillus sp. MKAL6. Their cellulase production was optimized by controlling different environmental and nutritional factors such as pH, temperature, incubation period, substrate concentration, nitrogen, and carbon sources using the dinitrosalicylic acid and response surface methods. Except for Paenarthrobacter sp. MKAL1, all strains are motile. Only Bacillus sp. MKAL6 was non-salt-tolerant and showed gelatinase activity. Sucrose enhanced higher cellulase activity of 78.87 ± 4.71 to 190.30 ± 6.42 U/mL in these strains at their optimum pH (5-6) and temperature (35-40 °C). The molecular weights of these cellulases were about 25 kDa. These bacterial strains could be promising biocatalysts for converting cellulose into glucose for industrial purposes.
Collapse
|