1
|
Silva KJ, Wyss KM, Teng CH, Cheng Y, Eddy LJ, Tour JM. Graphene Derived from Municipal Solid Waste. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2311021. [PMID: 38813711 DOI: 10.1002/smll.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Landfilling is long the most common method of disposal for municipal solid waste (MSW). However, many countries seek to implement different methods of MSW treatment due to the high global warming potential associated with landfilling. Other methods such as recycling and incineration are either limited to only a fraction of generated MSW or still produce large greenhouse gas emissions, thereby providing an unsustainable disposal method. Here, the production of graphene from treated MSW is reported that including treated wood waste, using flash Joule heating. Results indicated a 71%-83% reduction in global warming potential compared to traditional disposal methods at a net cost of -$282 of MSW, presuming the graphene is sold at just 5% of its current market value to offset the cost of the flash Joule heating process.
Collapse
Affiliation(s)
- Karla J Silva
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Kevin M Wyss
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Carolyn H Teng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Yi Cheng
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lucas J Eddy
- Department of Physics, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Physics, Rice University, 6100 Main Street, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Smalley-Curl Institute, Nanocarbon Center and the Rice Advanced Materials Institute, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
2
|
Wallenborn JT, Hyland C, Sagiv SK, Kogut KR, Bradman A, Eskenazi B. Prenatal exposure to polybrominated diphenyl ether (PBDE) and child neurodevelopment: The role of breastfeeding duration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171202. [PMID: 38408669 PMCID: PMC11070443 DOI: 10.1016/j.scitotenv.2024.171202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Prenatal and early-life exposure to polybrominated diphenyl ethers (PBDEs) is associated with detrimental and irreversible neurodevelopmental health outcomes during childhood. Breastfeeding may be a child's largest sustained exposure to PBDE- potentially exacerbating their risk for adverse neurodevelopment outcomes. However, breastfeeding has also been associated with positive neurodevelopment. Our study investigates if breastfeeding mitigates or exacerbates the known adverse effects of prenatal exposure to PBDEs and child neurodevelopment. METHODS Participants included 321 mother-infant dyads from the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a longitudinal birth cohort in California. PBDE concentrations were measured in maternal serum blood samples collected during pregnancy or at delivery. Using generalized estimated equations (GEE), we estimated associations of PBDE concentrations with children's attention, executive function, and cognitive scores assessed longitudinally between 7 and 12 years of age, stratified by duration of exclusive and complementary breastfeeding. RESULTS We observed that higher maternal prenatal PBDE concentrations were associated with poorer executive function among children who were complementary breastfed for a shorter duration compared to children breastfed for a longer duration; preservative errors (β for 10-fold increase in complementary breastfeeding <7 months = -6.6; 95 % Confidence Interval (CI): -11.4, -1.8; β ≥ 7 months = -5.1; 95 % CI: -10.2, 0.1) and global executive composition (β for 10-fold increase <7 months = 4.3; 95 % CI: 0.4, 8.2; β for 10-fold increase ≥7 months = 0.6; 95 % CI: -2.8, 3.9). CONCLUSIONS Prolonged breastfeeding does not exacerbate but may mitigate some previously observed negative associations of prenatal PBDE exposure and child neurodevelopment.
Collapse
Affiliation(s)
- Jordyn T Wallenborn
- Center of Excellence for Maternal and Child Health, School of Public Health, University of California, Berkeley, CA, USA; Swiss Tropical and Public Health Institute, Department of Epidemiology and Public Health, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Carly Hyland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Division of Agriculture and Natural Resources, University of California, Berkeley, CA, USA; Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Katherine R Kogut
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Asa Bradman
- Department of Public Health, School of Social Sciences, Humanities, and Arts, University of California, Merced, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
3
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
4
|
Wang N, Lai C, Xu F, Huang D, Zhang M, Zhou X, Xu M, Li Y, Li L, Liu S, Huang X, Nie J, Li H. A review of polybrominated diphenyl ethers and novel brominated flame retardants in Chinese aquatic environment: Source, occurrence, distribution, and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166180. [PMID: 37562617 DOI: 10.1016/j.scitotenv.2023.166180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Due to the widespread commercial production and use of brominated flame retardants (BFRs) in China, their potential impact on human health development should not be underestimated. This review searched the literature on Polybrominated diphenyl ethers and Novel brominated flame retardant (PBDEs and NBFRs) (broad BFRs) in the aquatic environment (including surface water and sediment) in China over the last decade. It was found that PBDEs and NBFRs entered the aquatic environment through four main pathways, atmospheric deposition, surface runoff, sewage effluent and microplastic decomposition. The distribution of PBDEs and NBFRs in the aquatic environment was highly correlated with the local economic structure and population density. In addition, a preliminary risk assessment of existing PBDEs and PBDEs in sediments showed that areas with high-risk quotient values were always located in coastal areas with e-waste dismantling sites, which was mainly attributed to the historical legacy of electronic waste. This research provides help for the human health development and regional risk planning management posed by PBDEs and NBFRs.
Collapse
Affiliation(s)
- Neng Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Fuhang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xuerong Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Mengyi Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Yixia Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Ling Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shiyu Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinyu Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR. China
| | - Jinxin Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Hanxi Li
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| |
Collapse
|
5
|
Souza MCO, Souza JMO, da Costa BRB, Gonzalez N, Rocha BA, Cruz JC, Guida Y, Souza VCO, Nadal M, Domingo JL, Barbosa F. Levels of organic pollutants and metals/metalloids in infant formula marketed in Brazil: Risks to early-life health. Food Res Int 2023; 174:113594. [PMID: 37986457 DOI: 10.1016/j.foodres.2023.113594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Infant formula intake is recommended to ensure comprehensive nutritional and caloric fulfillment when exclusive breastfeeding is not possible. However, similarly to breast milk, infant formulas may also contain pollutants capable of inducing endocrine-disrupting and neurotoxic effects. Thus, considering the sensitivity of their developing physiological systems and that infants have heightened susceptibility to environmental influences, this study was aimed at assessing the contents of essential elements, and inorganic and organic pollutants in infant formulas marketed in Brazil. Additionally, health risk assessments for selected contaminants were also performed. Measured contents of essential elements (Ca, Fe, Mg, Mn, Cu, Se, and Zn) were congruent with label information. Nevertheless, some toxic elements (Pb, Cd, As, Ni, and Al) were also detected. Notably, in the upper-bound scenario, Pb and Cd surpassed established threshold values when comparing the estimated daily intake (EDI) and tolerable daily intake (TDI - 3.57 and 0.36 μg/kg bw, respectively). Bisphenol P (BPP) and benzyl butyl phthalate (BBP) were frequently detected (84 % detection rate both) with elevated contents (BPP median = 4.28 ng/g and BBP median = 0.24 ng/g). Furthermore, a positive correlation (0.41) was observed between BPP and BBP, implying a potential co-occurrence within packaging materials. Methyl-paraben also correlated positively with BBP (0.57), showing a detection rate of 53 %. The cumulative PBDE contents ranged from 0.33 to 1.62 ng/g, with BDE-154 and BDE-47 the dominant congeners. When comparing EDI values with TDIs, all organic pollutants remained below the thresholds across all exposure scenarios. Moreover, non-carcinogenic risks were below the threshold (HQ > 1) when dividing the EDIs by the respective reference doses for chronic exposure. While the current findings may suggest that infant formula intake poses no immediate risk in terms of the evaluated chemicals, it remains imperative to conduct further research to safeguard the health of infants considering other chemicals, as well as their potential cumulative effects.
Collapse
Affiliation(s)
- Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Juliana Maria Oliveira Souza
- Department of Biochemistry, Biological Sciences Institute, University of Juiz de Fora, Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, Juiz de Fora, MG 36036-900, Brazil
| | - Bruno Ruiz Brandão da Costa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Forensic Toxicology Analysis Laboratory, Avenida dos Bandeirantes, 3900 - Monte Alegre, 14015-130, Ribeirao Preto, Sao Paulo, Brazil; University of Sao Paulo, Institute of Biosciences, Department of Botany, Laboratory of Phytochemistry, Rua do Matão, 277, 05508-090 Sao Paulo, Brazil
| | - Neus Gonzalez
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Jonas Carneiro Cruz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Yago Guida
- Institute of Biophysics Carlos Chagas Filho, Health Sciences Center, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Vanessa Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology, and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Café s/n°, 14040-903, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
6
|
Zhang R, Li J, Wang Y, Jiang G. Distribution and exposure risk assessment of chlorinated paraffins and novel brominated flame retardants in toys. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130789. [PMID: 36641847 DOI: 10.1016/j.jhazmat.2023.130789] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Chlorinated paraffins (CPs) and novel brominated flame retardants (NBFRs) were examined in children's toys collected from 13 families in China. The concentrations of short-chain CPs (SCCPs), medium-chain CPs (MCCPs) and NBFRs in toys were 32.8-1,220,954 ng/g, not detected-2,688,656 ng/g and 0.08-103,461 ng/g, respectively. Median concentrations of SCCPs and MCCPs in toys were 1355 and 1984 ng/g, respectively, while except for pentabromobenzene (median:0.04 ng/g), the median concentrations of the other 8 NBFRs were below method detection limits. Rubber and foam toys contained higher amounts of CPs and NBFRs. Among the SCCPs and MCCPs monitored, Cl6-8-SCCPs/MCCPs and C14-MCCPs were the most abundant congener groups. On the other hand, decabromodiphenyl ethane was the predominant NBFR in toys. Moreover, to understand the role of toys in children's daily exposure to CPs and NBFRs, hand-to-mouth contact, mouthing, and dermal exposure were assessed for children aged 3 months to 6 years. Hand-to-mouth contact is the primary exposure route for children's exposure to CPs (25.4-536 ng/kg/day) and NBFRs (1.24-26.2 ng/kg/day) through toys. A low deleterious risk associated with children's toys concerning CPs and NBFRs was investigated based on the margin of exposure and hazard quotient values.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 89] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
8
|
Ahrendt C, Galbán-Malagón C, Gómez V, Torres M, Mattar C, DeCoite M, Guida Y, Příbylová P, Pozo K. Marine debris and associated organic pollutants in surface waters of Chiloé in the Northern Chilean Patagonia (42°-44°S). MARINE POLLUTION BULLETIN 2023; 187:114558. [PMID: 36652856 DOI: 10.1016/j.marpolbul.2022.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
We report the occurrence of plastics and associated persistent organic pollutants (POPs) in surface waters from Northern Chilean Patagonia. A total of 200 particles were found during the conducted survey. The highest number of particles found was 0.6 item m-3. We found that 53 % of the collected particles corresponded to plastic, with an average of 0.19 ± 0.18 item m-3. Microplastics (68 %) were the dominant size found in the area, followed by macroplastics (18 %) and mesoplastics (14 %). Most plastic particles were white (55 %) while others were <10 % each. Black and light blue represented 9 %; red, dark blue, and other colors 7 %; and green 6 %. Fragments were the most frequent shape of plastic debris (38 %), followed by Styrofoam (30 %) and fiber (27 %). Higher PBDE levels were found in the central zone, and those were higher than DDT, PeCB, HCB, and PCB levels. This study is the first report on POP occurrence in marine plastic debris from Chiloé Sea in the Northern Chilean Patagonia.
Collapse
Affiliation(s)
- C Ahrendt
- Fundación Acción Natural, Las Condes, Santiago de Chile, Chile; Plastic Oceans International, 23823 Malibu Road Ste 50-205, Malibu, CA 90265, USA.
| | - C Galbán-Malagón
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago de Chile, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile; Institute of Environment, Florida International University, University Park, Miami, FL 33199, USA.
| | - V Gómez
- Centro GEMA (Genómica, Ecología y Medio Ambiente), Universidad Mayor, Huechuraba, Santiago de Chile, Chile; Anillo en Ciencia y Tecnología Antártica POLARIX, Chile
| | - M Torres
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile
| | - C Mattar
- Fundación Bioera, Las Condes, Santiago de Chile, Chile
| | - M DeCoite
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 1156 High St, Santa Cruz, CA 95060, USA
| | - Y Guida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - P Příbylová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - K Pozo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Lientur 1457, Concepción, Chile; RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| |
Collapse
|
9
|
Hu D, Wu J, Fan L, Li S, Jia R. Aerobic Degradation Characteristics and Mechanism of Decabromodiphenyl Ether (BDE-209) Using Complex Bacteria Communities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17012. [PMID: 36554891 PMCID: PMC9778866 DOI: 10.3390/ijerph192417012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Complex bacteria communities that comprised Brevibacillus sp. (M1) and Achromobacter sp. (M2) with effective abilities of degrading decabromodiphenyl ether (BDE-209) were investigated for their degradation characteristics and mechanisms under aerobic conditions. The experimental results indicated that 88.4% of 10 mg L-1 BDE-209 could be degraded after incubation for 120 h under the optimum conditions of pH 7.0, 30 °C and 15% of the inoculation volume, and the addition ratio of two bacterial suspensions was 1:1. Based on the identification of BDE-209 degradation products via liquid chromatography-mass spectrometry (LC-MS) analysis, the biodegradation pathway of BDE-209 was proposed. The debromination, hydroxylation, deprotonation, breakage of ether bonds and ring-opening processes were included in the degradation process. Furthermore, intracellular enzymes had the greatest contribution to BDE-209 biodegradation, and the inhibition of piperyl butoxide (PB) for BDE-209 degradation revealed that the cytochrome P450 (CYP) enzyme was likely the key enzyme during BDE-209 degradation by bacteria M (1+2). Our study provided alternative ideas for the microbial degradation of BDE-209 by aerobic complex bacteria communities in a water system.
Collapse
Affiliation(s)
- Dingfan Hu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Juan Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Luosheng Fan
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Shunyao Li
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Rong Jia
- School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
10
|
Wang W, Sheng Y. Effects and mechanisms of decabromodiphenyl ethane on Chlorella sorokiniana: Transcriptomics, proteins and fatty acid production. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105764. [PMID: 36209704 DOI: 10.1016/j.marenvres.2022.105764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Decabromodiphenyl ethane is a novel brominated flame retardant, that has always been dissolved in organic solvents to explore its activities on aquatic organisms. In this study, the influences of decabromodiphenyl ethane on the microalga Chlorella sorokiniana (C. sorokiniana) were studied, and three microalgae treatments, including decabromodiphenyl ethane dissolved in dimethyl sulfoxide solvent (DBDPE treatment), dimethyl sulfoxide alone (control II) or untreated (control I) were used in the experiment, respectively. The results showed that the growth of C. sorokiniana was remarkably enhanced in the DBDPE treatment compared with the control I and II groups. Conjoint analysis of transcriptomics and quantitative proteome displayed that the upregulated differentially expressed genes and proteins of DBDPE:control I were enriched in 6 pathways, and downregulated genes/proteins of DBDPE:control I were enriched in 3 pathways. The upregulated differentially expressed genes and proteins of DBDPE:control II were enriched in 4 pathways, and downregulated genes/proteins of DBDPE:control II were enriched in 6 pathways. In addition, decabromodiphenyl ethane changed the fatty acid concentration in C. sorokiniana cells. The activities of superoxide dismutase were enhanced when C. sorokiniana were treated by decabromodiphenyl ethane. The data highlighted that the mRNA and protein expression relating to the fatty acid production, of C. sorokiniana were significantly affected by decabromodiphenyl ethane, and decabromodiphenyl ethane pollution changed the physiological metabolism of microalgae and had harmful effects on natural environments.
Collapse
Affiliation(s)
- Wenjing Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China.
| |
Collapse
|
11
|
Zhang R, Li N, Li J, Zhao C, Luo Y, Wang Y, Jiang G. Percutaneous absorption and exposure risk assessment of organophosphate esters in children's toys. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129728. [PMID: 35969952 DOI: 10.1016/j.jhazmat.2022.129728] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The percutaneous penetration and exposure risk of organophosphate esters (OPEs) from children's toys remains largely unknown. Percutaneous penetration of OPEs was evaluated by EPISkin™ model. Chlorinated OPEs (Cl-OPEs) and alkyl OPEs, except tris(2-ethylhexyl) phosphate, exhibited a fast absorption rate and good dermal penetration ability with cumulative absorptions of 57.6-127 % of dosed OPEs. Cumulative absorptions of OPEs through skin cells were inversely associated with their molecular weight and log octanol-water partition coefficient. Additionally, a quantitative structure-activity relationship model indicated that topological charge and steric features of OPEs were closely related to the transdermal permeability of these chemicals. With the clarification of the factors affecting the transdermal penetration of OPEs, the level and exposure risk of OPEs in actual toys were studied. The summation of 18 OPE concentrations in 199 toy samples collected from China ranged from 6.82 to 228,254 ng/g, of which Cl-OPEs presented the highest concentration. Concentrations of OPEs in toys exhibited clear type differences. Daily exposure to OPEs via dermal, hand-to-mouth contact, and mouthing was evaluated, and dermal contact was a significant route for children's exposure to OPEs. Hazard quotients for noncarcinogenic risk assessment were below 1, indicating that the health risk of OPEs via toys was relatively low.
Collapse
Affiliation(s)
- Ruirui Zhang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ningqi Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Juan Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yadan Luo
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yawei Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
12
|
Yadav IC, Devi NL. Legacy and emerging flame retardants in indoor and outdoor dust from Indo-Gangetic Region (Patna) of India: implication for source apportionment and health risk exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68216-68231. [PMID: 35536469 DOI: 10.1007/s11356-022-20570-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
The fate of legacy and emerging flame retardants are poorly reported in developing countries, including India. Also, the positive matrix factorization (PMF) application-based source apportionment of these pollutants is less comprehensive. This study analyzed the contamination level and sources of 25 flame retardants in dust from India's central Indo-Gangetic Plain (Patna city) using the PCA and PMF model. Dust samples were collected from various functional areas of indoor (n = 22) and outdoor (n = 16) environments. The sum of four groups of FRs in indoor dust (median 8080 ng/g) was 3-4 times greater than the outdoor dust (median 2410 ng/g). The novel-brominated flame retardants (NBFRs) and organophosphate esters (OPFRs) were more dominant than polybrominated diphenyl ethers (PBDEs), indicating the influence of worldwide elimination of PBDEs. The median concentration of ∑NBFRs in indoor and outdoor dust was 1210 ng/g and 6820 ng/g, while the median concentration of ∑OPFRs was measured to be 383 ng/g and 1210 ng/g, respectively. Likewise, ∑9PBDEs in indoor and outdoor dust ranged from 2-1040 ng/g (median 38.8 ng/g) to 0.62-249 ng/g (median 10.7 ng/g), respectively. Decabromodiphenylethane (DBDPE) was identified as the most abundant NBFR in dust, comprising 99.9% of ∑6NBFR, while tri-cresyl phosphates (TMPPs) showed the highest concentration among OPFR and accounted for 75% ∑8OPFRs. The PMF analysis indicated that a significant fraction of FRs in the dust (80%) could derive from plastics, textiles, polyurethane foam, anti-foam agents, PVC, paint, and coatings. In comparison, debromination of higher PBDE congeners contributed 20% in the dust environment. FR's estimated daily exposure risk in dust showed dermal absorption as the main route of FR's intake to adult and children populations. Children were more vulnerable to the risk of FRs than the adult population. The estimated daily exposure risk for selected FRs in this study was 4-6 orders of magnitude lesser than the respective reference dose (RfD), proposing negligible health risk.
Collapse
Affiliation(s)
- Ishwar Chandra Yadav
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.
- Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT), 3-5-8, Saiwai-Cho, Fuchu-Shi, Tokyo, 1838509, Japan.
| | - Ningombam Linthoingambi Devi
- Department of Environmental Sciences, Central University of South Bihar, SH-7 Gaya-Panchanpur Road, Gaya-824236, Bihar, India
| |
Collapse
|
13
|
Turner A. PBDEs in the marine environment: Sources, pathways and the role of microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:118943. [PMID: 35150801 DOI: 10.1016/j.envpol.2022.118943] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Brominated flame retardants (BFRs) are an important group of additives in plastics that increase resistance to ignition and slow down the rate of burning. Because of concerns about their environmental and human health impacts, however, some of the most widely employed BFRs, including hexabromocyclododecane (HBCD) and commercial mixtures of penta-, octa- and deca- (poly)bromodiphenyl ethers (PBDEs), have been restricted or phased out. In this review, the oceanic sources and pathways of PBDEs, the most widely used BFRs, are evaluated and quantified, with particular focus on emissions due to migration from plastics into the atmosphere versus emissions associated with the input of retarded or contaminated plastics themselves. Calculations based on available measurements of PBDEs in the environment suggest that 3.5 and 135 tonnes of PBDEs are annually deposited in the ocean when scavenged by aerosols and through air-water gas exchange, respectively, with rivers contributing a further ∼40 tonnes. Calculations based on PBDE migration from plastic products in use or awaiting or undergoing disposal yield similar net inputs to the ocean but indicate a relatively rapid decline over the next two decades in association with the reduction in the production and recycling of these chemicals. Estimates associated with the input of PBDEs to the ocean when "bound" to marine plastics and microplastics range from about 360 to 950 tonnes per year based on the annual production of plastics and PBDEs over the past decade, and from about 20 to 50 tonnes per annum based on the abundance and distribution of PBDEs in marine plastic litter. Because of the persistence and pervasiveness of plastics in the ocean and diffusion coefficients for PBDEs on the order of 10-20 to 10-27 m2 s-1, microplastics are likely to act as a long-term source of these chemicals though gradual migration. Locally, however, and more important from an ecotoxicological perspective, PBDE migration may be significantly enhanced when physically and chemically weathered microplastics are exposed to the oily digestive fluids conditions of fish and seabirds.
Collapse
Affiliation(s)
- Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
| |
Collapse
|
14
|
Wang Z, Adu-Kumi S, Diamond ML, Guardans R, Harner T, Harte A, Kajiwara N, Klánová J, Liu J, Moreira EG, Muir DCG, Suzuki N, Pinas V, Seppälä T, Weber R, Yuan B. Enhancing Scientific Support for the Stockholm Convention's Implementation: An Analysis of Policy Needs for Scientific Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2936-2949. [PMID: 35167273 DOI: 10.1021/acs.est.1c06120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Stockholm Convention is key to addressing the global threats of persistent organic pollutants (POPs) to humanity and the environment. It has been successful in identifying new POPs, but its national implementation remains challenging, particularly by low- and middle-income Parties. Concerted action is needed to assist Parties in implementing the Convention's obligations. This analysis aims to identify and recommend research and scientific support needed for timely implementation of the Convention. We aim this analysis at scientists and experts from a variety of natural and social sciences and from all sectors (academia, civil society, industry, and government institutions), as well as research funding agencies. Further, we provide practical guidance to scientists and experts to promote the visibility and accessibility of their work for the Convention's implementation, followed by recommendations for sustaining scientific support to the Convention. This study is the first of a series on analyzing policy needs for scientific evidence under global governance on chemicals and waste.
Collapse
Affiliation(s)
- Zhanyun Wang
- Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, CH-9014 St. Gallen, Switzerland
| | - Sam Adu-Kumi
- Chemicals Control and Management Centre, Environmental Protection Agency, Ministries, P.O. Box MB 326, Accra GR, Ghana
| | - Miriam L Diamond
- Department of Earth Sciences and School of the Environment, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Ramon Guardans
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Adviser on POPs, Ministry for the Ecological Transition and Demographic Challenge (MITECO), 28046 Madrid, Spain
| | - Tom Harner
- WEOG Region Representative for the Global Monitoring Plan of the Stockholm Convention on POPs, Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Agustín Harte
- National Chemicals and Hazardous Waste Directorate, Secretariat of Environmental Control and Monitoring, Ministry of Environment and Sustainable Development, San Martin 451, Autonomous City of Buenos Aires C1004AAI, Argentina
| | - Natsuko Kajiwara
- Material Cycles Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Jana Klánová
- RECETOX Centre of Masaryk University, the Stockholm Convention Regional Centre for Capacity Building and the Transfer of Technology in Central and Eastern Europe, 611 37 Brno, Czech Republic
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | - Derek C G Muir
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario L7S 1A1, Canada
| | - Noriyuki Suzuki
- Planning Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Victorine Pinas
- Institute for Graduate Studies and Research, Anton de Kom University of Suriname, P.O.B: 9212, Paramaribo, Suriname
| | - Timo Seppälä
- Finnish Environment Institute, Contaminants Unit, 00790, Helsinki, Finland
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd Germany
| | - Bo Yuan
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
- Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|