1
|
Ding Z, Wang R, Pang G, Dong L, Lei T, Ren S. Exploring the Connection Between the Structure and Activity of Lignin-Derived Porous Carbon Across Various Electrolytic Environments. Molecules 2025; 30:494. [PMID: 39942598 PMCID: PMC11821164 DOI: 10.3390/molecules30030494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Porous carbon holds great potential for application in supercapacitors due to its rich pore structure and high specific surface area. In this research, lignin served as the starting material for the production of lignin-derived carbon materials via a carbonization-activation process. The resulting porous carbon materials underwent rigorous characterization using SEM, BET, Raman, XRD, and XPS to uncover their morphological and structural intricacies. Notably, the optimal product, achieved with a mass ratio of lignin to KOH and KCl at 1:2:0.5 and activation temperature at 700 °C, emerges as an excellent electrode material for high-performance supercapacitors. This superior carbon material boasts a remarkable specific surface area of 2730 m2 g-1, demonstrating an electrochemical capacitance up to 406 F/g at 1 A/g, its high performance surpasses many existing carbon materials. To further investigate the potential application of ELC in electric double-layer capacitors, the electrochemical properties of ELC in 6 M KOH, 1 M Na2SO4, and 1 M Et4NBF4/PC electrolytes were investigated, the reasons for the differences in ELC's electrochemical performance in different electrolytes are discussed and analyzed in detail, and the advantages and disadvantages of ELC's performance in capacitor devices of different systems are compared and analyzed. This was performed to compare the electrochemical performance of ELC and commercial YP-50F capacitor carbon in an electric double-layer capacitor, and to investigate the potential application of ELC.
Collapse
Affiliation(s)
- Zhihao Ding
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Z.D.)
- Nation-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Rui Wang
- Nation-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guoli Pang
- Nation-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Lili Dong
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Z.D.)
- Nation-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Tingzhou Lei
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Z.D.)
- Nation-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| | - Suxia Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China; (Z.D.)
- Nation-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Kishore SC, Perumal S, Atchudan R, Edison TNJI, Sundramoorthy AK, Manoj D, Alagan M, Kumar RS, Almansour AI, Sangaraju S, Lee YR. Sustainable synthesis of spongy-like porous carbon for supercapacitive energy storage systems towards pollution control. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58818-58829. [PMID: 38684614 DOI: 10.1007/s11356-024-33437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
In this study, the fruit of Terminalia chebula, commonly known as chebulic myrobalan, is used as the precursor for carbon for its application in supercapacitors. The Terminalia chebula biomass-derived sponge-like porous carbon (TC-SPC) is synthesized using a facile and economical method of pyrolysis. TC-SPC thus obtained is subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman spectroscopy, ATR-FTIR, and nitrogen adsorption-desorption analyses for their structural and chemical composition. The examination revealed that TC-SPC has a crystalline nature and a mesoporous and microporous structure accompanied by a disordered carbon framework that is doped with heteroatoms such as nitrogen and sulfur. Electrochemical studies are performed on TC-SPC using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. TC-SPC contributed a maximum specific capacitance of 145 F g-1 obtained at 1 A g-1. The cyclic stability of TC-SPC is significant with 10,000 cycles, maintaining the capacitance retention value of 96%. The results demonstrated that by turning the fruit of Terminalia chebula into an opulent product, a supercapacitor, TC-SPC generated from biomass has proven to be a potential candidate for energy storage application.
Collapse
Affiliation(s)
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143747, Republic of Korea
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | | | - Ashok Kumar Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| | - Muthulakshmi Alagan
- Department of Research and Innovation, Lincoln University College, 47301, Petaling Jaya, Malaysia
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
3
|
Cao Q, Zhu H, Xu J, Zhang M, Xiao T, Xu S, Du B. Research progress in the preparation of lignin-based carbon nanofibers for supercapacitors using electrospinning technology: A review. Int J Biol Macromol 2024; 273:133037. [PMID: 38897523 DOI: 10.1016/j.ijbiomac.2024.133037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
With the development of renewable energy technologies, the demand for efficient energy storage systems is growing. Supercapacitors have attracted considerable attention as efficient electrical energy storage devices because of their excellent power density, fast charging and discharging capabilities, and long cycle life. Carbon nanofibers are widely used as electrode materials in supercapacitors because of their excellent mechanical properties, electrical conductivity, and light weight. Although environmental factors are increasingly driving the application of circular economy concepts in materials science, lignin is an underutilized but promising environmentally benign electrode material for supercapacitors. Lignin-based carbon nanofibers are ideal for preparing high-performance supercapacitor electrode materials owing to their unique chemical stability, abundance, and environmental friendliness. Electrospinning is a well-known technique for producing large quantities of uniform lignin-based nanofibers, and is the simplest method for the large-scale production of lignin-based carbon nanofibers with specific diameters. This paper reviews the latest research progress in the preparation of lignin-based carbon nanofibers using the electrospinning technology, discusses the prospects of their application in supercapacitors, and analyzes the current challenges and future development directions. This is expected to have an enlightening effect on subsequent research.
Collapse
Affiliation(s)
- Qiping Cao
- Yangzhou Polytechnic College, Yangzhou, Jiangsu 225009, China
| | - Hongwei Zhu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jingyu Xu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| | - Mingyu Zhang
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China
| | - Tianyuan Xiao
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China.
| | - Shuangping Xu
- College of Light Industry and Textile, College of Materials Science and Engineering, Heilongjiang Province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, Heilongjiang 161000, China.
| | - Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
4
|
Wang X, Song X, Gao J, Zhang Y, Pan K, Wang H, Guo L, Li P, Huang C, Yang S. Effect of synthesis temperature on the structural morphology of a metal-organic framework and the capacitor performance of derived cobalt-nickel layered double hydroxides. J Colloid Interface Sci 2024; 664:946-959. [PMID: 38508030 DOI: 10.1016/j.jcis.2024.03.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Three-dimensional interconnected nickel-cobalt layered double hydroxides (NiCo-LDHs) were prepared on nickel foam by ion exchange using a cobalt-based metal-organic framework (Co-MOF) as a template at different temperatures. The effects of the Co-MOF preparation temperature on the growth, mass, morphology, and electrochemical properties of the Co-MOF and derived NiCo-LDH samples were studied. The synthesis temperature from 30 to 50 °C gradually increased the mass of the active material and the thickness of the Co-MOF sheets grown on the nickel foam. The higher the temperature is, the larger the proportion of Co3+. β-Cobalt hydroxide (β-Co(OH)2) sheets were generated above 60 °C. The morphology and mass loading pattern of the derived flocculent layer clusters of NiCo-LDH were inherited from metal-organic frameworks (MOFs). The areal capacitance of NiCo-LDH shows an inverted U-shaped curve trend with increasing temperature. The electrode material synthesized at 50 °C had a tremendous specific capacitance of 7631 mF·cm-2 at a current density of 2 mA·cm-2. The asymmetric supercapacitor assembled with the sample and active carbon (AC) achieved an energy density of 55.0 Wh·kg-1 at a power density of 800.0 W·kg-1, demonstrating the great potential of the NiCo-LDH material for energy storage. This work presents a new strategy for designing and fabricating advanced green supercapacitor materials with large power and energy densities.
Collapse
Affiliation(s)
- Xiaoliang Wang
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China.
| | - Xiaoqi Song
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Jingsong Gao
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Yibo Zhang
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Kui Pan
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Hongwei Wang
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Lige Guo
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Panpan Li
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China
| | - Chuanhui Huang
- School of Mechanical and Electrical Engineering, Xuzhou University of Technology, Xuzhou 221111, China
| | - Shaobin Yang
- School of Materials Science and Engineering, Geology and Mineral Engineering Special Materials Professional Technology Innovation Center of Liaoning, Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Liaoning Technical University, Fuxin 123000, China.
| |
Collapse
|
5
|
Pattanshetti A, Koli A, Dhabbe R, Yu XY, Motkuri RK, Chavan VD, Kim DK, Sabale S. Polymer Waste Valorization into Advanced Carbon Nanomaterials for Potential Energy and Environment Applications. Macromol Rapid Commun 2024; 45:e2300647. [PMID: 38243849 DOI: 10.1002/marc.202300647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/23/2023] [Indexed: 01/22/2024]
Abstract
The rise in universal population and accompanying demands have directed toward an exponential surge in the generation of polymeric waste. The estimate predicts that world-wide plastic production will rise to ≈590 million metric tons by 2050, whereas 5000 million more tires will be routinely abandoned by 2030. Handling this waste and its detrimental consequences on the Earth's ecosystem and human health presents a significant challenge. Converting the wastes into carbon-based functional materials viz. activated carbon, graphene, and nanotubes is considered the most scientific and adaptable method. Herein, this world provides an overview of the various sources of polymeric wastes, modes of build-up, impact on the environment, and management approaches. Update on advances and novel modifications made in methodologies for converting diverse types of polymeric wastes into carbon nanomaterials over the last 5 years are given. A remarkable focus is made to comprehend the applications of polymeric waste-derived carbon nanomaterials (PWDCNMs) in the CO2 capture, removal of heavy metal ions, supercapacitor-based energy storage and water splitting with an emphasis on the correlation between PWDCNMs' properties and their performances. This review offers insights into emerging developments in the upcycling of polymeric wastes and their applications in environment and energy.
Collapse
Affiliation(s)
- Akshata Pattanshetti
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Amruta Koli
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Rohant Dhabbe
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Radha Kishan Motkuri
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, 99354, USA
| | - Vijay D Chavan
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Deok-Kee Kim
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, Seoul, 05006, South Korea
| | - Sandip Sabale
- Department of Chemistry, Jaysingpur College Jaysingpur (Shivaji University Kolhapur), Jaysingpur, 416101, India
| |
Collapse
|
6
|
Shrestha D. Structural and electrochemical evaluation of renewable carbons and their composites on different carbonization temperatures for supercapacitor applications. Heliyon 2024; 10:e25628. [PMID: 38370182 PMCID: PMC10869866 DOI: 10.1016/j.heliyon.2024.e25628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
This study explored the impact of carbonization temperature (400-700 °C) on the structural and electrochemical performances of H3PO4-activated carbons (ACs) for supercapacitor applications. Advanced characterization techniques, including XRD, Raman, SEM, TEM, FTIR, and BET analysis revealed the structural properties of the ACs. Electrochemical performance was evaluated through cyclic voltammetry (CV), galvanostatic charge discharge (GCD), and electrochemical impedance spectroscopy (EIS) tests. The AC carbonized at 400 °C (AC-400 °C) exhibited outstanding performance with a surface area of 1432.4 m2 g-1 and its electrode delivered a specific capacitance of 183.4 Fg-1 in 6 M KOH electrolyte. It demonstrated remarkable cycle stability (94.3 % retention) at 3 Ag-1 and an energy density (ED) of 4.2 Whkg-1 at a power density (PD) of 137 Wkg-1. Combining AC-400 °C with MnO2 in a 1:1 ratio (AC:MnO2-400 °C) further boosted the electrochemical performance. This composite electrode delivered a significantly higher specific capacitance of 491.3 Fg-1, outstanding cyclic stability of 99.6 % retention at 3 Ag-1, and an exceptional ED of 25.3 Whkg-1 at a PD of 187.3 Wkg-1, surpassing that of AC-400 °C by more than six-fold. This remarkable enhancement highlighted the immense potential of AC-MnO2 composites for high-performance supercapacitors. This study identified 400 °C as the optimal carbonization temperature for maximizing the electrochemical performance of AC electrodes. More importantly, it demonstrated the significant potential of AC:MnO2-400 °C composites for applications in high-performance supercapacitors.
Collapse
Affiliation(s)
- Dibyashree Shrestha
- Department of Chemistry, Patan Multiple Campus, Institute of Science and Technology, Tribhuvan University, Nepal
| |
Collapse
|
7
|
Yang H, He S, Feng Q, Liu Z, Xia S, Zhou Q, Wu Z, Zhang Y. Lotus (Nelumbo nucifera): a multidisciplinary review of its cultural, ecological, and nutraceutical significance. BIORESOUR BIOPROCESS 2024; 11:18. [PMID: 38647851 PMCID: PMC10991372 DOI: 10.1186/s40643-024-00734-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 04/25/2024] Open
Abstract
This comprehensive review systematically examines the multifarious aspects of Nelumbo nucifera, elucidating its ecological, nutritional, medicinal, and biomimetic significance. Renowned both culturally and scientifically, Nelumbo nucifera manifests remarkable adaptability, characterized by its extensive distribution across varied climatic regions, underpinned by its robust rhizome system and prolific reproductive strategies. Ecologically, this species plays a crucial role in aquatic ecosystems, primarily through biofiltration, thereby enhancing habitat biodiversity. The rhizomes and seeds of Nelumbo nucifera are nutritionally significant, being rich sources of dietary fiber, essential vitamins, and minerals, and have found extensive culinary applications. From a medicinal perspective, diverse constituents of Nelumbo nucifera exhibit therapeutic potential, including anti-inflammatory, antioxidant, and anti-cancer properties. Recent advancements in preservation technology and culinary innovation have further underscored its role in the food industry, highlighting its nutritional versatility. In biomimetics, the unique "lotus effect" is leveraged for the development of self-cleaning materials. Additionally, the transformation of Nelumbo nucifera into biochar is being explored for its potential in sustainable environmental practices. This review emphasizes the critical need for targeted conservation strategies to protect Nelumbo nucifera against the threats posed by climate change and habitat loss, advocating for its sustainable utilization as a species of significant value.
Collapse
Affiliation(s)
- Hang Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Simai He
- School of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Qi Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zisen Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shibin Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qiaohong Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Huang C, Su Y, Gong H, Jiang Y, Chen B, Xie Z, Zhou J, Li Y. Biomass-derived multifunctional nanoscale carbon fibers toward fire warning sensors, supercapacitors and moist-electric generators. Int J Biol Macromol 2024; 256:127878. [PMID: 37949269 DOI: 10.1016/j.ijbiomac.2023.127878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Nowadays, great effort has been devoted to designing biomass-derived nanoscale carbon fibers with controllable fibrous morphology, high conductivity, big specific surface area and multifunctional characteristics. Herein, a green and renewable strategy is performed to prepare the biomass-based nanoscale carbon fibers for fire warning sensor, supercapacitor and moist-electric generator. This preparation strategy thoroughly gets over the dependence of petroleum-based polymeride, and effectually improves the energy storage capacity, sensing sensitivity, humidity power generation efficiency of the obtaining biomass-based carbon nanofibers. Without the introduction of any active components or pseudocapacitive materials, the specific capacitance and energy density for biomass-based nanoscale carbon fibers achieve 143.58 F/g and 19.9 Wh/kg, severally. The biomass-based fire sensor displays excellent fire resistance, stability, and flame sensitivity with a response time of 2 s. Furthermore, the biomass-based moist-electric generator shows high power generation efficiency. The output voltage and current of five series connected and parallel-connected biomass-based moist-electric generators reaches 4.30 V and 43 μA, respectively. Notably, as the number of biomass-based moist-electric generators in series or parallel increases, the overall output voltage and current of the device system have a linear relationship. This work proposes a self-powered fire prediction system based on nanoscale carbon fibers that integrates sensing, power generation, and energy storage functions.
Collapse
Affiliation(s)
- Chen Huang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yingying Su
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Hui Gong
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yuewei Jiang
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Bo Chen
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Zhanghong Xie
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Jinghui Zhou
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China
| | - Yao Li
- Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province 116034, PR China.
| |
Collapse
|
9
|
Komal Zafar H, Zainab S, Masood M, Sohail M, Shoaib Ahmad Shah S, Karim MR, O'Mullane A, Ostrikov KK, Will G, Wahab MA. Recent Advances on Nitrogen-Doped Porous Carbons Towards Electrochemical Supercapacitor Applications. CHEM REC 2024; 24:e202300161. [PMID: 37582638 DOI: 10.1002/tcr.202300161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g-1 , signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g-1 , highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.
Collapse
Affiliation(s)
- Hafiza Komal Zafar
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Sara Zainab
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Maria Masood
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, H-12, Islamabad, 44000, Pakistan
| | - Mohammad R Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), College of Engineering, King Saud University, P. O. Box 800, Riyadh, 11421, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anthony O'Mullane
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Geoffrey Will
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Md A Wahab
- Energy and Process Engineering Laboratory, School of Mechanical, Medical and Process Engineering, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
10
|
Shrestha D. Applications of functionalized porous carbon from bio-waste of Alnus nepalensis in energy storage devices and industrial wastewater treatment. Heliyon 2023; 9:e21804. [PMID: 38027968 PMCID: PMC10651512 DOI: 10.1016/j.heliyon.2023.e21804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
This research investigates the utility of functionalized porous carbon (FPC), derived from the waste wood of Alnus nepalensis. It demonstrates FPC's dual suitability as a versatile component for energy storage systems, specifically supercapacitors, and its impressive capacity to adsorb malachite green (MG) dye from industrial wastewater. The synthesis of FPC occurred through a controlled two-step process: initial activation of wood powder with H3PO4, followed by carbonization at 400 °C for 3 h in a tube furnace. To comprehensively evaluate the material's attributes, multiple analytical methods were employed: Brunauer-Emmet-Teller (BET) analysis, Transmission Electron Microscopy (TEM) imaging, X-ray Diffraction (XRD) analysis, Raman spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy. The prepared FPC exhibited desirable characteristics essential for achieving electrochemical performances and adsorption of dyes as well. TEM revealed voids within the material's structure, while BET confirmed high porosity with an active surface area of 1498 m2/g, a pore volume of 1.2 cm³/g, and a pore size of 4.6 nm featuring a harmonious presence of both micropores and mesopores. XRD and Raman spectroscopy confirmed FPC's amorphous state, and FTIR indicated oxygenated functional groups. As a supercapacitor electrode material, FPC demonstrated a specific capacitance of 156.3 F/g at 1A/g current density, an energy density of 5.1 Wh/Kg, a power density of 183.6 W/kg, and enduring cycling stability, retaining 98.4 % performance after 1000 charge-discharge cycles at 3A/g current density. In terms of dye adsorption, FPC exhibited remarkable efficiency. At a pH of 10.5 for MG dye, 0.030g of FPC displayed peak adsorption capacity, removing 95.6 % of 20 ppm MG within 2 min and an even more impressive 99.6 % within 6 min. These findings confirm FPC's potential from Alnus nepalensis as an outstanding supercapacitor electrode material and a rapid, efficient adsorbent for MG removal from industrial wastewater. This research suggests promising applications in energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dibyashree Shrestha
- Department of Chemistry, Patan Multiple Campus, Tribhuvan University, Lalitpur, 44613, Nepal
| |
Collapse
|
11
|
Atchudan R, Perumal S, Sundramoorthy AK, Manoj D, Kumar RS, Almansour AI, Lee YR. Facile Synthesis of Functionalized Porous Carbon by Direct Pyrolysis of Anacardium occidentale Nut-Skin Waste and Its Utilization towards Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101654. [PMID: 37242070 DOI: 10.3390/nano13101654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Preparing electrode materials plays an essential role in the fabrication of high-performance supercapacitors. In general, heteroatom doping in carbon-based electrode materials enhances the electrochemical properties. Herein, nitrogen, oxygen, and sulfur co-doped porous carbon (PC) materials were prepared by direct pyrolysis of Anacardium occidentale (AO) nut-skin waste for high-performance supercapacitor applications. The as-prepared AO-PC material possessed interconnected micropore/mesopore structures and exhibited a high specific surface area of 615 m2 g-1. The Raman spectrum revealed a moderate degree of graphitization of AO-PC materials. These superior properties of the as-prepared AO-PC material help to deliver high specific capacitance. After fabricating the working electrode, the electrochemical performances including cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy measurements were conducted in 1 M H2SO4 aqueous solution using a three-electrode configuration for supercapacitor applications. The AO-PC material delivered a high specific capacitance of 193 F g-1 at a current density of 0.5 A g-1. The AO-PC material demonstrated <97% capacitance retention even after 10,000 cycles of charge-discharge at the current density of 5 A g-1. All the above outcomes confirmed that the as-prepared AO-PC from AO nut-skin waste via simple pyrolysis is an ideal electrode material for fabricating high-performance supercapacitors. Moreover, this work provides a cost-effective and environmentally friendly strategy for adding value to biomass waste by a simple pyrolysis route.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | - Ashok K Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Devaraj Manoj
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
12
|
Shaheen I, Hussain I, Zahra T, Memon R, Alothman AA, Ouladsmane M, Qureshi A, Niazi JH. Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor. CHEMOSPHERE 2023; 322:138149. [PMID: 36804630 DOI: 10.1016/j.chemosphere.2023.138149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/12/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Sustainable fabrication of flexible hybrid supercapacitor electrodes is extensively investigated during the current era to solve global energy problems. Herein, we used a cost-effective and efficient electrophoretic deposition (EPD) approach to fabricate a hybrid supercapacitor electrode. ZnO/CuO and ZnO/CuO/rGO heterostructure were prepared by sol-gel synthesis route and were electrophoretically deposited on indium tin oxide (ITO) substrate as a thin uniform layer using 1 V for 20 min at 50 mV/s. ZnO/CuO and ZnO/CuO/rGO heterostructure coated ITOs were then employed as the working electrode in a three-electrode setup for supercapacitor measurements. The fabricated electrodes have been investigated by Galvanostatic charge-discharge (GCD), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) to study their charge storage properties. ZnO/CuO revealed a specific capacitance of 1945 F g-1 at 2 mV/s and 999 F g-1 at 5 A g-1. However, an increased specific capacitance of 2305 F g-1 was measured for ZnO/CuO/rGO heterostructure at 2 mV/s and 1235 F g-1 at 5 A g-1. The lower internal resistance was observed for ZnO/CuO/rGO heterostructure, indicating good conductivity of the electrode material. Thus, the overall results of the current study suggest that EPD-assisted ZnO/CuO/rGO heterostructure hybrid electrode possess a substantial potential for energy storage as a supercapacitor.
Collapse
Affiliation(s)
- Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong; School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Taghazal Zahra
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed Ouladsmane
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anjum Qureshi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| | - Javed H Niazi
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey.
| |
Collapse
|
13
|
Atchudan R, Perumal S, Edison TNJI, Sundramoorthy AK, Sangaraju S, Babu RS, Lee YR. Sustainable Synthesis of Bright Fluorescent Nitrogen-Doped Carbon Dots from Terminalia chebula for In Vitro Imaging. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228085. [PMID: 36432186 PMCID: PMC9693165 DOI: 10.3390/molecules27228085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
In this study, sustainable, low-cost, and environmentally friendly biomass (Terminalia chebula) was employed as a precursor for the formation of nitrogen-doped carbon dots (N-CDs). The hydrothermally assisted Terminalia chebula fruit-derived N-CDs (TC-CDs) emitted different bright fluorescent colors under various excitation wavelengths. The prepared TC-CDs showed a spherical morphology with a narrow size distribution and excellent water dispensability due to their abundant functionalities, such as oxygen- and nitrogen-bearing molecules on the surfaces of the TC-CDs. Additionally, these TC-CDs exhibited high photostability, good biocompatibility, very low toxicity, and excellent cell permeability against HCT-116 human colon carcinoma cells. The cell viability of HCT-116 human colon carcinoma cells in the presence of TC-CDs aqueous solution was calculated by MTT assay, and cell viability was higher than 95%, even at a higher concentration of 200 μg mL-1 after 24 h incubation time. Finally, the uptake of TC-CDs by HCT-116 human colon carcinoma cells displayed distinguished blue, green, and red colors during in vitro imaging when excited by three filters with different wavelengths under a laser scanning confocal microscope. Thus, TC-CDs could be used as a potential candidate for various biomedical applications. Moreover, the conversion of low-cost/waste natural biomass into products of value promotes the sustainable development of the economy and human society.
Collapse
Affiliation(s)
- Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (R.A.); (Y.R.L.)
| | - Suguna Perumal
- Department of Chemistry, Sejong University, Seoul 143747, Republic of Korea
| | | | - Ashok K. Sundramoorthy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai 600077, Tamil Nadu, India
| | - Sambasivam Sangaraju
- National Water and Energy Center, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Rajendran Suresh Babu
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica, Celso Suckow da Fonseca (CEFET/RJ), Av. Maracanã 229, Rio de Janeiro 20271-110, Brazil
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Correspondence: (R.A.); (Y.R.L.)
| |
Collapse
|
14
|
Green-Routed Carbon Dot-Adorned Silver Nanoparticles for the Catalytic Degradation of Organic Dyes. Catalysts 2022. [DOI: 10.3390/catal12090937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, a simple, cost-effective, and in-situ environmentally friendly approach was adopted to synthesize carbon dot-adorned silver nanoparticles (CDs@AgNPs) from yellow myrobalan (Terminalia chebula) fruit using a hydrothermal treatment without any additional reducing and or stabilizing agents. The as-synthesized CDs@AgNP composite was systematically characterized using multiple analytical techniques: FESEM, TEM, XRD, Raman, ATR-FTIR, XPS, and UV-vis spectroscopy. All the results of the characterization techniques strongly support the idea that the CDs were successfully made to adorn the AgNPs. This effectively synthesized CDs@AgNP composite was applied as a catalyst for the degradation of organic dyes, including methylene blue (MB) and methyl orange (MO). The degradation results revealed that CDs@AgNPs exhibit a superior catalytic activity in the degradation of MB and MO in the presence of NaBH4 (SB) under ambient temperatures. In total, 99.5 and 99.0% rates of degradation of MB and MO were observed using CDs@AgNP composite with SB, respectively. A plausible mechanism for the reductive degradation of MB and MO is discussed in detail. Moreover, the CDs@AgNP composite has great potential for wastewater treatment applications.
Collapse
|
15
|
Vinodh R, Babu RS, Sambasivam S, Gopi CVVM, Alzahmi S, Kim HJ, de Barros ALF, Obaidat IM. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. NANOMATERIALS 2022; 12:nano12091511. [PMID: 35564227 PMCID: PMC9105330 DOI: 10.3390/nano12091511] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/29/2022]
Abstract
Supercapacitors (SCs), also known as ultracapacitors, should be one of the most promising contenders for meeting the needs of human viable growth owing to their advantages: for example, excellent capacitance and rate efficiency, extended durability, and cheap materials price. Supercapacitor research on electrode materials is significant because it plays a vital part in the performance of SCs. Polyaniline (PANI) is an exceptional candidate for energy-storage applications owing to its tunable structure, multiple oxidation/reduction reactions, cheap price, environmental stability, and ease of handling. With their exceptional morphology, suitable functional linkers, metal sites, and high specific surface area, metal–organic frameworks (MOFs) are outstanding materials for electrodes fabrication in electrochemical energy storage systems. The combination of PANI and MOF (PANI/MOF composites) as electrode materials demonstrates additional benefits, which are worthy of exploration. The positive impacts of the two various electrode materials can improve the resultant electrochemical performances. Recently, these kinds of conducting polymers with MOFs composites are predicted to become the next-generation electrode materials for the development of efficient and well-organized SCs. The recent achievements in the use of PANI/MOFs-based electrode materials for supercapacitor applications are critically reviewed in this paper. Furthermore, we discuss the existing issues with PANI/MOF composites and their analogues in the field of supercapacitor electrodes in addition to potential future improvements.
Collapse
Affiliation(s)
- Rajangam Vinodh
- Department of Electronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Rajendran Suresh Babu
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso suckow da Fonesca, Av. Maracanã Campus 229, Rio de Janeiro 20271-110, Brazil; (R.S.B.); (A.L.F.d.B.)
| | - Sangaraju Sambasivam
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Chandu V. V. Muralee Gopi
- Department of Electrical Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Salem Alzahmi
- Department of Chemical & Petroleum Engineering, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.A.); (H.-J.K.); (I.M.O.)
| | - Hee-Je Kim
- Department of Electrical and Computer Engineering, Pusan National University, Busan 46241, Korea
- Correspondence: (S.A.); (H.-J.K.); (I.M.O.)
| | - Ana Lucia Ferreira de Barros
- Laboratory of Experimental and Applied Physics, Centro Federal de Educação Tecnológica Celso suckow da Fonesca, Av. Maracanã Campus 229, Rio de Janeiro 20271-110, Brazil; (R.S.B.); (A.L.F.d.B.)
| | - Ihab M. Obaidat
- Department of Physics, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (S.A.); (H.-J.K.); (I.M.O.)
| |
Collapse
|
16
|
Sustainable Synthesis of N/S-Doped Porous Carbon from Waste-Biomass as Electroactive Material for Energy Harvesting. Catalysts 2022. [DOI: 10.3390/catal12040436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It is absolutely essential to convert biomass waste into usable energy in a rational manner. This investigation proposes the economical synthesis of heteroatom (N and S)-doped carbon (ATC) from Aesculus turbinata seed as a natural precursor by carbonization at 800 °C. The final product obtained was characterized using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy, high-resolution transmittance electron microscopy, X-ray diffraction, Raman spectroscopy, nitrogen adsorption-desorption isotherms, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy in order to investigate its structural property and chemical composition. The porous carbon achieved by this method contained oxygen, nitrogen, and sulfur from Aesculus turbinata seed and had pores rich in micropores and mesopores. Crystalline ATC obtained with a high surface area (560 m2 g−1) and pore size (3.8 nm) were exploited as electrode material for the supercapacitor. The electrochemical studies revealed a specific capacitance of 142 F g−1 at a current density of 0.5 A g−1 using 1 M H2SO4 as an electrolyte. ATC had exceptional cycling stability, and the capacitance retention was 95% even after 10,000 charge-discharge cycles. The findings show that ATC derived from biomass proved to be a potential energy storage material by converting waste biomass into a high-value-added item, a supercapacitor.
Collapse
|
17
|
Fabrication of High-Performance Asymmetric Supercapacitor Consists of Nickel Oxide and Activated Carbon (NiO//AC). Catalysts 2022. [DOI: 10.3390/catal12040375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Exploring faster, safer, and more efficient energy storage devices will motivate scientists to develop novel energy storage products with high performance. Herein, we report porous NiO nanoparticles have been prepared by a simple hydrothermal method with CTAB and laboratory tissue paper as a template followed by calcination at three different temperatures (300, 500, and 700 °C). The electrochemical characteristics of the prepared materials were examined in a three-electrode cell configuration using aqueous potassium hydroxide (2.0 M KOH) electrolyte. The NiO-300 electrode displayed the supreme capacitance of 568.7 F g−1 at 0.5 A g−1. The fascinating NiO morphology demonstrates a crucial part in offering simple ion transport, shortening electron, and ion passage channels and rich energetic spots for electrochemical reactions. Finally, the asymmetric supercapacitor (ASC), NiO//AC was constructed using positive and negative electrode materials of NiO-300 and activated carbon (AC), respectively. The assembled ASC displayed excellent supercapacitive performance with a high specific energy (52.4 Wh kg−1), specific power (800 W kg−1), and remarkable cycle life. After quick charging (25 s), such supercapacitors in the series will illuminate the light emitting diode for an extended time, suggesting improvements in energy storage, scalable integrated applications, and ensuring business efficacy. This work will lead to a new generation of high-performance ASCs to portable electronic displays and electric automobiles.
Collapse
|
18
|
Li G, Zhang W, Liu R, Liu W, Li J. Dual-ligand strategies to assemble S, N-containing metal organic framework nanoflowers for hybrid supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ni-MOF [Ni(Tdc)(Bpy)]n was successfully prepared, and the Ni-MOF//AC hybrid supercapacitor exhibited superior energy density and cycling stability.
Collapse
Affiliation(s)
- Guojing Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Wenjun Zhang
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ruxin Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Wenjing Liu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jihui Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
19
|
Bai J, Mao S, Guo F, Shu R, Liu S, Dong K, Yu Y, Qian L. Rapeseed meal-derived N,S self-codoped porous carbon materials for supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N,S self-doped porous carbon with high specific surface area and gravimetric specific capacitance from rapeseed meal was successfully synthesized.
Collapse
Affiliation(s)
- Jiaming Bai
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Songbo Mao
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Feiqiang Guo
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Rui Shu
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Sha Liu
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Kaiming Dong
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Youjin Yu
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| | - Lin Qian
- School of Electrical and Power Engineering, China University of Mining and Technology, 221116 Xuzhou, China
| |
Collapse
|
20
|
Goyal M, Verma S, Malik J, Giri P, Kumar R, Gaur A. Electrochemical performance of transition metal based CoB 2O 4 (B = Co and Fe) oxides as an electrode material for energy storage devices. NEW J CHEM 2022. [DOI: 10.1039/d2nj00392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A high capacitance of 1039 F g−1 for Co3O4 as compared to 527 F g−1 for CoFe2O4 along with a capacity retention of 86% for up to GCD 5000 cycles, confirm it's potential to be used as an electrode for practical energy storage devices.
Collapse
Affiliation(s)
- Megha Goyal
- Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sahil Verma
- School of Materials science and Nanotechnology, National Institute of Technology, Kurukshetra, 136119, India
| | - Jaideep Malik
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Prakash Giri
- Department of Automobile and Mechanical Engineering, Tribhuvan University, Institute of Engineering, Paschimanchal campus, Pokhara, 3370, Nepal
| | - Rajesh Kumar
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Anurag Gaur
- Department of Physics, National Institute of Technology Kurukshetra, Kurukshetra, 136119, India
- Department of Physics, J. C. Bose University of Science & Technology, YMCA, Faridabad, 121006, India
| |
Collapse
|