1
|
Andleeb S, Irfan M, Atta-Obeng E, Sukmawati D. Advances in waste-derived functional materials for PFAS remediation. Biodegradation 2025; 36:13. [PMID: 39832063 DOI: 10.1007/s10532-025-10109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluoride compounds, widely used in industries since the 1950s for their hydrophobic properties. PFAS contamination of soil and water poses significant environmental and public health risks due to their persistence, chemical stability, and resistance to degradation. The Chemical Abstracts Service catalogs approximately 4300 PFAS globally. Research in various regions such as North America, Asia, Europe, and remote polar zones has revealed the accumulation of perfluorooctane sulfonate (PFOS) in the tissues of various animal species, with concentrations reaching up to 1900 ng/g in aquatic species like dolphins and whales. Researchers have employed various remediation techniques such as solvent extraction, ion exchange, precipitation, adsorption, and membrane filtration, each of which has its drawbacks. Adsorption, particularly using waste-derived functional materials like biochar, is emerging as a promising method for PFAS remediation due to its cost-effectiveness and sustainability. For example, waste timber-derived biochar exhibits adsorption efficiency comparable to commercial activated carbon. This review highlights advancements in using agricultural, industrial, and biological waste-derived materials for sustainable PFAS remediation. We discuss innovative modification techniques like hydrothermal synthesis, pyrolysis, calcination, co-precipitation, the sol-gel method, and ball milling. The study also examines adsorption mechanisms, factors affecting adsorption efficiency, and the technological challenges in scaling up waste-derived material use. It aims to explore developments, challenges, and future directions for using these materials for efficient PFAS remediation and contributing to sustainable environmental cleanup solutions.
Collapse
Affiliation(s)
- Saba Andleeb
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Emmanuel Atta-Obeng
- Department of Natural Science, Coppin State University, Baltimore, MD, 21216, USA.
| | - Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| |
Collapse
|
2
|
Fini EH, Kazemi M, Poulikakos L, Lazorenko G, Akbarzade V, Lamanna A, Lammers P. Perspectives on innovative non-fertilizer applications of sewage sludge for mitigating environmental and health hazards. COMMUNICATIONS ENGINEERING 2024; 3:178. [PMID: 39604550 PMCID: PMC11603199 DOI: 10.1038/s44172-024-00298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/16/2024] [Indexed: 11/29/2024]
Abstract
As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks. These methods not only immobilize heavy metals and mitigate environmental hazards but also support carbon sequestration, contrasting with incineration and land application methods that release carbon into the atmosphere. The review also addresses emerging technologies like bio-adhesives, bio-binders for asphalt, hydrogels, bioplastics, and corrosion inhibitors. It highlights the recovery of valuable materials from sewage sludge, including phosphorus, oils, metals, cellulose, and polyhydroxyalkanoates as well as enzyme production. By focusing on these non-fertilizer applications, this review presents a compelling case for re-envisioning wastewater treatment plants as sources of valuable feedstock and carbon sequestration, supporting global efforts to manage waste effectively and enhance sustainability.
Collapse
Affiliation(s)
- Elham H Fini
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA.
| | | | - Lily Poulikakos
- EMPA Materials Science and Technology, Ueberlandstrasse, 1298600, Dübendorf, Switzerland
| | - Georgy Lazorenko
- Novosibirsk State University, Pirogov Street, 2, Novosibirsk, 630090, Russia
| | - Vajiheh Akbarzade
- University of Doha for Science and Technology, 24449 Arab League St, Doha, Qatar
| | - Anthony Lamanna
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| | - Peter Lammers
- Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA
| |
Collapse
|
3
|
Quang HHP, Dinh NT, Truong QM, Nguyen PKT, Nguyen VH. Unlocking the potential of environmentally friendly adsorbent derived from industrial wastes: A review. CHEMOSPHERE 2024; 367:143662. [PMID: 39489305 DOI: 10.1016/j.chemosphere.2024.143662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
With increasing urbanization and industrialization, growing amounts of industrial waste, such as red mud (RM), fly ash (FA), blast furnace slag (BFS), steel slag (SS), and sludge, are being produced, exposing substantial threats to the environment and human health. Given that numerous researchers associate with conventional adsorbents, developing and utilizing industrial wastes derived from adsorption technology still has received limited attention. Utilizing this waste contributes to developing alternative materials with superior performance and significantly reduces the volume of solid waste. The excellent physical and chemical characteristics of these wastes are also investigated in this paper. This review attempts to demonstrate a comprehensive overview of the application of industrial waste-based adsorbent in the adsorption process for removing organic pollutants, dyes, metallic ions, non-metallic ions, and radioactive substances. In addition, industrial waste-based adsorbents are among the most promising and applicable techniques for pollutant removal, offering remarkable adsorption efficiency, rich surface chemistries, reasonable cost, simple operation, and low energy consumption. This review summarizes state-of-the-art advancements in engineered adsorbents (including physical and chemical modifications). It provides a holistic view regarding a comprehensive understanding of the mechanism involved in adsorption for water remediation. The challenges and the prospects for future research in applying these adsorbents are also elucidated, contributing to sustainable waste management and environmental sustainability.
Collapse
Affiliation(s)
- Huy Hoang Phan Quang
- Faculty of Biology and Environment, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
| | - Nga Thi Dinh
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City, Viet Nam
| | - Quoc-Minh Truong
- Faculty of Natural Resources and Environment, School of Law and Development Management, Thu Dau Mot University, Binh Duong 75000, Viet Nam
| | - Phan Khanh Thinh Nguyen
- School of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Van-Huy Nguyen
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
4
|
Yasir HA, Zein SH, Holliday MC, Jabbar KJ, Ahmed U, Jalil AA. Comparison of activated carbon and low-cost adsorbents for removal of 2,4-dichlorophenol from wastewater using Aspen Adsorption and response surface methodology. ENVIRONMENTAL TECHNOLOGY 2024; 45:3029-3047. [PMID: 37057364 DOI: 10.1080/09593330.2023.2202829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
In this paper, the adsorption of the chlorinated organic compound, 2,4-dichlorophenol, using activated carbon (AC), bagasse fly ash (BFA) and rice husk fly ash (RHFA) in a packed bed column was simulated using Aspen Adsorption software. The purpose of this study was to demonstrate the effectiveness of simulation software for identifying alternative low-cost adsorbents and optimising the adsorption process. The effect of process parameters such as initial concentration, bed height and inlet feed flow rate were evaluated using breakthrough curves. It was shown that the longest breakthrough times were at a higher bed height of 3 m and lower flow rate of 2 m3/hr and concentration had no effect on breakthrough time. After optimisation using response surface methodology, the AC, BFA and RHFA had a breakthrough time of 534, 426 and 209 s, respectively. This shows the potential of BFA as a potential alternative for AC for the adsorption of 2,4-dichlorophenol and shows RHFA to be a relatively poor adsorbent in comparison. The economic evaluation illustrates that the overall cost of wastewater treatment with BFA and RHFA is lower than AC. The cost for the BFA and RHFA adsorbents is only a handling charge, but the cost for using AC adsorbent is £10,603/year. Therefore, the company can produce 17,520 m3/year of fresh water from the adsorbent and save £87,600/year. Therefore, it was concluded that BFA had a slightly weaker adsorption efficiency than AC but was more cost effective, allowing it to be more affordable and increasing its availability.
Collapse
Affiliation(s)
- Hassnain A Yasir
- School of Engineering, Faculty of Science and Engineering, University of Hull, Kingston Upon Hull, UK
| | - Sharif H Zein
- School of Engineering, Faculty of Science and Engineering, University of Hull, Kingston Upon Hull, UK
| | - Mathew C Holliday
- School of Engineering, Faculty of Science and Engineering, University of Hull, Kingston Upon Hull, UK
- Energy and Environment Institute, University of Hull, Kingston Upon Hull, UK
| | - Khalaf J Jabbar
- School of Engineering, Faculty of Science and Engineering, University of Hull, Kingston Upon Hull, UK
| | - Usama Ahmed
- Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - A A Jalil
- Center of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|
5
|
Behnami A, Pourakbar M, Ayyar ASR, Lee JW, Gagnon G, Zoroufchi Benis K. Treatment of aqueous per- and poly-fluoroalkyl substances: A review of biochar adsorbent preparation methods. CHEMOSPHERE 2024; 357:142088. [PMID: 38643842 DOI: 10.1016/j.chemosphere.2024.142088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity. Biochar can be considered a cost-effective and eco-friendly alternative to conventional adsorbents. With abundant feedstocks and favorable physicochemical properties, biochar shows significant potential to be applied as an adsorbent for removing contaminants from water. Despite its effectiveness in adsorbing different inorganic and organic contaminants from water environments, some factors restrict its effective application for PFAS adsorption. These factors are related to the biochar properties, and characteristics of PFAS, as well as water chemistry. Therefore, some modifications have been introduced to overcome these limitations and improve biochar's adsorption capacity. This review explores the preparation conditions, including the pyrolysis process, activation, and modification techniques applied to biochar to enhance its adsorption capacity for different types of PFAS. It addresses critical questions about the adsorption performance of biochar and its composites, mechanisms governing PFAS adsorption, challenges, and future perspectives in this field. The surge in research on biochar for PFAS adsorption indicates a growing interest, making this timely review a valuable resource for future research and an in-depth exploration of biochar's potential in PFAS remediation.
Collapse
Affiliation(s)
- Ali Behnami
- Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mojtaba Pourakbar
- Department of Environmental Health Engineering, Maragheh University of Medical Sciences, Maragheh, Iran; Health and Environment Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ji-Woong Lee
- Department of Chemistry, Nano-Science Centre, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk CO2 Research Center, Aarhus, Denmark
| | - Graham Gagnon
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, Halifax, NS, Canada
| | - Khaled Zoroufchi Benis
- Department of Process Engineering and Applied Science, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
6
|
Mushtaq S, Jamil F, Hussain M, Inayat A, Majeed K, Akhter P, Khurram MS, Shanableh A, Kim YM, Park YK. Utilizing sludge-based activated carbon for targeted leachate mitigation in wastewater treatment. ENVIRONMENTAL RESEARCH 2024; 249:118326. [PMID: 38325784 DOI: 10.1016/j.envres.2024.118326] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Activated carbon (AC) based adsorbents derived from waste sludge were utilized to remediate mixed contaminants in wastewater as an integrated waste-to-resource approach promoting a paradigm shift in management of refuse sludge and wastewater. This review specifically focuses on the remediation of constituents of landfill leachate by sludge-based activated carbon (SBAC). The adsorption effectiveness of SBAC for the exclusion of leachate characters including heavy metals, phenols, dyes, phosphates, and phosphorus were explored with regard to modifiers such as pH, temperature, properties of the adsorbent including functional groups, initial doses of absorbent and adsorbate, and duration of exposure to note the impact of each parameter on the efficiency of adsorption of the sludge adsorbent. Through the works of various researchers, it was noted that the properties of the adsorbent, pH and temperature impact the working of SBACs. The pH of the adsorbent by influencing the functional groups. Temperature was expected to have a paramount effect on the adsorption efficiency of the SBACs. The importance of the regeneration and recycling of the adsorbents as well as their leachability is highlighted. Sludge based activated carbon is recommended as a timely, resource-efficient, and sustainable approach for the remediation of wastewater.
Collapse
Affiliation(s)
- Sarah Mushtaq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Biomass and Bioenergy Research Group, Sustainable Energy and Power System Research Centre, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| | - Abrar Inayat
- Biomass and Bioenergy Research Group, Sustainable Energy and Power System Research Centre, Research Institute for Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Sustainable and Renewable Energy Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Khaliq Majeed
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Muhammad Shahzad Khurram
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
7
|
Hamid H, Nicomel NR, Mohamed BA, Abida O, Li LY. Adsorption and leaching of fluorotelomer compounds and perfluoroalkyl acids in aqueous media by activated carbon prepared from municipal biosolids. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120839. [PMID: 38599091 DOI: 10.1016/j.jenvman.2024.120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Perfluoroalkyl acids (PFAAs) are ubiquitous in nature and pose serious health risks to humans and animals. Limiting PFAA exposure requires novel technology for their effective removal from water. We investigated the efficacy of biosolid-based activated carbon (Bio-SBAC) in removing frequently detected PFAAs and their precursor fluorotelomer compounds at environmentally relevant concentrations (∼50 μg/L). Batch experiments were performed to investigate adsorption kinetics, isotherms, and leachability. Bio-SBAC achieved >95% removal of fluorotelomeric compounds, indicating that the need for PFAA removal from the environment could be minimised if the precursors were targeted. Kinetic data modelling suggested that chemisorption is the dominant PFAA adsorption mechanism. As evidenced by the isotherm modelling results, Freundlich adsorption intensity, n-1, values of <1 (0.707-0.938) indicate chemisorption. Bio-SBAC showed maximum capacities for the adsorption of perfluorooctanoic acid (1429 μg/g) and perfluorononanoic acid (1111 μg/g). Batch desorption tests with 100 mg/L humic acid and 10 g/L NaCl showed that Bio-SBAC effectively retained the adsorbed PFAA with little or no leaching, except perfluorobutanoic acid. Overall, this study revealed that Bio-SBAC is a value-added material with promising characteristics for PFAA adsorption and no leachability. Additionally, it can be incorporated into biofilters to remove PFAAs from stormwater, presenting a sustainable approach to minimise biosolid disposal and improve the quality of wastewater before discharge into receiving waters.
Collapse
Affiliation(s)
- Hanna Hamid
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Otman Abida
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Hedayati MS, Nicomel NR, Abida O, Li LY. Removal of perfluoroalkyl acids from aqueous media by surfactant-modified clinoptilolites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16915-16927. [PMID: 38329667 DOI: 10.1007/s11356-024-32194-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulating, and toxic compounds that have attracted global attention. It is challenging to reduce the residual concentrations of these compounds to safe discharge limits. In this study, batch experiments were performed to evaluate natural clinoptilolite and clinoptilolites modified (MC) with cetylpyridinium chloride (CPC-MC), didodecyldimethylammonium bromide (DDAB-MC), hexadecyltrimethylammonium bromide (HDTMA-MC), and tetramethylammonium chloride (TMA-MC) as cost-effective aqueous PFAS adsorbents. The removal capacities of the adsorbents for the majority of the PFASs decreased in the following order: DDAB-MC > CPC-MC ≫ modified natural clinoptilolite with hexadecyltrimethyl ammonium bromide (HDTMA-MC) ≫ modified natural clinoptilolite with tetramethylammonium chloride (TMA-MC) ≈ natural clinoptilolite modified with NaCl (NC). In particular, CPC-MC and DDAB-MC reduced PFASs concentration in 50 μg/L by up to 98% for perfluorooctane sulphonate. Within 30 min, CPC-MC (30.5 μg/L) and DDAB-MC (32.1 μg/L) met the PFOS water quality criterion of 36 μg/L in inland surface waters. Both adsorbents met this criterion at the highest solution volume (40 mL) and 0.125 g/L (solid-to-liquid ratio of 1:8). PFASs with short hydrocarbon chains competed more for adsorption. PFASs with sulphonate functional groups were also adsorbed more than carboxyl groups in single- and multi-PFAS solutions. The modified surfaces of clinoptilolites controlled PFAS adsorption through hydrophobic and electrostatic interactions. PFAS removal with surfactant-modified clinoptilolites is cost-effective and protects aquatic environments by using surplus natural materials.
Collapse
Affiliation(s)
- Monireh S Hedayati
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Otman Abida
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), 70000, Laâyoune, Morocco
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
9
|
O'Boyle M, Mohamed BA, Li LY. Co-pyrolysis of sewage sludge and biomass waste into biofuels and biochar: A comprehensive feasibility study using a circular economy approach. CHEMOSPHERE 2024; 350:141074. [PMID: 38160959 DOI: 10.1016/j.chemosphere.2023.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Enormous annual sewage sludge (SS) volumes pose global environmental challenges owing to contamination and significant greenhouse gas emissions. Here, we investigated the economic viability of co-pyrolyzing SS and biomass waste to produce biofuels (bio-oil and gas) and biochar. Net present worth (NPW) analysis, the sale product break-even price, and sludge handling price (SHP) were used to determine the profitability of co-pyrolysis compared with SS pyrolysis alone and conventional treatment methods. In this study, the sale prices of biochar based on quality (i.e., stability, carbon sequestration effectiveness, and heavy metal content) were estimated to be 2.24, 1.44, and 0.98 CAD/kg for high-, medium-, and low-grade biochar. The bio-oil prices, estimated based on the higher heating values of bio-oil and diesel, ranged from 0.80 to 1.22 CAD/kg. Sawdust (SD) and wheat straw (WS) were the chosen co-pyrolysis feedstocks, with four mixing ratios (20, 40, 60, and 80 wt%). Economically, SD (40 wt% mixing ratio) co-pyrolysis achieved the best performance, with a maximum NPW of 8.71 million CAD. SD single and co-pyrolysis were the only profitable scenarios. Moreover, SS single pyrolysis and WS co-pyrolysis exhibited higher profitability than conventional SS treatment methods, with SHPs of 65 and 40 CAD/1000 kg dry sludge, respectively. Sensitivity analysis highlighted the dependence of economic performance on biochar and bio-oil market value. This study offers the first economic analysis of this approach and enhances our understanding of the potential of co-pyrolysis for biofuel and biochar production, providing innovative solutions for the environmental challenges of SS disposal.
Collapse
Affiliation(s)
- Marnie O'Boyle
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, 12613, Egypt
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
10
|
Zhang Y, Bu X, Wang Y, Hang Z, Chen Z. Hierarchically porous biochar derived from aerobic granular sludge for high-performance membrane capacitive deionization. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100297. [PMID: 37635953 PMCID: PMC10457425 DOI: 10.1016/j.ese.2023.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/29/2023]
Abstract
Membrane capacitive deionization (MCDI) is a cost-effective desalination technique known for its low energy consumption. The performance of MCDI cells relies on the properties of electrode materials. Activated carbon is the most widely used electrode material. However, the capacitive carbon available on the market is often expensive. Here, we developed hierarchically porous biochar by combining carbonization and activation processes, using easily acquired aerobic granular sludge (AGS) from biological sewage treatment plants as a precursor. The biochar had a specific surface area of 1822.07 m2 g-1, with a micropore area ratio of 58.65% and a micropore volume of 0.576 cm3 g-1. The MCDI cell employing the biochar as electrodes demonstrated a specific adsorption capacity of 34.35 mg g-1, comparable to commercially available activated carbon electrodes. Our study presents a green and sustainable approach for preparing highly efficient, hierarchically porous biochar from AGS, offering great potential for enhanced performance in MCDI applications.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xudong Bu
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Yajun Wang
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Zhenyu Hang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhiqiang Chen
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, China
| |
Collapse
|
11
|
Stefanelli E, Vitolo S, Di Fidio N, Puccini M. Tailoring the porosity of chemically activated carbons derived from the HTC treatment of sewage sludge for the removal of pollutants from gaseous and aqueous phases. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118887. [PMID: 37678019 DOI: 10.1016/j.jenvman.2023.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
The management of sewage sludge is currently an open issue due to the large volume of waste to be treated and the necessity to avoid incineration or landfill disposal. Hydrothermal carbonization (HTC) has been recognized as a promising thermochemical technique to convert sewage sludge into value-added products. The hydrochar (HC) obtained can be suitable for environmental application as fuel, fertilizer, and sorbent. In this study, activated hydrochars (AHs) were prepared from sewage sludge through HTC followed by chemical activation with potassium hydroxide (KOH) and tested for the removal of pollutants in gaseous and aqueous environments, investigating carbon dioxide (CO2) and ciprofloxacin (CIP) adsorption capacity. The effects of activation temperature (550-750 °C) and KOH/HC impregnation ratio (1-3) on the produced AHs morphology and adsorption capacity were studied by Response Surface Methodology (RSM). The results of RSM analysis evidenced a maximum CO2 uptake of 71.47 mg/g for mild activation conditions (600-650 °C and KOH/HC = 1 ÷ 2), whereas the best CIP uptake of 628.61 mg/g was reached for the most severe conditions (750 °C, KOH/HC = 3). The prepared AHs were also applied for the removal of methylene blue (MB) from aqueous solutions, and the MB uptake results were used for estimating the specific surface area of AHs. High surface areas up to 1902.49 m2/g were obtained for the highest activation temperature and impregnation ratio investigated. Predictive models of CO2 and CIP uptake were developed by RSM analysis, and the optimum activation conditions for maximizing the adsorption performance together with high AH yield were identified: 586 °C and KOH/HC ratio = 1.34 for maximum yield (26.33 %) and CO2 uptake (67.31 mg/g); 715 °C and KOH/HC ratio = 1.78 for maximum yield (18.75 %) and CIP uptake (370.77 mg/g). The obtained results evidenced that chemical activation of previously HTC-treated sewage sludge is a promising way to convert waste into valuable low-cost adsorbents.
Collapse
Affiliation(s)
- Eleonora Stefanelli
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Sandra Vitolo
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy
| | - Nicola Di Fidio
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Monica Puccini
- Dipartimento di Ingegneria Civile e Industriale, Università di Pisa, Largo Lucio Lazzarino 1, 56122, Pisa, Italy.
| |
Collapse
|
12
|
Wang G, Xiang J, Liang G, Wang J, Ma S, He C. Application of common industrial solid waste in water treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:111766-111801. [PMID: 37843711 DOI: 10.1007/s11356-023-30142-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/25/2023] [Indexed: 10/17/2023]
Abstract
Industrial solid waste has a wide range of impacts, and it is directly or indirectly related to land, atmosphere, water, and other resources. Industrial solid waste has a large amount of production, complex and diverse components and contains a variety of harmful substances. However, as industrial by-products, it also has a lot of available value. Industrial solid waste has been continuously studied in water treatment due to its special composition and porous and loose structure. It is known that there are few reviews of various industrial solid wastes in the field of wastewater treatment, and most of them only discuss single industrial solid waste. This paper aims to sort out the different studies on various solid wastes such as fly ash, red mud, wastewater sludge, blast furnace slag and steel slag in dyeing, heavy metal, and phosphorus-containing wastewater. Based on the modification of industrial solid waste and the preparation of composite materials, adsorbents, coagulants, catalysts, filtration membranes, geological polymers, and other materials with high adsorption properties for pollutants in wastewater were formed; the prospect and development of these materials in the field of wastewater were discussed, which provides some ideas for the mutual balance of environment and society. Meanwhile, some limitations of solid waste applications for wastewater treatment have been put forward, such as a lack of further researches about environment-friendly modification methods, application costs, the heavy metal leaching, and toxicity assessment of industrial solid waste.
Collapse
Affiliation(s)
- Guifang Wang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China.
| | - Jie Xiang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Guangchuan Liang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shaojian Ma
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| |
Collapse
|
13
|
Mohamed BA, Nicomel NR, Hamid H, Li LY. Using circular economy principles in the optimisation of sludge-based activated carbon production for the removal of perfluoroalkyl substances. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162392. [PMID: 36842579 DOI: 10.1016/j.scitotenv.2023.162392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Massive sewage sludge (SS) production from municipal wastewater treatment plants and the presence of numerous pollutant types render the process of SS treatment and disposal costly and complex. Here, resource recovery from SS was maximised via the optimisation of sludge-based activated carbon (SBAC) production for the removal of poly- and perfluoroalkyl substances (PFASs), while considering economic factors and minimising environmental impacts. SBAC production optimisation was realised under different operating conditions (different ZnCl2 impregnation ratios and different pyrolysis activation temperatures and durations). The sorption capacity of the optimised SBAC with respect to the removal of nine commonly detected PFASs, with environmentally relevant concentrations (∽50 μg/L), from simulated wastewater was evaluated. Economic analysis and life-cycle assessment (LCA) were also performed to determine the feasibility of the process and its potential role in the circular economy. Batch adsorption tests confirmed the high efficiency of the optimised SBACs for PFAS removal (93-100 %), highlighting the possibility of converting SS to SBAC. Economically speaking, the optimised SBAC at 1.5 M ZnCl2, 500 °C, and 0.75 h reduced total production cost by 49 %. Further, the cost could be reduced to as little as 1087 US $/metric-ton compared with that corresponding to the original conditions (2.5 M ZnCl2, 500 °C, 2 h; 2144 US $/metric-ton). LCA results also showed that freshwater ecotoxicity, marine ecotoxicity, and human non-carcinogenic toxicity were the most affected environmental impact indicators, showing a 49 % decrease when ZnCl2 impregnation ratio was reduced from 2.5 to 1.5 M. These findings highlighted the optimal conditions for the production of SBAC with high sorption capacity at a reduced cost and with reduced environmental impacts. Thus, they can serve as valuable tools for decision making regarding the selection of the most sustainable and economically feasible process for PFAS removal.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza 12613, Egypt.
| | - Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hanna Hamid
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
14
|
Lu J, Lu H, Liang D, Feng S, Li Y, Li J. A review of the occurrence, transformation, and removal technologies for the remediation of per- and polyfluoroalkyl substances (PFAS) from landfill leachate. CHEMOSPHERE 2023; 332:138824. [PMID: 37164196 DOI: 10.1016/j.chemosphere.2023.138824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that pose significant environmental and human health risks. The presence of PFAS in landfill leachate is becoming an increasingly concerning issue. This article presents a comprehensive review of current knowledge and research gaps in monitoring and removing PFAS from landfill leachate. The focus is on evaluating the effectiveness and sustainability of existing removal technologies, and identifying areas where further research is needed. To achieve this goal, the paper examines the existing technologies for monitoring and treating PFAS in landfill leachate. The review emphasizes the importance of sample preparation techniques and quality assurance/quality control measures in ensuring accurate and reliable results. Then, this paper reviewed the existing technologies for removal and remediation of PFAS in landfill leachates, such as adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands. Additionally, the paper summarizes the factors that exhibit the performance of various treatment technologies: reaction time, experimental conditions, and removal rates. Furthermore, the paper evaluates the potential application of different remediation technologies (i.e., adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands, etc.) in treating landfill leachate containing PFAS and its precursors, such as fluorotelomeres like FTOH and FTSs. The review highlights the importance of considering economic, technical, and environmental factors when selecting control measures. Overall, this article aims to provide guidance for promoting environmental protection and sustainable development in the context of PFAS contamination in landfill leachate.
Collapse
Affiliation(s)
- Jingzhao Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China.
| | - Hongwei Lu
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Dongzhe Liang
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - SanSan Feng
- Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Science and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China
| | - Yao Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| | - Jingyu Li
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
15
|
Min X, Wang Y. Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131047. [PMID: 36827723 DOI: 10.1016/j.jhazmat.2023.131047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Removal of short-chain per- and polyfluoroalkyl substances (PFAS) represents a unique challenge in comparison to the long-chain homologs. In this study, a series of functionalized periodic mesoporous organosilica (PMO) materials with tunable molar ratio of fluoroalkyl to amine functional groups were developed and used as platform adsorbents to investigate the adsorption behavior of short-chain PFAS, with a focus on perfluorobutanoic acid (PFBA). Modification with fluoroalkyl group substantially enhanced the adsorption affinity of PFBA with the functionalized PMO materials. Adsorption free energy analysis suggested that although electrostatic interactions were more predominant in PFBA adsorption, modification of PMOs with increased fluoroalkyl group loadings increased the non-electrostatic interactions with PFBA, resulting in more favorable PFBA adsorption. The optimal functionalized PMO showed fast PFBA adsorption kinetics, excellent PFBA removal efficiency in various water chemistry conditions, and can be regenerated and reused for numerous cycles with methanol/water mixture containing 500-mM NH3·H2O as regenerant. Furthermore, the optimal functionalized PMO showed robust performance for the removal of PFAS mixtures under complex natural water matrix. Results of this study suggested the important role of non-electrostatic interactions in enhancing the removal of short-chain PFAS and can provide mechanistic insights into guiding the design of improved adsorbents for PFAS removal.
Collapse
Affiliation(s)
- Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI 53201, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin - Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
16
|
Mohamed BA, Huang C, Mok N, Swei O, Johnston C, Li LY. A comparative life-cycle assessment and cost analysis of biofilters amended with sludge-based activated carbon and commercial activated carbon for stormwater treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130632. [PMID: 37056026 DOI: 10.1016/j.jhazmat.2022.130632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/29/2022] [Accepted: 12/17/2022] [Indexed: 06/19/2023]
Abstract
Environmental and economic issues resulting from the unsustainable management of sewage sludge from wastewater have necessitated the development of eco-friendly sewage sludge disposal methods, whereas stormwater effluent contains tremendous amounts of pollutants. This study compares the feasibility and environmental impacts associated with incorporating biofilters with sludge-based activated carbon (SBAC) versus commercial activated carbon (CAC) for stormwater treatment. The results demonstrate that the construction and disposal life-cycle stages are the dominant contributors to several environmental impact categories, including resource scarcity, carcinogenic toxicity, terrestrial ecotoxicity, and ozone formation indicators. Across multiple impact categories, the incorporation of biofilters with SBAC can reduce the negative environmental impacts associated with biofilter construction and disposal by 40% over a 50-year analysis period. In contrast, the most significant improvement is on construction-dominant indicators, where the decreased need for biofilter reconstruction results in a higher reduction in environmental impacts. Economically, amending the biofilter with SBAC can increase profits by up to 66% due to extending its lifespan. This study shows that SBAC has similar performance as CAC for lowering the negative environmental impacts resulting from biofilter construction, while increasing the overall net profits of the system. However, converting sewage sludge to an effective sorbent (SBAC) and incorporating SBAC into a biofilter to capture pollutants from stormwater is an economically and environmentally sustainable solution available to practitioners to manage sewage sludge and stormwater effluent. This solution protects the environment in a cost efficient, sustainable manner.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, Egypt
| | - Carol Huang
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Nico Mok
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Omar Swei
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
| | - Chris Johnston
- Kerr Wood Leidal Associates Ltd., 200-4185 Still Creek Drive, Burnaby, BC V5C 6G9, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
17
|
Faragò M, Damgaard A, Logar I, Rygaard M. Life Cycle Assessment and Cost-Benefit Analysis of Technologies in Water Resource Recovery Facilities: The Case of Sludge Pyrolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17988-17997. [PMID: 36469304 DOI: 10.1021/acs.est.2c06083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In Europe, sewage sludge is mostly used in agriculture (49%) or incinerated (25%). Technologies for sludge management that can support the transformation of wastewater treatment plants (WWTPs) to water resource recovery facilities (WRRFs) are emerging. Sludge pyrolysis is one of them. It can generate two main high-value co-products: heat and biochar. Moreover, biochar can be transformed into activated carbon. The economic and environmental impacts of sludge pyrolysis and its comparison to the direct application of sludge in agriculture and incineration are unknown. Therefore, we applied a life cycle assessment (LCA) and a cost-benefit analysis (CBA) of sludge pyrolysis. We quantified environmental externalities in an LCA and then applied the benefit transfer method to monetize these externalities, which were included in an economic CBA. Pyrolysis reduced impacts in five to nine LCA categories and had a positive economic net present value (NPV) compared to using sludge in agriculture. Pyrolysis with biochar production was not better than incineration, showing increased impacts in nine categories and negative NPVs (-19 to -22 €/t sludge). The factor driving differences between the alternatives was the assumed CO2 externality price (164 €/ton CO2-eq) and the removal rate of pharmaceutical micropollutants of the sludge-based activated carbon. High uncertainty in environmental prices is one of the limitations of our study.
Collapse
Affiliation(s)
- Maria Faragò
- Department of Environmental and Resource Engineering, Water Technology and Processes, Technical University of Denmark, Bygningstorvet, Building 115, Lyngby2800, Denmark
| | - Anders Damgaard
- Department of Environmental and Resource Engineering, Circularity and Environmental Impact, Technical University of Denmark, Bygningstorvet, Building 115, Lyngby2800, Denmark
| | - Ivana Logar
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, Dübendorf8600, Switzerland
| | - Martin Rygaard
- Department of Environmental and Resource Engineering, Water Technology and Processes, Technical University of Denmark, Bygningstorvet, Building 115, Lyngby2800, Denmark
| |
Collapse
|
18
|
Nicomel NR, Li LY, Mohamed BA, Ramim SS. Adsorption of p-benzoquinone at low concentrations from aqueous media using biosolid-based activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115263. [PMID: 35584595 DOI: 10.1016/j.jenvman.2022.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/17/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The toxic oxidation intermediate p-benzoquinone exists in aqueous environments at dilute concentrations above the fish-toxicity limit of 0.045 mg/L, affecting aquatic life. The reduction of this compound to the concentrations required to achieve safe discharge limits is challenging. In this study, the adsorptive removal of p-benzoquinone by a biosolid-based activated carbon (SBAC) was systematically investigated in batch experiments. The adsorption rate was rapid, and the bulk of p-benzoquinone adsorption occurred within 30 min. The maximum adsorption capacity of SBAC was estimated at 19.6 mg/g using the Langmuir isotherm model. Its adsorptivity was independent of temperature from 6 to 40 °C. The presence of 6 g/L of chloride and 500 mg/L of sulphate did not affect the removal of 1 mg/L p-benzoquinone, whereas 15 mg/L of humic acid media slightly decreased the p-benzoquinone removal from 87.0% to 83.2%. Diffusion, hydrophilic, and electrostatic interactions (i.e., dipole-dipole) govern the adsorption of p-benzoquinone and are influenced by the SBAC surface chemistry. Biosolid-based activated carbon can lower the residual p-benzoquinone to below the fish-toxicity limit of 0.045 mg/L within 1 h of sequential adsorption. Thus, biosolid-based activated carbon can effectively remove p-benzoquinone from aqueous environments; this is a waste-to-resource approach that addresses sustainability (waste disposal) and environmental protection (pollutant removal).
Collapse
Affiliation(s)
- Nina Ricci Nicomel
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Loretta Y Li
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| | - Badr A Mohamed
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada; Department of Agricultural Engineering, Cairo University, Giza 12613, Egypt
| | - Samia Syeoti Ramim
- Department of Civil Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
19
|
Mohamed BA, Fattah IMR, Yousaf B, Periyasamy S. Effects of the COVID-19 pandemic on the environment, waste management, and energy sectors: a deeper look into the long-term impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46438-46457. [PMID: 35499739 PMCID: PMC9059688 DOI: 10.1007/s11356-022-20259-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/10/2022] [Indexed: 05/13/2023]
Abstract
The COVID-19 pandemic not only has caused a global health crisis but also has significant environmental consequences. Although many studies are confirming the short-term improvements in air quality in several countries across the world, the long-term negative consequences outweigh all the claimed positive impacts. As a result, this review highlights the positive and the long-term negative environmental effects of the COVID-19 pandemic by evaluating the scientific literature. Remarkable reduction in the levels of CO (3 - 65%), NO2 (17 - 83%), NOx (24 - 47%), PM2.5 (22 - 78%), PM10 (23 - 80%), and VOCs (25 - 57%) was observed during the lockdown across the world. However, according to this review, the pandemic put enormous strain on the present waste collection and treatment system, resulting in ineffective waste management practices, damaging the environment. The extensive usage of face masks increased the release of microplastics/nanoplastics (183 to 1247 particles piece-1) and organic pollutants in land and water bodies. Furthermore, the significant usages of anti-bacterial hand sanitizers, disinfectants, and pharmaceuticals have increased the accumulation of various toxic emerging contaminants (e.g., triclocarban, triclosan, bisphenol-A, hydroxychloroquine) in the treated sludge/biosolids and discharged wastewater effluent, posing great threats to the ecosystems. This review also suggests strategies to create long-term environmental advantages. Thermochemical conversions of solid wastes including medical wastes and for treated wastewater sludge/biosolids offer several advantages through recovering the resources and energy and stabilizing/destructing the toxins/contaminants and microplastics in the precursors.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza, 12613, Egypt.
| | - I M Rizwanul Fattah
- Centre for Technology in Water and Wastewater (CTWW), Faculty of Engineering and IT, University of Technology Sydney, Ultimo, 2007 NSW, Australia
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, 1888, Adama, Ethiopia
| |
Collapse
|
20
|
Araújo RG, Rodríguez-Hernandéz JA, González-González RB, Macias-Garbett R, Martínez-Ruiz M, Reyes-Pardo H, Hernández Martínez SA, Parra-Arroyo L, Melchor-Martínez EM, Sosa-Hernández JE, Coronado-Apodaca KG, Varjani S, Barceló D, Iqbal HMN, Parra-Saldívar R. Detection and Tertiary Treatment Technologies of Poly-and Perfluoroalkyl Substances in Wastewater Treatment Plants. FRONTIERS IN ENVIRONMENTAL SCIENCE 2022; 10. [DOI: 10.3389/fenvs.2022.864894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
PFAS are a very diverse group of anthropogenic chemicals used in various consumer and industrial products. The properties that characterize are their low degradability as well as their resistance to water, oil and heat. This results in their high persistence in the environment and bioaccumulation in different organisms, causing many adverse effects on the environment as well as in human health. Some of their effects remain unknown to this day. As there are thousands of registered PFAS, it is difficult to apply traditional technologies for an efficient removal and detection for all. This has made it difficult for wastewater treatment plants to remove or degrade PFAS before discharging the effluents into the environment. Also, monitoring these contaminants depends mostly on chromatography-based methods, which require expensive equipment and consumables, making it difficult to detect PFAS in the environment. The detection of PFAS in the environment, and the development of technologies to be implemented in tertiary treatment of wastewater treatment plants are topics of high concern. This study focuses on analyzing and discussing the mechanisms of occurrence, migration, transformation, and fate of PFAS in the environment, as well the main adverse effects in the environment and human health. The following work reviews the recent advances in the development of PFAS detection technologies (biosensors, electrochemical sensors, microfluidic devices), and removal/degradation methods (electrochemical degradation, enzymatic transformation, advanced oxidation, photocatalytic degradation). Understanding the risks to public health and identifying the routes of production, transportation, exposure to PFAS is extremely important to implement regulations for the detection and removal of PFAS in wastewater and the environment.
Collapse
|