1
|
Cai S, Zhang X, Sun T, Zhou H, Zhang Y, Yang P, Wang D, Zhang J, Hu C, Zhang W. Integrating machine learning, suspect and nontarget screening reveal the interpretable fates of micropollutants and their transformation products in sludge. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137183. [PMID: 39818056 DOI: 10.1016/j.jhazmat.2025.137183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Activated sludge enriches vast amounts of micropollutants (MPs) when wastewater is treated, posing potential environmental risks. While standard methods typically focus on target analysis of known compounds, the identity, structure, and concentration of transformation products (TPs) of MPs remain less understood. Here, we employed a novel approach that integrates machine learning for the quantification of nontarget TPs with advanced target, suspect, and nontarget screening strategies. 39 parent chemicals and 286 TPs were identified, with the majority being pharmaceuticals, followed by phthalate acid ester and alkylphenols. To quantify TPs without reference standards, we applied machine learning to forecast the relative response factors (RRFs) relied on their physicochemical characteristics. The random forest regression model showed great performance, with prediction errors of RRFs ranging from 0.03 to 0.35. The mean concentrations for parents and TPs were 1.32 -19.83 and 6.35 -9.94 μg/g dw, respectively. Further risk-based prioritization integrating environmental exposure and ToxPi scoring ranked the identified 182 compounds, with three parents and one TP recognized as high priorities for management. N-demethylation and N-oxidated TPs are generally less toxic than their parents. These findings are expected to facilitate MPs and their TPs investigations for reliable environmental monitoring and risk assessment across different sludge treatment processes.
Collapse
Affiliation(s)
- Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Xinyu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Tong Sun
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Hao Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin, Jilin 132012, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianbo Zhang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China.
| | - Chengzhi Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, Hubei 430074, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
2
|
Zheng J, Desrosiers M, Benjannet R, Bayen S. Simultaneous targeted and non-targeted analysis of contaminants in fertilizers in Quebec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177970. [PMID: 39675280 DOI: 10.1016/j.scitotenv.2024.177970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
In this study, an LC-MS based analytical method was developed and validated for the simultaneous targeted analysis (14 bisphenols and 14 plasticizers) and suspect screening of other plastic-related contaminants in various types of fertilizers. The ultrasound-assisted extraction method showed overall satisfactory performances, achieving a median absolute recovery of 85 % for the target compounds in different types of fertilizers. The method was applied to sixteen different types of fertilizers, including fertilizing residual materials (n = 8 types), one cattle manure, and seven mineral fertilizers collected in Quebec, Canada in 2022 and 2023. Relatively higher levels of the targeted bisphenols and plasticizers were detected in some fertilizing residual materials, such as municipal biosolids and deinking residues. 4-Hydroxyphenyl 4-isoprooxyphenylsulfone (D-8) and bis(2-ethylhexyl) phthalate (DEHP) were dominant contaminants in these matrixes, with concentrations up to 35.6 and 64.7 μg g-1 dw, respectively. A non-targeted workflow was successfully applied to municipal biosolids and deinking residues, and >30 contaminants were identified across multiple chemical families at level 1 identification confidence, with most of them previously unreported in various types of fertilizers. For example, new color developers, N-(2-((Phenylcarbamoyl)amino)phenyl)benzenesulfonamide (NKK-1304) and 2,4-bis(phenylsulfonyl)phenol (DBSP), were reported in deinking residues. This work illustrates the complexity of the contaminant mixtures in fertilizers such as municipal biosolids and deinking residues.
Collapse
Affiliation(s)
- Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Canada
| | - Rim Benjannet
- Département des sols et de génie agroalimentaire, Université Laval, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Canada.
| |
Collapse
|
3
|
Nas B, Dolu T, Ateş H, Dinç S, Kara M, Argun ME, Yel E. Occurrence, distribution, and fate evaluation of endocrine disrupting compounds in three wastewater treatment plants with different treatment technologies in Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175869. [PMID: 39214356 DOI: 10.1016/j.scitotenv.2024.175869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/20/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Nowadays, two of the endocrine disrupting compounds (EDCs) in the group of alkylphenols (APs), nonylphenol (4-NP) and octylphenol (4-t-OP), have attracted great scientific and regulatory attention mainly due to concerns about their aquatic toxicity and endocrine disrupting activity. This paper investigated the occurrence, distribution behavior, fate, and removal of 4-NP and 4-t-OP in liquid and solid phases of three full-scale wastewater treatment plants (WWTPs) with different treatment technologies comparatively. In this context, (i) advanced biological WWTP, (ii) wastewater stabilization pond (WSP), and (iii) constructed wetland (CW) were utilized. In all three investigated WWTPs, the concentrations of 4-NP (219.9-19,354.4 ng/L) in raw wastewater were higher than those of 4-t-OP (13.9-2822.4 ng/L). Within the scope of annual average removal efficiencies, 4-NP was treated highly in advanced biological WWTP (93.5 %), while it was almost not treated in WSP (3.1 %) and treated with negative removal (<0 %) in CW. While 4-t-OP was treated at a similar removal rate (93.5 %) to 4-NP in advanced biological WWTP, it was treated moderately in WSP (52.5 %) and very poorly in CW (12.4 %). It has been determined that the most important removal mechanism of both 4-NP and 4-t-OP in WWTPs is biodegradation, followed by sorption onto sewage sludge. According to the mass balance performed in advanced biological WWTP, the biodegradation rates for 4-NP and 4-t-OP were found to be 70.4 % and 86.6 %, respectively, while the sorption onto sewage sludge were determined to be 23.3 % and 6.8 %. One of the critical findings obtained within the scope of the study is that while the concentrations of both metabolites, especially 4-NP, in wastewater and sewage sludge, decreased considerably under aerobic conditions, on the contrary, their concentrations increased significantly under anaerobic conditions. Both compounds were detected at higher concentrations in primary sludge compared to secondary sludge in advanced biological WWTP, while in WSP, they were determined at higher concentrations in anaerobic stabilization pond sludge compared to facultative stabilization pond sludge. Besides, it was also determined that the sorption behavior of these alkylphenols is much more dominant than desorption.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye; Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Türkiye.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Türkiye.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Türkiye.
| |
Collapse
|
4
|
Behera M, Singh J, Kumari N, Singh R. Fabrication of novel glutathione-Fe 3O 4-loaded/activated carbon encapsulated sand bionanocomposites for enhanced removal of diethyl phthalate from aqueous environment in a vertical flow reactor. ENVIRONMENTAL RESEARCH 2024; 260:119588. [PMID: 39019136 DOI: 10.1016/j.envres.2024.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
The extensive use of plasticizers in various industries has made Diethyl phthalate (DEP), a serious threat to the environment and ecological water security, owing to its complex-structure and low-biodegradability. Thus, the present study aimed to design a sustainable sand-coated nano glutathione (GSH) -Fe3O4-loaded/activated carbon (AC) bionanocomposite (AC-GSH-Fe3O4@sand bionanocomposite) for effective removal of DEP from water. Characterization results suggested bionanocomposites' rough and irregular texture due to the uneven distribution of AC and Fe3O4 nanoparticles over the sand. The XRD spectra indicated high crystallinity of bionanocomposites, while the FTIR spectra confirmed the presence of all individual components, i.e., GSH, AC, Fe3O4, and sand. EDX-mapping, AFM, and TGA further verified its elemental composition, topographical changes and thermal stability. The influence of pH (3, 7, 9), bed height (2, 4, 6) cm, and flow rate (2.5, 3.5, 4.5) mL min-1 were studied in a dynamic system with an initial DEP concentration of 50 mg L-1 to investigate the removal behavior of the bionanocomposites. The best DEP removal efficiency (90.18 %) was achieved over 28-h at pH 9, bed-height-4 cm, and flow-rate-3.5 mL min-1, with an optimum qmax-200.25 mg g-1 as determined through Thomas-model. Breakthrough curves were predicted using various column models, and the corresponding parameters essential for column-reactor process design were calculated. The high reusability up to the 10th cycle (≥83.32%) and the effective treatment in complex matrices (tap-water: 90.11 %, river-water: 89.72 %, wastewater: 83.83%) demonstrated bionanocomposites' prominent sustainability. Additionally, the production cost at 6.64 USD per Kg, underscores its potentiality for industrial application. Phytotoxicity assessment on mung-bean revealed better root (5.02 ± 0.27 cm) and shoot (17.64 ± 0.35 cm) growth in the bionanocomposite-treated DEP samples over the untreated samples. Thus, AC-GSH-Fe3O4@sand bionanocomposites could be considered a highly-sustainable, low-cost technique for the effective removal of DEP and other phthalate-esters from contaminated matrices.
Collapse
Affiliation(s)
- Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Jitender Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
5
|
Huang Y, Chen K, Chen Y, Chen P, Ge C, Wang X, Huang C. Distribution of microplastics and phthalic acid esters during dry anaerobic digestion of food waste and potential microbial degradation analysis. BIORESOURCE TECHNOLOGY 2024; 408:131221. [PMID: 39111396 DOI: 10.1016/j.biortech.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Food waste (FW) and its biogas residue were considered as sources of terrestrial microplastics (MPs) and phthalic acid esters (PAEs) contamination. However, there was a lack of research and understanding of the MPs and PAEs pollution problem in FW dry anaerobic digestion process (DADP). The MPs and PAEs in three stages of the DADP with the largest monomer disposal scale in China were identified. At the biogas residue extrusion stage, MPs abundance and PAEs concentration reached the highest values, which were 3.63 ± 0.45 × 103 N·kg-1 and 3.62 ± 0.72 mg·kg-1, respectively. Furthermore, there was a significant positive correlation between MPs and PAEs throughout the process (p < 0.05). Although bacteria and fungi with plastic degradation potential were present in all stages, the contamination problem of MPs and PAEs cannot be completely solved through DADP. This study provides a scientific basis for preventing and controlling the pollution of MPs and PAEs.
Collapse
Affiliation(s)
- Yuhuizi Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Kejin Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yanhua Chen
- Chongqing Environment and Sanitation Group Co., Ltd., Chongqing 401122, China
| | - Pengpeng Chen
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Chunling Ge
- Beijing Environmental Sanitation Engineering Group Co., Ltd., Beijing 100079, China
| | - Xiang Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Chuan Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
6
|
Wang C, Ning X, Wan N, Xu S, Jiang C, Bai Z, Ma J, Zhang X, Wang X, Zhuang X. Season and side-chain length affect the occurrences and behaviors of phthalic acid esters in wastewater treatment plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134934. [PMID: 38889463 DOI: 10.1016/j.jhazmat.2024.134934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.
Collapse
Affiliation(s)
- Cong Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Na Wan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu 322000, Zhejiang, China.
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihui Bai
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyu Ma
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xupo Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
8
|
Conde-Díaz A, Santana-Mayor Á, Herrera-Herrera AV, Socas-Rodríguez B, Rodríguez-Delgado MÁ. Assessment of endocrine disruptor pollutants and their metabolites in environmental water samples using a sustainable natural deep eutectic solvent-based analytical methodology. CHEMOSPHERE 2023; 338:139480. [PMID: 37453517 DOI: 10.1016/j.chemosphere.2023.139480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this work, an evaluation of the occurrence of fifteen phthalates, four metabolites and one adipate in different groundwater, seawater and wastewater samples has been carried out due to their relevance on human health as they act as endocrine disruptors. For this purpose, a sustainable, fast and easy-handling vortex-assisted liquid-liquid microextraction method using a natural hydrophobic deep eutectic solvent based on menthol and carvacrol as extraction agent, combined with ultra-high performance liquid chromatography-mass spectrometry technique, has been developed and applied for the first time. An optimization was performed to evaluate four important factors affecting the extraction performance, and an analytical validation was carried out in terms of matrix effect, linearity, extraction efficiency, and sensitivity. Recovery values were obtained in the range 72-119% for all analytes (except for monoethyl phthalate: 61.1-72.3%) with relative standard deviation values lower than 17%. Limits of quantification were found between 0.91 and 8.09 μg L-1. As a result of the assessment of 31 different environmental water samples, monoethyl phthalate, diethyl phthalate, dibutyl phthalate and bis (2-ethylhexyl) phthalate were detected and quantified at different concentrations in the range 2.59-21.17 μg L-1 in 6 samples, and diallyl phthalate, butyl benzyl phthalate, dipentyl phthalate, dicyclohexyl phthalate, dihexyl phthalate and bis (2-ethylhexyl) adipate were detected in 20 more, showing the exposition of the population to these hazardous substances.
Collapse
Affiliation(s)
- Adrián Conde-Díaz
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/nº. 38206, San Cristóbal de La Laguna, España
| | - Álvaro Santana-Mayor
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/nº. 38206, San Cristóbal de La Laguna, España
| | - Antonio V Herrera-Herrera
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/nº. 38206, San Cristóbal de La Laguna, España; Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, 2, 38206, San Cristóbal de La Laguna, España
| | - Bárbara Socas-Rodríguez
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/nº. 38206, San Cristóbal de La Laguna, España.
| | - Miguel Ángel Rodríguez-Delgado
- Departamento de Química, Unidad Departamental de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL). Avda. Astrofísico Fco. Sánchez, s/nº. 38206, San Cristóbal de La Laguna, España.
| |
Collapse
|
9
|
Ren L, Weng L, Chen D, Hu H, Jia Y, Zhou JL. Bioremediation of PAEs-contaminated saline soil: The application of a marine bacterial strain isolated from mangrove sediment. MARINE POLLUTION BULLETIN 2023; 192:115071. [PMID: 37236097 DOI: 10.1016/j.marpolbul.2023.115071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Phthalic acid esters (PAEs) are known as the most widely used plasticizer as well as one of the ubiquitously distributed emerging pollutants. Biodegradation and bioremediation via application of PAEs-degrading microbes is promising. In this study, a novel marine microbe, Gordonia hongkongensis RL-LY01, was isolated from mangrove sediment showing high di-(2-ethylhexyl) phthalate (DEHP) degradation capacity. Strain RL-LY01 could degrade a wide range of PAEs and the degradation kinetics of DEHP followed the first-order decay model. Meanwhile, good environmental adaptability, preference to alkaline conditions and good tolerance to salinity and metal ions was shown. Further, metabolic pathway of DEHP in strain RL-LY01 was proposed, with di-ethyl phthalate, phthalic acid, benzoic acid and catechol as intermediates. Additionally, one known mono-alkyl phthalate hydrolase gene (mehpH) was identified. Finally, the excellent performance during bioremediation of artificial DEHP-contaminated saline soil and sediment indicated strain RL-LY01 employs great application potential for the bioremediation of PAE-contaminated environments.
Collapse
Affiliation(s)
- Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liyun Weng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Danni Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hanqiao Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yang Jia
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - John L Zhou
- Centre for Green Technology, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| |
Collapse
|
10
|
Wang C, Wang J, Gao W, Ning X, Xu S, Wang X, Chu J, Ma S, Bai Z, Yue G, Wang D, Shao Z, Zhuang X. The fate of phthalate acid esters in wastewater treatment plants and their impact on receiving waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162201. [PMID: 36805063 DOI: 10.1016/j.scitotenv.2023.162201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Phthalates (PAEs) are gaining attention and being researched as an endocrine disruptor as global plastic use surge. There is an urgent need to explore the key factors affecting the removal of PAEs from wastewater and the impact of wastewater effluent on receiving water. Here we investigated the levels and distribution patterns of 16 typical PAEs in surface water and five wastewater treatment plants (WWTPs) along the Dongyang River from Yiwu, China, collecting 42 surface water and 31 wastewater samples. We found that influent PAEs concentration and treatment process were the key factors affecting the degradation efficiency of PAEs in primary and secondary treatment, respectively. In primary treatment, long-chain PAEs were more easily removed (and sometimes less likely to accumulate) than short-chain PAEs, regardless of the influent PAEs concentration (a key factor in primary treatment), while in secondary treatment, short-chain PAEs were easily removed regardless of the treatment process (a factor in secondary treatment). This was not the case for long-chain PAEs, which were only more readily removed in the A/A/O process. In addition, by comparing the significant differences between wastewater and surface water, we found that the total PAEs in the treated effluent were significantly lower than in surface water upstream and in built-up urban areas, indicating that wastewater discharges in the study area did not increase PAEs in the receiving water. Finally, river in the city center and artificial treatment facilities in the study area were identified as requiring priority attention. The results of this study can serve as a model for controlling PAEs in other similar developing cities in China and provide valuable information on the fate of endocrine disruptor from wastewater treatment in China and their impact on surface water.
Collapse
Affiliation(s)
- Cong Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglin Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Wei Gao
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojun Ning
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Shengjun Xu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwen Chu
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhihui Bai
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gecheng Yue
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Dongsheng Wang
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Zhiping Shao
- Yangtze River Delta Research Center for Eco-Environmental Sciences, Yiwu, Zhejiang 322000, China
| | - Xuliang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Ateş H, Argun ME. Fate of phthalate esters in landfill leachate under subcritical and supercritical conditions and determination of transformation products. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:292-301. [PMID: 36410146 DOI: 10.1016/j.wasman.2022.11.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The hypothesis of this study is that the complex organic load of landfill leachate could be reduced by supercritical water oxidation (SCWO) in a single stage, but this operation could lead to the formation of some undesired by-products of phthalate esters (PAEs). In this context, the fate of selected PAEs, butyl benzyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), was investigated during the oxidation of leachate under subcritical and supercritical conditions. Experiments were conducted at various temperatures (250-500 °C), pressures (10-35 MPa), residence times (2-18 min) and dimensionless oxidant doses (DOD: 0.2-2.3). The SCWO process decreased the leachate's chemical oxygen demand (COD) from 34,400 mg/L to 1,120 mg/L (97%). Removal efficiencies of DEHP and DNOP with longer chains were higher than BBP. The DEHP, DNOP and BBP compounds were removed in the range of -35 to 100%, -18 to 92%, and 28 to 36%, respectively, by the SCWO process. Many non-target PAEs were qualitatively detected in the raw leachate apart from the selected PAEs. Besides, 97% of total PAEs including both target and non-target PAEs was mineralized at 15 MPa, 300 °C and 5 min. Although PAEs were highly mineralized during SCWO of the leachate, aldehyde, ester, amide and amine-based phthalic substances were frequently detected as by-products. These by-products have transformed into higher molecular weight by-products with binding reactions as a result of complex SCWO process chemistry. It has also been determined that some non-target PAEs such as 1,2-benzenedicarboxylic acid bis(2-methylpropyl)ester and bis(2-ethylhexyl) isophthalate can transform to the DEHP. Therefore, the suggested pathway in this study for PAEs degradation during the SCWO of the leachate includes substitution and binding reactions as well as an oxidation reaction.
Collapse
Affiliation(s)
- Havva Ateş
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| | - Mehmet Emin Argun
- Konya Technical University, Faculty of Engineering and Natural Science, Department of Environmental Engineering, Türkiye.
| |
Collapse
|
12
|
Long Y, Zhou Z, Wen X, Wang J, Xiao R, Wang W, Li X, Lai X, Zhang Y, Deng C, Cao J, Yin L. Microplastics removal and characteristics of a typical multi-combination and multi-stage constructed wetlands wastewater treatment plant in Changsha, China. CHEMOSPHERE 2023; 312:137199. [PMID: 36372338 DOI: 10.1016/j.chemosphere.2022.137199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Wastewater treatment plants (WWTPs) are an important source of microplastics (MPs) entering the aquatic environment. As environmental awareness increases, WWTPs are gradually using constructed wetlands (CWs) in the depth treatment stage. There were few studies related to MPs removal efficiency of CWs, especially in multi-stage and multi-combinations CWs. Therefore, we studied MPs characteristics and removal in a typical CWs WWTP in Changsha, comparing the MPs removal efficiencies of different processes in a WWTP, focusing on the MPs abundance variation in different stages CWs. Result showed that the MPs removal efficiency of Phase Ⅰ was 87.72% and that of Phase II was 80.65%. Approximate estimates showed that the daily discharge of MPs reached 7.20 * 108 items. The MPs removal efficiency of vertical flow CWs was 25.71%. The MPs removal efficiencies of secondary and tertiary horizontal subsurface flow CWs (HSSFCWs) were 32.00% and 21.43%. The MPs removal efficiencies of secondary and tertiary surface flow CWs were 23.53% and 12.50%. The MPs removal efficiencies of three bio-ponds were -23.08%, -12.90%, and -27.27%. Combined system of bio-pond + CWs reduced the MPs removal efficiency. The most dominant shape of MPs in wastewater was fibers. The most common MPs were polyethylene and polystyrene. The primary treatment in the Changsha WWTP had the highest MPs removal efficiency. Results of this investigation showed the multi-combination and multi-stage CWs WWTP can remove most of MPs in influent, which greatly reduced the amount of MPs discharged into the aquatic environment through WWTP and provided data for analyzing the distribution of MPs in the aquatic environment.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| | - Jianwu Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - Xu Lai
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd., Changsha, 410006, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Chaoping Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Jinsong Cao
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Lingshi Yin
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
13
|
Tran HT, Lin C, Lam SS, Le TH, Hoang HG, Bui XT, Rene ER, Chen PH. Biodegradation of high di-(2-Ethylhexyl) phthalate (DEHP) concentration by food waste composting and its toxicity assessment using seed germination test. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120640. [PMID: 36403881 DOI: 10.1016/j.envpol.2022.120640] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/15/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a plasticizer derived from phthalate ester, is used as an additive in industrial products such as plastics, paints, and medical devices. However, DEHP is known as an endocrine-disrupting chemical, causing cancers and adverse effects on human health. This study evaluated DEHP biodegradation efficiency via food waste composting during 35 days of incubation. At high DEHP concentrations (2167 mg kg-1) in food waste compost mixture, the DEHP biodegradation efficiency was 99% after 35 days. The highest degradation efficiency was recorded at the thermophilic phase (day 3 - day 11) with the biodegradation rate reached 187 mg kg-1 day-1. DEHP was metabolized to dibutyl phthalate (DBP) and dimethyl phthalate (DMP) and would be oxidized to benzyl alcohol (BA) and mineralized into CO2 and water via various metabolisms. Finally, the compost's quality with residual DEHP was evaluated using Brassica chinensis L. seeds via 96 h of germination tests. The compost (at day 35) with a trace amount of DEHP as the end product showed no significant effect on the germination rate of Brassica chinensis L. seeds (88%) compared to that without DEHP (94%), indicating that the compost can be reused as fertilizer in agricultural applications. These results provide an improved understanding of the DEHP biodegradation via food waste composting without bioaugmentation and hence facilitating its green remediation and conversion into value-added products. Nevertheless, further studies are needed on DEHP biodegradation in large-scale food waste composting or industrial applications.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, 700000, Viet Nam; Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, 700000, Viet Nam
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Thi Hieu Le
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Hong-Giang Hoang
- Faculty of Medicine, Dong Nai Technology University, Bien Hoa, Dong Nai, 76100, Vietnam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2601DA, Delft, the Netherlands
| | - Po Han Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| |
Collapse
|
14
|
Zhang X, Zhang J, She Y, Li Y, Cheng H, Ji R, Bian Y, Han J, Jiang X, Song Y, Xue J. Comparison of the performance of hydrochar, raw biomass, and pyrochar as precursors to prepare porous biochar for the efficient sorption of phthalate esters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157511. [PMID: 35872190 DOI: 10.1016/j.scitotenv.2022.157511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this study, three high-performance porous biochars were synthesized by the cocarbonization of Pistia stratiotes-derived precursors (raw biomass, hydrochar and pyrochar) with potassium hydroxide and utilized for the sorption of diethyl phthalate from aqueous solution. The developed pore structure, surface functional groups, high hydrophobicity characteristic and graphene structure of porous biochars contributed to the excellent sorption quantity of up to 813 mg g-1 (Ce, 25 mg L-1). Among the three precursors, hydrochar-derived porous biochar showed better properties in terms of its specific surface area and hydrophobicity, and it displayed the highest sorption capacity. The sorption kinetics and isotherm experiments confirmed that pore filling and partitioning dominated the sorption capacity while the mass transfer, hydrogen bonding and π-π stacking in the hydrochar limited the sorption rate. This finding helped to propose a feasible method for the efficient utilization of invasive aquatic plants and provided novel insight into the selection of precursors for preparing porous biochars.
Collapse
Affiliation(s)
- Xinrui Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Jiapeng Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yutong She
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Li
- Jiangsu Institute of Geological Survey, Nanjing 210018, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| | - Rongting Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Jianming Xue
- New Zealand Forest Research Institute (Scion), Christchurch 8440, New Zealand
| |
Collapse
|
15
|
Cao Y, Xu S, Zhang K, Lin H, Wu R, Lao JY, Tao D, Liu M, Leung KMY, Lam PKS. Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119683. [PMID: 35772618 DOI: 10.1016/j.envpol.2022.119683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑15PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑15PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑15PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705-29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, 999078, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
16
|
Xing H, Yu X, Huang J, Du X, Wang M, Sun J, Lu G, Tao X. Characteristics and Health Risks of Phthalate Ester Contamination in Soil and Plants in Coastal Areas of South China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159516. [PMID: 35954873 PMCID: PMC9367859 DOI: 10.3390/ijerph19159516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 02/01/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers in industrial and commercial products, and are classified as endocrine-disrupting compounds. In this study, we investigated the contamination characteristics and health risks of PAEs in the soil–plant system in coastal areas of South China. PAEs were detected in soil and plant samples at all 37 sampling sites. The total concentration of the 15 PAEs in soil samples ranged from 0.445 to 4.437 mg/kg, and the mean concentration was 1.582 ± 0.937 mg/kg. The total concentration of the 15 PAEs in plant samples ranged from 2.176 to 30.276 mg/kg, and the mean concentration was 8.712 ± 5.840 mg/kg. Di(2-Ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP) were the major PAEs compounds in all samples. The selected contaminants exhibited completely different spatial distributions within the study area. Notably, higher concentrations of PAEs were found in the coastal Guangdong Province of South China. The average noncarcinogenic risks of Σ6 PAEs were at acceptable levels via dietary and nondietary routes. However, the noncarcinogenic risks posed by DEHP and DBP at some sampling sites were relatively high. Furthermore, dietary and nondietary carcinogenic risks were very low for BBP, but carcinogenic risks posed by DEHP via diet. The results suggest that PAEs in the coastal soil–plant system in South China, through human risk assessment, will induce some adverse effects on human health, especially in children. This study provides an important basis for risk management of PAEs in agriculture, and safety in coastal areas of South China.
Collapse
Affiliation(s)
- Huanhuan Xing
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
| | - Xiaodong Du
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
| | - Mengting Wang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
| | - Jianteng Sun
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (X.Y.); (J.H.)
- Correspondence: (J.S.); (G.L.)
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; (H.X.); (X.D.); (M.W.)
- Correspondence: (J.S.); (G.L.)
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
17
|
Bai L, Dong X, Wang F, Ding X, Diao Z, Chen D. A review on the removal of phthalate acid esters in wastewater treatment plants: from the conventional wastewater treatment to combined processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:51339-51353. [PMID: 35614357 DOI: 10.1007/s11356-022-20977-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
In the past decades, phthalate acid esters (PAEs), as a new class of recalcitrant environmental contaminant, have attracted increasing concern due to their potential hazards to reproductive system. wastewater treatment plants (WWTPs) are generally regarded as a crucial barrier to prevent a variety of contaminants from introducing into aquatic environment. This paper reviews the occurrence, fate, and removal efficacy of six widely appearing PAEs in conventional wastewater treatment. PAEs removal appears to be compound- and process-dependent. Advanced treatment processes, including activated carbon, advanced oxidation process (AOPs), membrane filtration, and membrane bioreactor, show good performance in PAEs elimination, but many methods have been commercially limited by toxic byproducts, high operation, and maintenance costs. Even though combined processes are qualified as a promising alternative, further studies are required to optimize these processes, especially the competitiveness between technique and economy.
Collapse
Affiliation(s)
- Lin Bai
- Department of Assets and Laboratory Management, Qingdao University of Technology, Qingdao, 266033, China
| | - Xiaowan Dong
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Fangshu Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Xiaohan Ding
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Zhikai Diao
- Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Chen
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
18
|
Feng JR, Deng QX, Ni HG. Photodegradation of phthalic acid esters under simulated sunlight: Mechanism, kinetics, and toxicity change. CHEMOSPHERE 2022; 299:134475. [PMID: 35381265 DOI: 10.1016/j.chemosphere.2022.134475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The photodegradation of two phthalic acid esters (PAEs), dimethyl phthalate (DMP) and di-n-octyl phthalate (DOP), under simulated sunlight in aqueous or organic phases (n-hexane (HEX) and dichloromethane (DCM)) was investigated. The mean photodegradation rates were ranked by half-lives as follows: DOP in DCM (3.77 h) < DMP in DCM (9.62 h) < DOP in H2O (3.99 days) < DMP in H2O (19.2 days) < DOP in HEX (21.0 days) < DMP in HEX (>30 days). Compound-specific stable isotope analysis (CSIA) combined with intermediate analysis was employed to explore the involved initial photoreaction mechanism. C-O bond cleavage, chlorine radical adduction to the aromatic ring, competing reactions of chlorine radical adduction to the aromatic ring and side chain, and a singlet oxygen-mediated pathway were mainly responsible for initial photodegradation mechanism of PAEs in H2O, DMP in DCM, DOP in DCM, and DOP in HEX, respectively. Furthermore, distinct isotope fractionation patterns of PAEs photodegradation open the possibility of using CSIA to differentiate the involved solvents in the field. More toxic and recalcitrant intermediates emerged during the photodegradation of DMP in DCM, while the risk to human health was reduced during the photochemical transformation of DOP in organic solvents.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Qing-Xin Deng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|