1
|
Saha B, Ateia M, Tolaymat T, Fernando S, Varghese JR, Golui D, Bezbaruah AN, Xu J, Aich N, Briest J, Iskander SM. The unique distribution pattern of PFAS in landfill organics. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135678. [PMID: 39217946 PMCID: PMC11483333 DOI: 10.1016/j.jhazmat.2024.135678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
PFAS from degrading landfill waste partition into organic matter, leachate, and landfill gas. Driven by the limited understanding of PFAS distribution in landfill organics, we analyzed PFAS across various depths and seven spatially distinct locations within a municipal landfill. The measured PFAS concentrations in organics ranged from 6.71 to 73.06 µg kg-1, a sum of twenty-nine PFAS from six classes. Perfluorocarboxylic acids (PFCAs) and fluorotelomer carboxylic acids (FTCAs) were the dominant classes, constituting 25-82 % and 8-40 % of total PFAS at different depths. PFBA was the most dominant PFCA with a concentration range of 0.90-37.91 µg kg-1, while 5:3 FTCA was the most prevalent FTCA with a concentration of 0.26-17.99 µg kg-1. A clear vertical distribution of PFAS was observed, with significantly greater PFAS concentrations at the middle depths (20-35 ft), compared to the shallow (10-20 ft) and high depths (35-50 ft). A strong positive correlation (r > 0.50) was noted between total PFAS, total carbon, and dissolved organic matter in landfill organics. Multivariate statistical analysis inferred common sources and transformations of PFAS within the landfill. This study underscores the importance of a system-level analysis of PFAS fate in landfills, considering waste variability, chemical properties, release mechanisms, and PFAS transformations.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Mohamed Ateia
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, United States
| | - Thabet Tolaymat
- U S Environmental Protection Agency Office of Research and Development, 26 Martin Luther King Dr W, Cincinnati, OH 45268, United States
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Juby R Varghese
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Department of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Achintya N Bezbaruah
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States
| | - Nirupam Aich
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - John Briest
- Weaver Consultants Group, Centennial, CO 80111, United States
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58102, United States; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
2
|
Tokranov AK, Ransom KM, Bexfield LM, Lindsey BD, Watson E, Dupuy DI, Stackelberg PE, Fram MS, Voss SA, Kingsbury JA, Jurgens BC, Smalling KL, Bradley PM. Predictions of groundwater PFAS occurrence at drinking water supply depths in the United States. Science 2024:eado6638. [PMID: 39446898 DOI: 10.1126/science.ado6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/31/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), known colloquially as "forever chemicals", have been associated with adverse human health effects and have contaminated drinking water supplies across the United States owing to their long-term and widespread use. People in the United States may unknowingly be drinking water that contains PFAS because of a lack of systematic analysis, particularly in domestic water supplies. We present an extreme gradient boosting model for predicting the occurrence of PFAS in groundwater at the depths of drinking water supply for the conterminous United States. Our model results indicate that 71 to 95 million people in the conterminous United States potentially rely on groundwater with detectable concentrations of PFAS for their drinking-water supplies prior to any treatment.
Collapse
|
3
|
Usman M, Chaudhary A, Hanna K. Efficient PFAS removal from contaminated soils through combined washing and adsorption in soil effluents. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135118. [PMID: 38981229 DOI: 10.1016/j.jhazmat.2024.135118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/01/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024]
Abstract
This study investigates soil washing as a viable strategy to remove poly- and perfluoroalkyl substances (PFAS) from contaminated soils using various washing agents including water, methanol, ethanol, and cyclodextrin ((2-Hydroxypropyl)-β-cyclodextrin HPCD)). Water was less effective (removing only 30 % of PFAS), especially for long-chain hydrophobic PFAS. Methanol (50 % v/v) or HPCD (10 mg g-1 soil) achieved > 95 % PFAS removal regardless of PFAS type, soil size fraction (0-400 µm or 400-800 µm), or experimental setups (batch or column, at liquid/solid (L/S) = 1). Column optimization studies revealed improved efficiency at L/S = 10 with diluted washing solutions, where HPCD exhibited rapid PFAS mobilization even at lower concentrations (1 mg mL-1). We then applied a first-order decay model to effectively predict PFAS breakthrough curves and mobilization within soil columns. Subsequent treatment of wash effluents by activated carbon and biochar effectively reduced PFAS concentrations below detection limits. The performance of both soil washing and subsequent adsorption was found to depend strongly on the specific characteristics of PFAS compounds. These findings highlight the significant potential of methanol and HPCD in soil washing and the effectiveness of integrated soil washing and adsorption for optimizing PFAS removal.
Collapse
Affiliation(s)
- Muhammad Usman
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| | - Aaifa Chaudhary
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France; Environmental Mineralogy & Chemistry, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
| | - Khalil Hanna
- Université de Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
4
|
Lasters R, Groffen T, Eens M, Bervoets L. Per- and polyfluoroalkyl substances (PFAS) in homegrown crops: Accumulation and human risk assessment. CHEMOSPHERE 2024; 364:143208. [PMID: 39214403 DOI: 10.1016/j.chemosphere.2024.143208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Homegrown crops can present a significant exposure source of per- and polyfluoroalkyl substances (PFAS) to humans. Field studies studying PFAS accumulation in multiple vegetable food categories and examining the potential influence of soil characteristics on vegetable bioavailability under realistic exposure conditions are very scarce. Crop PFAS accumulation depends on a complex combination of factors. The physicochemical differences among the numerous PFAS makes risk assessment very challenging. Thus, simplification of this complexity into key factors that govern crop PFAS accumulation is critical. This study analyzed 29 targeted legacy, precursor and emerging PFAS in the vertical soil profile (0-45 cm depth), rainwater and edible crop parts of 88 private gardens, at different distances from a major fluorochemical plant. Gardens closer to the plant site showed higher soil concentrations which could be linked with historical and recent industrial emissions. Most compounds showed little variation along the soil depth profile, regardless of the distance from the plant site, which could be due to gardening practices. Annual crops consistently accumulated higher sum PFAS concentrations than perennials. Highest concentrations were observed in vegetables, followed by fruits and walnuts. Single soil-crop relationships were weak, which indicated that other factors (e.g., porewater) may be better measures of bioavailability in homegrown crop accumulation. Regression models, which additionally considered soil characteristics showed limited predictive power (all R2 ≤ 35%), possibly due to low variability in crop concentrations. Human intake estimations revealed that the PFAS exposure risk via crop consumption was similar nearby and remotely from the plant site, although the contribution to the overall dietary exposure can be relatively large. The tolerable weekly intake was frequently exceeded with respect to fruit and vegetable consumption, thus potential health risks cannot be ruled out.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
5
|
Beryani A, Furén R, Österlund H, Tirpak A, Smith J, Dorsey J, Winston RJ, Viklander M, Blecken GT. Occurrence, Concentration, and Distribution of 35 PFASs and Their Precursors Retained in 20 Stormwater Biofilters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14518-14529. [PMID: 39078743 PMCID: PMC11325539 DOI: 10.1021/acs.est.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Current knowledge about the fate and transport behaviors of per- and polyfluoroalkyl substances (PFASs) in urban stormwater biofilter facilities is very limited. C5-14,16 perfluoroalkyl carboxylic acids [perfluorinated carboxylic acids (PFCAs)], C4,8,10 perfluoroalkanesulfonic acids (PFSAs), methyl-perfluorooctane sulfonamide acetic acid (MeFOSAA, a PFSA precursor), and unknown C6-8 PFCA and perfluorooctanesulfonic acid precursors were frequently found in bioretention media and forebay sediments at Σ35PFAS concentrations of <0.03-19 and 0.064-16 μg/kg-DW, respectively. Unknown C6-8 PFCA precursor concentrations were up to ten times higher than the corresponding PFCAs, especially at forebays and biofilters' top layer. No significant trend could be attributed to PFAS and precursor concentrations versus depth of filter media, though PFAS concentrations were 2-3 times higher in the upper layers on average (significant difference between the upper (0-5 cm) and deepest (35-50 cm) layer). PFASs had a similar spatial concentration distribution in each filter media (no clear difference between short- and long-chain PFASs). Commercial land use and organic matter were important factors explaining the concentration variations among the biofilters and between the sampling depths, respectively. Given the comparable PFAS accumulations in deeper and superficial layers and possible increased mobility after precursor biotransformation, designing shallow-depth, nonamended sand biofilters or maintaining only the top layer may be insufficient for stormwater PFAS management.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Robert Furén
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
- NCC Sverige AB, Department of Research, and Innovation, 170 80 Solna, Sweden
| | - Heléne Österlund
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Andrew Tirpak
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Joseph Smith
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Jay Dorsey
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
| | - Ryan J Winston
- Department of Food, Agricultural, and Biological Engineering, Ohio State University, Agricultural Engineering Building, 590 Woody Hayes Dr, Columbus, Ohio 43210, United States
- Department of Civil, Environmental, and Geodetic Engineering, Ohio State University, Hitchcock Hall, 2070 Neil Avenue, Columbus, Ohio 43210, United States
- Core Faculty, Sustainability Institute, Ohio State University, Smith Lab 174 W, 18th Avenue, Columbus, Ohio 43210, United States
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
6
|
Xie D, Tang L, Huang Y, Lu P, Wang F, Guo H, Rose NL. Understanding the role of atmospheric deposition on the environmental load of per- and polyfluoroalkyl substances: A case study in Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174605. [PMID: 38997030 DOI: 10.1016/j.scitotenv.2024.174605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Sixty-nine total suspended particle (TSP) samples, paired with forty-eight surface soil samples, covering four seasons from January 2021 to November 2021, were collected from the Three Gorges Reservoir Region (TGRR). Twenty per- and poly-fluoroalkyl substances (PFASs) were analyzed to evaluate their contamination characteristics and understand the role of atmospheric deposition on the environmental loads in TGRR. The annual average concentrations of PFASs in TSP and soil were 37.2 ± 1.22 pg·m-3 and 0.798 ± 0.134 ng·g-1, respectively. For TSP, concentrations were highest in spring and lowest in summer. For soil, it was in autumn and winter, respectively. The seasonality was more influenced by anthropogenic activities than by meteorological conditions or physicochemical parameters of the soil. Positive matrix fractionation (PMF) indicated that, based on annual averages, PFOA-based products (40.2 %) were the major sources of PFASs in TSP, followed by PFOS-based products (25.2 %) and precursor degradation (34.6 %). The highest source contributor for PFASs in spring was precursor degradation (40.9 %), while in other three seasons, it was PFOA-based products (39.9 %, 40.9 % and 52.0 %, respectively). The mean atmospheric dry and wet deposition fluxes of PFASs were estimated at 4.38 ng·m-2·day-1 and 23.5 ng·m-2·day-1, respectively. The contribution of atmospheric deposition to the inventory mass of PFASs in the surface soil was 22.3 %. These findings fill a gap in knowledge regarding the processes and mechanisms of the occurrence, sources and atmospheric deposition of PFASs in the TGRR.
Collapse
Affiliation(s)
- Donghang Xie
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Liang Tang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yazhou Huang
- Kaizhou District Nature Reserve Management Center, Kaizhou, Chongqing, China
| | - Peili Lu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Fengwen Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China.
| | - Hai Guo
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong, China
| | - Neil L Rose
- Environmental Change Research Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Li X, Wang Y, Cui J, Shi Y, Cai Y. Occurrence and Fate of Per- and Polyfluoroalkyl Substances (PFAS) in Atmosphere: Size-Dependent Gas-Particle Partitioning, Precipitation Scavenging, and Amplification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9283-9291. [PMID: 38752583 DOI: 10.1021/acs.est.4c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The concerns about the fate of per- and polyfluoroalkyl substances (PFAS) in the atmosphere are continuously growing. In this study, size-fractionated particles, gas, and rainwater samples were simultaneously collected in Shijiazhuang, China, to investigate the multiphase distribution of PFAS in the atmosphere. Perfluoroalkyl carboxylic acids (PFCAs) dominated the total concentration of PFAS in atmospheric media. A strong positive relationship (0.79 < R2 < 0.99) was observed between the concentration of PFCAs and organic matter fraction (fOM) in different particle size fractions, while no such relationship for perfluoroalkyl sulfonic acids (PFSAs) and fOM, suggesting fOM may be an important factor influencing the size-dependent distribution of PFCAs. Temperature played a key role in the gas-particle partitioning of PFAS, while it did not significantly affect their particle-size-dependent distribution. The associative concentration fluctuation of particle and particle-bound PFAS during precipitation suggested that precipitation scavenging was an important mechanism for the removal of PFAS from the atmosphere. Furthermore, temporary increases in atmospheric PFAS concentrations were observed during the precipitation. Fugacity ratios of PFAS in rainwater and gas phase (log fR/fG ranged between 2.0 and 6.6) indicated a strong trend for PFAS to diffuse from the rainwater to the gas phase during the precipitation, which may explain that the concentration of PFAS in the gas phase continued to increase even at the end of the precipitation.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Wang
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jiansheng Cui
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yali Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Nakazawa Y, Kosaka K, Asami M, Matsui Y. Maximum desorption of perfluoroalkyl substances adsorbed on granular activated carbon used in full-scale drinking water treatment plants. WATER RESEARCH 2024; 254:121396. [PMID: 38479172 DOI: 10.1016/j.watres.2024.121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
Activated carbon adsorption is an effective method for removing perfluoroalkyl substances (PFAS) from water. However, the observation that higher concentrations of PFAS are observed after treatment than before (i.e., desorption) is an important, unsolved issue. In this study, to elucidate PFAS desorption and its relationship with PFAS properties, we conducted solvent extraction and long-term desorption experiments using granular activated carbon (GAC) that had been loaded with PFAS in two actual drinking water treatment plants. The amount of PFAS extracted from GAC depended on the depth in the GAC filter; longer-chain and hydrophobic PFAS were present in relatively higher amounts in the shallow part compared to the deep part of the GAC filter, whereas shorter-chain and hydrophilic PFAS were present in relatively higher amounts in the deep part compared to the shallow part. This pattern was probably due to a chromatographic effect by which hydrophilic PFAS adsorbed once, subsequently desorbed, and migrated from the shallow part of the GAC filter to the deeper part. The desorption potential of PFAS to water (i.e., the maximum amount of PFAS desorbed to water per unit mass of GAC) was estimated by conducting long-term bottle-point desorption tests and analyzing the relationship between the equilibrium water-phase concentration of PFAS in a bottle containing GAC and the amount of PFAS desorbed to water per unit GAC mass. The desorption ratio (ratio of desorption potential to loading) was the highest for PFAS for which the logarithm of the octanol/water distribution coefficient (Log DOW) ranged from -1 to 1. The implication was that most of those PFAS removed by GAC were likely to return to the water as the external water-phase concentrations dropped. The decrease of the desorption ratio to 20 % as Log DOW increased suggested irreversible adsorption due to hydrophobic affinity.
Collapse
Affiliation(s)
- Yoshifumi Nakazawa
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan.
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Mari Asami
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako, Saitama 351-0197, Japan
| | - Yoshihiko Matsui
- Faculty of Engineering, Hokkaido University, N13W8, Sapporo 060-8628, Japan
| |
Collapse
|
9
|
Lasters R, Groffen T, Eens M, Bervoets L. Dynamic spatiotemporal changes of per- and polyfluoroalkyl substances (PFAS) in soil and eggs of private gardens at different distances from a fluorochemical plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123613. [PMID: 38423274 DOI: 10.1016/j.envpol.2024.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Homegrown food serves as an important human exposure source of per- and polyfluoroalkyl substances (PFAS), yet little is known about their spatiotemporal distribution within and among private gardens. This knowledge is essential for more accurate site-specific risk assessment, identification of new sources and evaluating the effectiveness of regulations. The present study evaluated spatiotemporal changes of legacy and emerging PFAS in surface soil from vegetable gardens (N = 78) and chicken enclosures (N = 102), as well as in homegrown eggs (N = 134) of private gardens, across the Province of Antwerp (Belgium). Hereby, the potential influence of the wind orientation and distance towards a major fluorochemical plant was examined. The ∑short-chain PFAS and precursor concentrations were higher in vegetable garden soil (8.68 ng/g dry weight (dw)) compared to chicken enclosure soil (4.43 ng/g dw) and homegrown eggs (0.77 ng/g wet weight (ww)), while long-chain sulfonates and C11-14 carboxylates showed the opposite trend. Short-term (2018/2019-2022) changes were mostly absent in vegetable garden soil, while changes in chicken enclosure soils oriented S-SW nearby (<4 km) the fluorochemical plant were characterized by a local, high-concentration plume. Moreover, soil from chicken enclosures oriented SE and remotely from the plant site was characterized by a widespread, diffuse but relatively low-concentration plume. Long-term data (2010-2022) suggest that phaseout and regulatory measures have been effective, as PFOS concentrations nearby the fluorochemical plant in soil and eggs have declined from 25.8 to 2.86 ng/g dw and from 528 to 39.4 ng/g ww, respectively. However, PFOS and PFOA concentrations have remained largely stable within this timeframe in gardens remotely from the plant site, warranting further rapid regulation and remediation measures. Future monitoring efforts are needed to allow long-term comparison for multiple PFAS and better distinction from potential confounding variables, such as variable emission outputs and variability in wind patterns.
Collapse
Affiliation(s)
- Robin Lasters
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Thimo Groffen
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Marcel Eens
- Behavioural Ecology and Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - Lieven Bervoets
- ECOSPHERE, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
10
|
Golosovskaia E, Örn S, Ahrens L, Chelcea I, Andersson PL. Studying mixture effects on uptake and tissue distribution of PFAS in zebrafish (Danio rerio) using physiologically based kinetic (PBK) modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168738. [PMID: 38030006 DOI: 10.1016/j.scitotenv.2023.168738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitously distributed in the aquatic environment. They include persistent, mobile, bioaccumulative, and toxic chemicals and it is therefore critical to increase our understanding on their adsorption, distribution, metabolism, excretion (ADME). The current study focused on uptake of seven emerging PFAS in zebrafish (Danio rerio) and their potential maternal transfer. In addition, we aimed at increasing our understanding on mixture effects on ADME by developing a physiologically based kinetic (PBK) model capable of handling co-exposure scenarios of any number of chemicals. All studied chemicals were taken up in the fish to varying degrees, whereas only perfluorononanoate (PFNA) and perfluorooctanoate (PFOA) were quantified in all analysed tissues. Perfluorooctane sulfonamide (FOSA) was measured at concerningly high concentrations in the brain (Cmax over 15 μg/g) but also in the liver and ovaries. All studied PFAS were maternally transferred to the eggs, with FOSA and 6:2 perfluorooctane sulfonate (6,2 FTSA) showing significant (p < 0.02) signs of elimination from the embryos during the first 6 days of development, while perfluorobutane sulfonate (PFBS), PFNA, and perfluorohexane sulfonate (PFHxS) were not eliminated in embryos during this time-frame. The mixture PBK model resulted in >85 % of predictions within a 10-fold error and 60 % of predictions within a 3-fold error. At studied levels of PFAS exposure, competitive binding was not a critical factor for PFAS kinetics. Gill surface pH influenced uptake for some carboxylates but not the sulfonates. The developed PBK model provides an important tool in understanding kinetics under complex mixture scenarios and this use of New Approach Methodologies (NAMs) is critical in future risk assessment of chemicals and early warning systems.
Collapse
Affiliation(s)
| | - Stefan Örn
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Ioana Chelcea
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
11
|
Anderson RH, Modiri M. Application of Gaussian mixture models to quantify the upper background threshold for perfluorooctane sulfonate (PFOS) in U.S. surface soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:229. [PMID: 38306000 DOI: 10.1007/s10661-024-12400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Studies on the occurrence and environmental distribution of per- and polyfluoroalkyl substances (PFAS) have clearly demonstrated their ubiquity in surface soil as a result of historic and ongoing emissions from various manufacturing and industrial activities worldwide. Given global efforts to characterize and mitigate risk from point source-impacted sites, there is, thus, an urgent need to quantify nonpoint source threshold concentrations (i.e., background) to support site management decisions particularly for perfluorooctane sulfonate (PFOS) as a top priority. Accordingly, this study evaluated the application of Gaussian mixture models (GMMs) fitted to log-transformed PFOS concentrations using nation-wide metadata consisting of thousands of surface soil samples representative of both background and aqueous film-forming foam (AFFF) impacts with unknown proportion. Multiple GMMs were fitted for a given number of components using different methods to account for bias associated with a marginal non-detect fraction (n = 8%) including exclusion, substitution, and imputation. Careful evaluation of the rate of change among multiple goodness-of-fit measures universally justified fitting a 2-component GMM; thus, discriminating between background and AFFF-impacted samples among the metadata. Background threshold PFOS concentrations were defined as the intersection of the probability density functions and ranged between 1.9 and 13.8 µg/kg within a broader concentration range extending up to ~ 50,000 µg/kg reflecting AFFF impacts. By demonstrating an innovative statistical approach that intelligently incorporates different criteria for model selection, this research makes significant contributions to risk mitigation efforts at point source-impacted sites and lays the groundwork for future targeted regulatory actions.
Collapse
Affiliation(s)
| | - Mahsa Modiri
- EA Engineering, Science, and Technology, Inc, PCB, Hunt Valley, MD, 21031, USA
| |
Collapse
|
12
|
Röhler K, Susset B, Grathwohl P. Production of perfluoroalkyl acids (PFAAs) from precursors in contaminated agricultural soils: Batch and leaching experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166555. [PMID: 37633401 DOI: 10.1016/j.scitotenv.2023.166555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Contamination of soils with per- and polyfluoroalkyl substances (PFAS) (e.g., aqueous film forming foams (AFFFs) or PFAS containing biosolids applied to agricultural soils) can lead to large scale groundwater pollution. For site management, knowledge about the extent and time scales of PFAS contamination is crucial. At such sites, often persistent perfluoroalkyl acids (PFAAs) and so-called precursors, which can be transformed into PFAAs, co-occur. In this study, the release of PFAAs from 14 soil samples from an agricultural site in southwest Germany contaminated via compost/paper sludge was investigated. Rapid leaching of C4-C8 perfluoroalkyl carboxylic acids (PFCA) was observed in saturated column tests, while slowing down with increasing chain-length (≥ C9 PFCAs). Two selected samples were further incubated in batch-tests after removal of existing C4-C8 PFCAs in extensive column leaching tests until a liquid-solid ratio of 10 l/kg. During 60 days of incubation, aqueous concentrations of C4-C8 PFCAs increased linearly by a factor of 29-222, indicating continuous production by transformation of precursors. The potential PFAA-precursor reservoir was estimated by the direct total oxidizable precursor (dTOP) assay. PFCA concentrations after the dTOP increased up to two orders of magnitude. Production rates determined in batch-tests combined with the results of dTOP assay were used to estimate time scales for the duration of C4-C8 PFCAs emission from the contaminated agricultural soils which likely will last for several decades.
Collapse
Affiliation(s)
- Klaus Röhler
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Bernd Susset
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany
| | - Peter Grathwohl
- Department of Geosciences, University of Tübingen, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Niarchos G, Georgii L, Ahrens L, Kleja DB, Fagerlund F. A systematic study of the competitive sorption of per- and polyfluoroalkyl substances (PFAS) on colloidal activated carbon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115408. [PMID: 37666203 DOI: 10.1016/j.ecoenv.2023.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023]
Abstract
Treatment of environmental media contaminated with per- and polyfluoroalkyl substances (PFAS) is crucial to mitigate mounting health risks associated with exposure. Colloidal activated carbon (CAC) has shown promise in treating contaminated soils, but understanding the interaction among PFAS during sorption is necessary for optimal remediation. This study investigated the extent to which PFAS of varying chain lengths and functional groups compete for sorption to CAC. Batch tests were conducted with natural soil and spiked water, using CAC at 0.2% w/w to remove seven PFAS with individual starting concentrations up to 0.05 mmol L-1. PFAS sorption to CAC was evaluated in three systems: a composite mixture of all studied compounds, a binary-solute system, and a single-solute system. The sorption experiments exhibited strong PFAS affinity to CAC, with removal rates between 41% and 100%, and solid/liquid partition coefficients (Kd) between 10 and 104 L kg-1. Differences were noticed among the various spiking mixtures, based on perfluorocarbon chain length, functional group, and the starting PFAS concentrations. Competition effects were detected when PFAS were in a multi-solute system, with an average 10% drop in removal, which can evidently become more relevant at higher concentrations, due to the observed non-linearity of the sorption process. The PFAS most vulnerable to competition effects in multi-solute systems were the short-chain perfluoropentanoic acid (PFPeA) and perfluorobutane sulfonic acid (PFBS), with an up to 25% reduction in removal. In bi-solute systems, perfluorooctane sulfonamide (FOSA) dominated over its ionisable counterparts, i.e. perfluorooctane sulfonic acid (PFOS) and perfluorononanoic acid (PFNA), indicating the importance of hydrophobic effects or layer formation in the sorption process. These results underscore the importance of considering competition in PFAS sorption processes when designing and implementing remediation techniques for PFAS-contaminated media.
Collapse
Affiliation(s)
- Georgios Niarchos
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden.
| | - Linnea Georgii
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07 Uppsala, Sweden
| | - Dan Berggren Kleja
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), P. O. Box 7090, SE-750 07 Uppsala, Sweden
| | - Fritjof Fagerlund
- Department of Earth Sciences, Uppsala University, P.O. Box 256, SE-751 05 Uppsala, Sweden
| |
Collapse
|
14
|
Dauchy X. Evidence of large-scale deposition of airborne emissions of per- and polyfluoroalkyl substances (PFASs) near a fluoropolymer production plant in an urban area. CHEMOSPHERE 2023; 337:139407. [PMID: 37414291 DOI: 10.1016/j.chemosphere.2023.139407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/31/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Airborne emissions of per- and polyfluoroalkyl substances (PFASs) from fluoropolymer manufacturing facilities-especially those producing polyvinylidene (PVDF)-have rarely been investigated. Once PFASs are released into the air from the facility stacks, they settle in the surrounding environment, contaminating all surfaces. Human beings living in close proximity to these facilities can be exposed through air inhalation and ingestion of contaminated vegetables, drinking water or dust. In this study, we collected nine surface soil and five outdoor settled dust samples within 200 m of the fence line of a PVDF and fluoroelastomer production site near Lyon (France). Samples were collected in an urban area including a sports field. High concentrations of long-chain perfluoroalkyl carboxylic acids (PFCAs) (C ≥ 9) were found at sampling points downwind of the facility. Perfluoroundecanoic acid (PFUnDA) was the predominant PFAS in surface soil (12-245 ng/g dw), whereas perfluorotridecanoic acid (PFTrDA) was in outdoor dust (<0.5-59 ng/g dw). The PFAS profiles observed in soil and dust samples very likely originate from the processing aids used for PVDF and fluoroelastomer production. To our knowledge, long-chain PFCA concentrations as high as reported herein have never been found outside the perimeter fencing of a fluoropolymer plant. PFAS concentrations in other environmental compartments (such as air, vegetables or groundwater) should be monitored to assess all potential pathways to exposure of nearby residents before carrying out human biomonitoring.
Collapse
Affiliation(s)
- Xavier Dauchy
- ANSES, Nancy Laboratory for Hydrology, Water Chemistry Department, 40 Rue Lionnois, 54000, Nancy, France.
| |
Collapse
|
15
|
Roesch P, Vogel C, Wittwer P, Huthwelker T, Borca CN, Sommerfeld T, Kluge S, Piechotta C, Kalbe U, Simon FG. Taking a look at the surface: μ-XRF mapping and fluorine K-edge μ-XANES spectroscopy of organofluorinated compounds in environmental samples and consumer products. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023. [PMID: 37335293 DOI: 10.1039/d3em00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
For the first time, μ-X-ray fluorescence (μ-XRF) mapping combined with fluorine K-edge μ-X-ray absorption near-edge structure (μ-XANES) spectroscopy was applied to depict per- and polyfluoroalkyl substance (PFAS) contamination and inorganic fluoride in sample concentrations down to 100 μg kg-1 fluoride. To demonstrate the matrix tolerance of the method, several PFAS contaminated soil and sludge samples as well as selected consumer product samples (textiles, food contact paper and permanent baking sheets) were investigated. μ-XRF mapping allows for a unique element-specific visualization at the sample surface and enables localization of fluorine containing compounds to a depth of 1 μm. Manually selected fluorine rich spots were subsequently analyzed via fluorine K-edge μ-XANES spectroscopy. To support spectral interpretation with respect to inorganic and organic chemical distribution and compound class determination, linear combination (LC) fitting was applied to all recorded μ-XANES spectra. Complementarily, solvent extracts of all samples were target-analyzed via LC-MS/MS spectrometry. The detected PFAS sum values range from 20 to 1136 μg kg-1 dry weight (dw). All environmentally exposed samples revealed a higher concentration of PFAS with a chain length > C8 (e.g. 580 μg kg-1 dw PFOS for Soil1), whereas the consumer product samples showed a more uniform distribution with regard to chain lengths from C4 to C8. Independent of quantified PFAS amounts via target analysis, μ-XRF mapping combined with μ-XANES spectroscopy was successfully applied to detect both point-specific concentration maxima and evenly distributed surface coatings of fluorinated organic contaminants in the corresponding samples.
Collapse
Affiliation(s)
- Philipp Roesch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Christian Vogel
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Philipp Wittwer
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Thomas Huthwelker
- Paul Scherrer Institute, Swiss Light Sources, 5232 Villigen PSI, Switzerland
| | - Camelia N Borca
- Paul Scherrer Institute, Swiss Light Sources, 5232 Villigen PSI, Switzerland
| | - Thomas Sommerfeld
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Stephanie Kluge
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Christian Piechotta
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ute Kalbe
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Franz-Georg Simon
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
16
|
Guckert M, Rupp J, Nürenberg G, Nödler K, Koschorreck J, Berger U, Drost W, Siebert U, Wibbelt G, Reemtsma T. Differences in the internal PFAS patterns of herbivores, omnivores and carnivores - lessons learned from target screening and the total oxidizable precursor assay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162361. [PMID: 36842595 DOI: 10.1016/j.scitotenv.2023.162361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) are a group of anthropogenic chemicals, which are not (fully) biodegradable and accumulate in different environmental compartments worldwide. A comprehensive, quantitative analysis - consisting of target analysis (66 different analytes, including e. g. ultrashort-chain perfluorinated carboxylic acids (PFCAs), precursor compounds and novel substitutes) and the Total Oxidisable Precursor (TOP) assay (including trifluoroacetic acid (TFA)) - were conducted to analyse the PFAS concentrations and patterns in 12 mammalian and two bird species from different areas of Germany and Denmark. The PFAS contamination was investigated in dependance of the trophic class (herbivores, omnivores, carnivores), ecological habitat (terrestrial, (semi-) aquatic) and body tissue (liver, musculature). PFAS concentrations were highest in carnivores, followed by omnivores and herbivores, with ∑PFAS concentration ranging from 1274 μg/kg (Eurasian otter liver) to 22 μg/kg (roe deer liver). TFA dominated in the herbivorous species, whereas perfluorooctanesulfonic acid (PFOS) and the long-chain PFCAs covered the majority of the PFAS contamination in carnivorous species. Besides trophic class, ecological habitat also affected the PFAS levels in the different species, with terrestrial herbivores and omnivores showing higher PFAS concentration than their aquatic counterparts, whereas for carnivores this relationship was reversed. The TOP assay analysis indicated similar trends, with the PFCA formation pattern differing significantly between the trophic classes. TFA was formed predominantly in herbivorous and omnivorous species, whereas in carnivorous species a broad spectrum of PFCAs (chain-length C2-C14) was formed. Musculature tissue of six species exhibited significantly lower PFAS concentrations than the respective liver tissue, but with similar PFAS patterns. The comprehensive approach applied in the present study showed, that primarily the trophic class is decisive for the PFAS concentration, as herbivores, omnivores and carnivores clearly differed in their PFAS concentrations and patterns. Additionally, the TOP assay gave novel insights in the PFCA formation potential in biota samples.
Collapse
Affiliation(s)
- Marc Guckert
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Jana Rupp
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Gudrun Nürenberg
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Karsten Nödler
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Jan Koschorreck
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Urs Berger
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research (ITAW), University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Buesum, Germany
| | - Gudrun Wibbelt
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04301 Leipzig, Germany
| |
Collapse
|
17
|
Han Z, Oyeyemi BF, Zenobio JE, Salawu OA, Adeleye AS. Perfluorooctanoic acid dominates the molecular-level effects of a mixture of equal masses of perfluorooctanoic acid and perfluorooctane sulfonic acid in earthworm. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131718. [PMID: 37269561 DOI: 10.1016/j.jhazmat.2023.131718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/14/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are an important class of emerging contaminants in the environment. Most studies on the impact of PFAS mixtures considered phenotypic endpoints, which may not adequately reflect the sublethal effects on organisms. To fill this knowledge gap, we investigated the subchronic impact of environmentally relevant concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)-as individual compounds and a mixture (PFOS+PFOA)-on earthworm (Eisenia fetida), using phenotypic and molecular endpoints. PFAS decreased the survival (12.2-16.3%), biomass (9.0-9.8%), and reproduction (15.6-19.8%) of E. fetida after 28 d of exposure. The bioaccumulation of PFOS after 28 d increased (from 2790.7 ng/g-dw to 5224.9 ng/g-dw) while that of PFOA decreased (from 780.2 ng/g-dw to 280.5 ng/g-dw) when E. fetida was exposed to the mixture compared to the individual compounds. These bioaccumulation trends were partly attributed to changes in the soil distribution coefficient (Kd) of PFOS and PFOA when present in the mixture. Eighty percent of the (p and FDR < 0.05) altered metabolites after 28 d were similarly perturbed by both PFOA and PFOS+PFOA. The pathways dysregulated are related to the metabolism of amino acids, energy, and sulfur. We showed that PFOA dominates the molecular-level impact of the binary PFAS mixture.
Collapse
Affiliation(s)
- Ziwei Han
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617, USA
| | - Bolaji F Oyeyemi
- Molecular Biology Group, Department of Science Technology, The Federal Polytechnic, Ado-Ekiti, Ekiti, Nigeria
| | - Jenny E Zenobio
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617, USA
| | - Omobayo A Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
18
|
Rupp J, Guckert M, Berger U, Drost W, Mader A, Nödler K, Nürenberg G, Schulze J, Söhlmann R, Reemtsma T. Comprehensive target analysis and TOP assay of per- and polyfluoroalkyl substances (PFAS) in wild boar livers indicate contamination hot-spots in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162028. [PMID: 36740073 DOI: 10.1016/j.scitotenv.2023.162028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The suitability of wild boar liver as a bioindicator of per- and polyfluoroalkyl substances (PFAS) in the terrestrial environment was investigated. Samples from 50 animals in three different areas associated with (1) contaminated paper sludges distributed on arable land (PS), (2) industrial emissions of PFAS (IE) and (3) background contamination (BC) were analyzed for 66 PFAS, including legacy PFAS, novel substitutes and precursors of perfluoroalkyl acids (PFAAs). Additionally, the Total Oxidizable Precursor (TOP) assay was performed to determine the formation potential of PFAAs from precursors. In total, 31 PFAS were detected with site-specific contamination profiles. PFAS concentrations in livers from area PS and IE (567 and 944 μg kg-1 wet weight, respectively) were multiple times higher than from area BC (120 μg kg-1). The dominating PFAS were the legacy compounds perfluorooctane sulfonic acid (PFOS) in areas PS and BC (426 and 82 μg kg-1, respectively) and perfluorooctanoic acid (PFOA) in area IE (650 μg kg-1). In area IE, the compounds 4,8-dioxa-3H-perfluorononanoic acid (DONA) and hexafluoropropylene oxide dimer acid (HFPO-DA) - which are used as substitutes for PFOA - were determined at 15 and 0.29 μg kg-1, respectively. The formation potential of PFAAs was highest in area PS, but generally lower than the contamination with PFAAs. The pattern of perfluoroalkyl carboxylic acids (PFCAs) in wild boar liver reflects the contamination of the local soil at the two hot-spot areas IE and PS. This first comparison of PFAS contamination between wild boars and soil suggests that wild boar livers are suitable bioindicators for PFAS contamination in the terrestrial environment. Moreover, in terrestrial samples from area IE, legacy PFAS were found to be retained for a longer period as compared to riverine samples (suspended particulate matter and chub filet).
Collapse
Affiliation(s)
- Jana Rupp
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany.
| | - Marc Guckert
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Urs Berger
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wiebke Drost
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Anneluise Mader
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Karsten Nödler
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany.
| | - Gudrun Nürenberg
- TZW: DVGW Water Technology Center, Karlsruher Str. 84, 76139 Karlsruhe, Germany
| | - Jona Schulze
- German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, 06813 Dessau-Rosslau, Germany
| | - Reiner Söhlmann
- District Office Rastatt, Office for Environment and Commercial Operator Inspection, Am Schlossplatz 5, 76437 Rastatt, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry, Permoserstrasse 15, 04318 Leipzig, Germany; Institute of Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04301 Leipzig, Germany.
| |
Collapse
|
19
|
Sörengård M, Bergström S, McCleaf P, Wiberg K, Ahrens L. Long-distance transport of per- and polyfluoroalkyl substances (PFAS) in a Swedish drinking water aquifer. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119981. [PMID: 35988673 DOI: 10.1016/j.envpol.2022.119981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Use of per- and polyfluoroalkyl substance (PFAS)-containing aqueous film-forming foams (AFFF) at firefighting training sites (FFTS) has been linked to PFAS contamination of drinking water. This study investigated PFAS transport and distribution in an urban groundwater aquifer used for drinking water production that has been affected by PFAS-containing AFFF. Soil, sediment, surface water and drinking water were sampled. In soil (n = 12) at a FFTS with high perfluorooctane sulfonate (PFOS) content (87% of ∑PFAS), the ∑PFAS concentration (n = 26) ranged from below detection limit to 560 ng g-1 dry weight. In groundwater (n = 28), the ∑PFAS concentration near a military airbase FFTS reached 1000 ng L-1. Principal component analysis (PCA) identified the military FFTS as the main source of PFAS contamination in drinking water wellfields >10 km down-gradient. Groundwater samples taken close to the military FFTS site showed no ∑PFAS concentration change between 2013 and 2021, while a location further down-gradient showed a transitory 99.6% decrease. Correlation analysis on PFAS composition profile indicated that this decrease was likely caused by dilution from an adjacent conflating aquifer. ∑PFAS concentration reached 15 ng L-1 (PFOS 47% and PFHxS 41% of ∑PFAS) in surface river water (n = 6) and ranged between 1 ng L-1 and 8 ng L-1 (PFHxS 73% and PFBS 17% of ∑PFAS) in drinking water (n = 4). Drinking water had lower PFAS concentrations than the wellfields due to PFAS removal at the water treatment plant. This demonstrates the importance of monitoring PFAS concentrations throughout a groundwater aquifer, to better understand variations in transport from contamination sources and resulting impacts on PFAS concentrations in drinking water extraction areas.
Collapse
Affiliation(s)
- Mattias Sörengård
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Sofia Bergström
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Philip McCleaf
- Uppsala Water and Waste Ltd., P.O. Box 1444, SE-751 44, Uppsala, Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), P.O. Box 7050, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
20
|
Zhu W, Khan K, Roakes H, Maker E, Underwood KL, Zemba S, Badireddy AR. Vermont-wide assessment of anthropogenic background concentrations of perfluoroalkyl substances in surface soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129479. [PMID: 35803188 DOI: 10.1016/j.jhazmat.2022.129479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/09/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Shallow surface soils from 66 suburban sampling locations across Vermont were analyzed for 17 different perfluoroalkyl acids (PFAA). PFAA were detected in all 66 surface soils, with a total concentration of PFAA ranging from 540 to 36,000 ng/kg dry soil weight (dw). Despite the complexity of site-specific factors, some general trends and correlations in PFAA concentrations were observed. For instance, perfluoro-1-octanesulfonate (PFOS) dominated in all soil samples while seven other PFAA, including perfluoro-n-nonanoic acid, perfluoro-n-octanoic acid, perfluoro-n-hexanoic acid, perfluoro-n-heptanoic acid, perfluoro-n-decanoic acid, perfluoro-n-undecanoic acid, perfluoro-1-butanesulfonate, and perfluoro-1-hexanesulfonate (PFNA, PFOA, PFHxA, PFHpA, PFDA, PFUnDA, and PFBS, respectively), were identified at more than 50 % of the locations. Perfluoroalkyl carboxylic acids (PFCA) showed a positive correlation with total organic carbon, whereas no clear correlation was observed for perfluoroalkyl sulfonate acids (PFSA). In addition, variations in geographical distributions of PFAA were observed, with relatively higher total PFAA in northern regions when compared to Southern Vermont. Moreover, PFHxA, PFNA, PFDA, PFUnDA, PFOS, and total PFAA were positively correlated to land-use types in Northern Vermont. These results are useful for understanding unique behaviors of PFCA vs. PFSA in geospatially distributed surface soils and for providing anthropogenic background data for setting PFAS cleanup standards for surface soils.
Collapse
Affiliation(s)
- Wenyu Zhu
- Department of Civil and Environmental Engineering, The University of Vermont, Burlington, VT 05405, USA
| | - Kamruzzaman Khan
- Department of Civil and Environmental Engineering, The University of Vermont, Burlington, VT 05405, USA
| | - Harrison Roakes
- Sanborn, Head & Associates, Inc., 187 Saint Paul Street suite 4-C, Burlington, VT 05401, USA
| | - Elliot Maker
- Department of Civil and Environmental Engineering, The University of Vermont, Burlington, VT 05405, USA
| | - Kristen L Underwood
- Department of Civil and Environmental Engineering, The University of Vermont, Burlington, VT 05405, USA
| | - Stephen Zemba
- Sanborn, Head & Associates, Inc., 187 Saint Paul Street suite 4-C, Burlington, VT 05401, USA
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
21
|
Cousins IT, Johansson JH, Salter ME, Sha B, Scheringer M. Outside the Safe Operating Space of a New Planetary Boundary for Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11172-11179. [PMID: 35916421 PMCID: PMC9387091 DOI: 10.1021/acs.est.2c02765] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 05/16/2023]
Abstract
It is hypothesized that environmental contamination by per- and polyfluoroalkyl substances (PFAS) defines a separate planetary boundary and that this boundary has been exceeded. This hypothesis is tested by comparing the levels of four selected perfluoroalkyl acids (PFAAs) (i.e., perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), and perfluorononanoic acid (PFNA)) in various global environmental media (i.e., rainwater, soils, and surface waters) with recently proposed guideline levels. On the basis of the four PFAAs considered, it is concluded that (1) levels of PFOA and PFOS in rainwater often greatly exceed US Environmental Protection Agency (EPA) Lifetime Drinking Water Health Advisory levels and the sum of the aforementioned four PFAAs (Σ4 PFAS) in rainwater is often above Danish drinking water limit values also based on Σ4 PFAS; (2) levels of PFOS in rainwater are often above Environmental Quality Standard for Inland European Union Surface Water; and (3) atmospheric deposition also leads to global soils being ubiquitously contaminated and to be often above proposed Dutch guideline values. It is, therefore, concluded that the global spread of these four PFAAs in the atmosphere has led to the planetary boundary for chemical pollution being exceeded. Levels of PFAAs in atmospheric deposition are especially poorly reversible because of the high persistence of PFAAs and their ability to continuously cycle in the hydrosphere, including on sea spray aerosols emitted from the oceans. Because of the poor reversibility of environmental exposure to PFAS and their associated effects, it is vitally important that PFAS uses and emissions are rapidly restricted.
Collapse
Affiliation(s)
- Ian T. Cousins
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jana H. Johansson
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew E. Salter
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Bo Sha
- Department
of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
- RECETOX, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|