1
|
Shahrokhi R, Rahman A, Hubbe MA, Park J. Aminated clay-polymer composite as soil amendment for stabilizing the short- and long-chain per- and poly-fluoroalkyl substances in contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134470. [PMID: 38714051 DOI: 10.1016/j.jhazmat.2024.134470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
Soils contaminated with per- and poly- fluoroalkyl substances (PFAS) require immediate remediation to protect the surrounding environment and human health. A novel animated clay-polymer composite was developed by applying polyethyleneimine (PEI) solution onto a montmorillonite clay-chitosan polymer composite. The resulting product, PEI-modified montmorillonite chitosan beads (MMTCBs) were characterized as an adsorptive soil amendment for immobilizing PFAS contaminants. The MMTCBs exhibited good efficiency to adsorb the PFAS, showing adsorption capacities of 12.2, 16.7, 18.5, and 20.8 mg g-1 for PFBA, PFBS, PFOA, and PFOS, respectively, which were higher than those obtained by granular activated carbon (GAC) (i.e., an adsorbent used as a reference). Column leaching tests demonstrated that amending soil with 10% MMTCBs resulted in a substantial decrease in the leaching of PFOA, PFOS, PFBA, and PFBS by 90%, 100%, 64%, and 68%, respectively. These reductions were comparable to the values obtained for GAC-modified soil, particularly for long-chain PFAS. Incorporating MMTCBs into the soil not only preserved the structural integrity of the soil matrix but also enhanced its shear strength (kPa). Conversely, adding GAC to the soil resulted in a reduction of the soil's mechanical properties.
Collapse
Affiliation(s)
- Rahim Shahrokhi
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea.
| | - Aneesu Rahman
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Martin A Hubbe
- Department of Forest Biomaterials, North Carolina State University, NC, United States
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea; Institute of Construction and Environmental Engineering, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Amalina F, Krishnan S, Zularisam AW, Nasrullah M. Pristine and modified biochar applications as multifunctional component towards sustainable future: Recent advances and new insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169608. [PMID: 38157898 DOI: 10.1016/j.scitotenv.2023.169608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Employing biomass for environmental conservation is regarded as a successful and environmentally friendly technique since they are cost-effective, renewable, and abundant. Biochar (BC), a thermochemically converted biomass, has a considerably lower production cost than the other conventional activated carbons. This material's distinctive properties, including a high carbon content, good electrical conductivity (EC), high stability, and a large surface area, can be utilized in various research fields. BC is feasible as a renewable source for potential applications that may achieve a comprehensive economic niche. Despite being an inexpensive and environmentally sustainable product, research has indicated that pristine BC possesses restricted properties that prevent it from fulfilling the intended remediation objectives. Consequently, modifications must be made to BC to strengthen its physicochemical properties and, thereby, its efficacy in decontaminating the environment. Modified BC, an enhanced iteration of BC, has garnered considerable interest within academia. Many modification techniques have been suggested to augment BC's functionality, including its adsorption and immobilization reliability. Modified BC is overviewed in its production, functionality, applications, and regeneration. This work provides a holistic review of the recent advances in synthesizing modified BC through physical, chemical, or biological methods to achieve enhanced performance in a specific application, which has generated considerable research interest. Surface chemistry modifications require the initiation of surface functional groups, which can be accomplished through various techniques. Therefore, the fundamental objective of these modification techniques is to improve the efficacy of BC contaminant removal, typically through adjustments in its physical or chemical characteristics, including surface area or functionality. In addition, this article summarized and discussed the applications and related mechanisms of modified BC in environmental decontamination, focusing on applying it as an ideal adsorbent, soil amendment, catalyst, electrochemical device, and anaerobic digestion (AD) promoter. Current research trends, future directions, and academic demands were available in this study.
Collapse
Affiliation(s)
- Farah Amalina
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Santhana Krishnan
- Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla 90110, Thailand
| | - A W Zularisam
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lbh Persiaran Tun Khalil Yaakob, 26300 Gambang, Kuantan, Pahang, Malaysia.
| |
Collapse
|
3
|
Qin H, Sun J, Yang X, Li H, Li X, Wang R, He S, Zhou C. Defective UiO-66 metal-organic gels for optimizing gaseous toluene capture. J Colloid Interface Sci 2024; 655:23-31. [PMID: 37924588 DOI: 10.1016/j.jcis.2023.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Developing high-performance sorbents for volatile organic compounds (VOCs) is urgently required for environmental cleaning and personnel protection. Zirconium-based metal-organic frameworks (Zr-MOFs) have been deemed attractive candidates for gaseous toluene capture due to their superior stability and high adsorption capacity. However, the practical application of powdered Zr-MOFs is hindered by inherent limitations. Here, we report a series of defective UiO-66 metal-organic gels (G66-X) with variable missing linker deficiency by altering the modulator concentration. The defect concentration of the adsorbents has a significant impact on the porosity and gaseous toluene adsorption capacity. Dynamic breakthrough results reveal that G66-9 demonstrates optimal breakthrough time of 336 min/g and uptake amount of 334 mg/g, outperforming those of many other typical toluene adsorbents. The breakthrough times and the uptake capacities dramatically decrease with the increase of adsorption temperature. An outstanding regeneration performance of adsorbents can almost maintain even after five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Haojie Qin
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Junwei Sun
- School of Safety Science and Emergency Management, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Xiaobin Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Xiaopeng Li
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Song He
- School of Safety Science and Emergency Management, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 100191, China.
| |
Collapse
|
4
|
Ni H, Fan RD, Reddy KR, Du YJ. Containment of phenol-impacted groundwater by vertical cutoff wall with backfill consisting of sand and bentonite modified with hydrophobic and hydrophilic polymers. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132627. [PMID: 37793264 DOI: 10.1016/j.jhazmat.2023.132627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
A novel soil-bentonite backfill is proposed for use in vertical cutoff walls to contain phenol in groundwater at contaminated sites. The backfill consists of sand and bentonite modified with tetramethylammonium and carboxymethylcellulose, labeled as STCMB backfill. Flexible-wall permeability and double-reservoir diffusion tests were conducted to investigate the impact of phenol solution on hydraulic conductivity (k), effective diffusion coefficient (D*) and partition coefficient (Kp) of the backfill, respectively. The permeability results showed k of the STCMB backfill decreased by 0.91 times when the permeating liquid was changed from tap water to phenol solution. The diffusion testing results showed that D* values for the STCMB and conventional backfill (labeled as SCB backfill) were 4.0 × 10-10 m2/s and 3.0 × 10-10 m2/s, respectively, whereas Kp values for the STCMB and SCB backfills were 2.0 mL/g and 0.75 mL/g, respectively. The octanol-water partition coefficient model is suitable for estimating Kp for nonpolar organics. Furthermore, a series of solute transport simulations using Pollute V7 program was performed to evaluate the performance of vertical cutoff walls comprising STCMB and SCB backfills in containing phenol in lateral flowing groundwater. Overall, the STCMB backfill has demonstrated superior effectiveness in containing phenol in groundwater.
Collapse
Affiliation(s)
- Hao Ni
- Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China.
| | - Ri-Dong Fan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Krishna R Reddy
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, IL 60607, USA.
| | - Yan-Jun Du
- Jiangsu Key Laboratory of Urban Underground Engineering & Environmental Safety, Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Sruamsiri D, Shimojima A, Ogawa M. Novel Floating Adsorbent for Water Treatment: Organically Modified Layered Alkali Silicate by Facile Mechanochemical Reaction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41130-41140. [PMID: 37594322 DOI: 10.1021/acsami.3c08229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Adsorption serves as an effective way to collect (remove) contaminants from aqueous solution. In the present study, a novel floating adsorbent was designed through surface modification of a layered alkali silicate (octosilicate) using a silane coupling reagent (chlorodimethyl[3-(2,3,4,5,6-pentafluorophenyl)propyl]silane) to collect metal ions from water. By conducting the grafting by solvent-free mechanochemical reaction at room temperature, the external surface of octosilicate was modified to be hydrophobic while preserving the ion exchange capability in the interlayer space. Characterizations of XRD, IR, SEM, TGA, 29Si MAS NMR, and 19F MAS NMR confirmed the successful grafting at the external surface of octosilicate particles. The modified silicate demonstrated buoyancy at the air-water interface, facilitating the concentration of methylene blue, Ni2+, and Pb2+ from aqueous solutions. The adsorbed amounts of metal ions on the floating adsorbent were greater than those reported for the common nonfloating adsorbents (zeolites, clays, and clay minerals).
Collapse
Affiliation(s)
- Donhatai Sruamsiri
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
6
|
Jiang Q, Jiang M, Han T, He Y, Li T, Zhang J, Su Y, Wu Y, Dian B, Zong Y. Removal of hydrogen sulfide in the gas phase by carbide slag modified bentonite. RSC Adv 2023; 13:20844-20855. [PMID: 37441034 PMCID: PMC10334473 DOI: 10.1039/d3ra03392a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Bentonite-based adsorbents for the removal of hydrogen sulfide (H2S) were prepared by a wet-mixing method using carbide slag as the active component. The effects of carbide slag content, calcination temperature, calcination time, and reaction temperature on the H2S adsorption capacity were investigated. The results showed that compared with the blank bentonite adsorbent, the carbide slag-modified bentonite-based adsorbent enhanced the chemisorption of H2S. The adsorption capacity of the carbide slag modified bentonite adsorbent (2.50 mg g-1) was more than 40 times higher than that of the blank bentonite-based adsorbent (0.06 mg g-1) under optimal conditions. The optimal conditions for H2S removal were 3 : 5 ratio of carbide slag-to-bentonite, calcination temperature of 450 °C for 2 h, and reaction temperature of 95 °C. H2S was mainly removed in the mesopores and macropores of the adsorbent and was finally transformed to CaS and sulfate on the adsorbent surface. The adsorption process of H2S followed the Freundlich adsorption isotherm equation and Bangham adsorption kinetic model.
Collapse
Affiliation(s)
- Qi Jiang
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Tianci Han
- Shandong Pengrun New Materials Co. Ltd. Jining China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Jilai Zhang
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Youbo Su
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Yonglin Wu
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Bo Dian
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| | - Yonglan Zong
- College of Resources and Environment, Yunnan Agricultural University Kunming China
| |
Collapse
|
7
|
Qian J, Su J, Zeng W, Wang Y, Hu Y, Kai G. Comparison of Salvianolic Acid A Adsorption by Phenylboronic-Acid-Functionalized Montmorillonites with Different Intercalators. Molecules 2023; 28:5244. [PMID: 37446905 DOI: 10.3390/molecules28135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Due to its success in treating cardio-cerebrovascular illnesses, salvianolic acid A (SAA) from Salvia miltiorrhiza is of major importance for effective acquisition. For the adsorption of salvianolic acid, cationic polyelectrolytes, and amino-terminated silane intercalated with phenylboronic-acid-functionalized montmorillonites, known as phenylboronic-acid-functionalized montmorillonites with PEI (PMP) and phenylboronic-acid-functionalized montmorillonites with KH550 (PMK), respectively, were produced. In this paper, detailed comparisons of the SAA adsorption performance and morphology of two adsorbents were performed. PMP showed a higher adsorption efficiency (>88%) over a wide pH range. PMK showed less pH-dependent SAA adsorption with a faster adsorption kinetic fitting in a pseudo-second-order model. For both PMP and PMK, the SAA adsorption processes were endothermic. Additionally, it was clearer how temperature affected PMP adsorption. PMK has a higher adsorption selectivity. This study demonstrates how the type of intercalator can be seen to have an impact on adsorption behavior through various structural variations and offers an alternative suggestion for establishing a dependable method for the synthesis of functional montmorillonite from the intercalator's perspective.
Collapse
Affiliation(s)
- Jun Qian
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Jiajia Su
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Weihuan Zeng
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yue Wang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| | - Yingyuan Hu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou 311402, China
| |
Collapse
|
8
|
Chen Y, Yang J, Abbas A. Enhanced Chromium (VI) Adsorption onto Waste Pomegranate-Peel-Derived Biochar for Wastewater Treatment: Performance and Mechanism. TOXICS 2023; 11:toxics11050440. [PMID: 37235254 DOI: 10.3390/toxics11050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Surface chemical modification allows for the rational construction of biochar with desirable structures and functionalities for environment purification. Fruit-peel-derived adsorbing material has been well studied in the adsorption of heavy-metal removal due to its abundance and non-toxicity, but its precise mechanism in removing chromium-containing pollutants remains unclear. Herein, we explored the potential application of engineered biochar prepared from fruit waste via chemical modification to remove chromium (Cr) from an aqueous solution. By synthesizing two types of agricultural residue-derived adsorbents, including pomegranate peel adsorbent (PG) and its modified product, pomegranate-peel-derived biochar (PG-B), via chemical and thermal decomposition methods, we elucidated the adsorption property of Cr(VI) on the studied materials and identified the cation retention mechanism of the adsorption process. Batch experiments and varied characterizations demonstrated that superior activity was exhibited in PG-B, which can contribute to the porous surfaces caused by pyrolysis and effective active sites resulting from alkalization. The highest Cr(VI) adsorption capacity is obtained at pH 4, a dosage of 6.25 g L-1, and a contact time of 30 min. The maximum adsorption efficiency of 90.50% in a short period (30 min) was obtained on PG-B, while PG reached a removal performance of 78.01% at 60 min. The results from kinetic and isotherm models suggested that monolayer chemisorption dominated the adsorption process. The Langmuir maximum adsorption capacity is 16.23 mg g-1. This study shortened the adsorption equilibrium time of pomegranate-based biosorbents and presents positive significance in designing and optimizing waste fruit-peel-derived adsorption materials for water purification.
Collapse
Affiliation(s)
- Yingzhou Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jinyan Yang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Adil Abbas
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Sun W, Zhang T, Li J, Zhu X. Enhanced gaseous acetone adsorption on montmorillonite by ball milling generated Si-OH and interlayer under synergistic modification with H 2O 2 and tetramethylammonium bromide. CHEMOSPHERE 2023; 321:138114. [PMID: 36773681 DOI: 10.1016/j.chemosphere.2023.138114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Montmorillonite (Mt) is a potential adsorbent for volatile organic vapor removal from contaminated soils because of its rich reserves and porous nature, but its inertia surface property has limited its application for polar compounds. In this study, modifications of Mt were carried out by high energy ball milling with H2O2 and tetramethylammonium bromide (TMAB) to obtain adsorbents with both high porosity and abundant Si-OH groups (BHTMt). The microporous structure produced by TMAB insertion as well as the silanol (Si-OH) groups formed by H2O2 oxidation improved the adsorption of acetone by the modified material. The adsorption capacity of BHTMt for acetone was increased by 80% compared to the original Mt. The effect of H2O2 dosage on the adsorption performance for gaseous acetone was investigated by dynamic adsorption experiments. The adsorption kinetic results demonstrated that the adsorption of acetone by the modified material was subject to both physical and chemical adsorption. Density functional theory calculations indicated that there was no obvious interaction between TMAB and acetone, and the materials adsorbed acetone mainly through hydrogen bonding interaction of Si-OH as well as pore filling effects.
Collapse
Affiliation(s)
- Wenrui Sun
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
10
|
Balogun AI, Padmanabhan E, Abdulkareem FA, Gebretsadik HT, Wilfred CD, Soleimani H, Viswanathan PM, Wee BS, Yusuf JY. Optimization of CO 2 Sorption onto Spent Shale with Diethylenetriamine (DETA) and Ethylenediamine (EDA). MATERIALS (BASEL, SWITZERLAND) 2022; 15:8293. [PMID: 36499791 PMCID: PMC9738924 DOI: 10.3390/ma15238293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
A novel technique was employed to optimize the CO2 sorption performance of spent shale at elevated pressure-temperature (PT) conditions. Four samples of spent shale prepared from the pyrolysis of oil shale under an anoxic condition were further modified with diethylenetriamine (DETA) and ethylenediamine (EDA) through the impregnation technique to investigate the variations in their physicochemical characteristics and sorption performance. The textural and structural properties of the DETA- and EDA- modified samples revealed a decrease in the surface area from tens of m2/g to a unit of m2/g due to the amine group dispersing into the available pores, but the pore sizes drastically increased to macropores and led to the creation of micropores. The N-H and C-N bonds of amine noticed on the modified samples exhibit remarkable affinity for CO2 sequestration and are confirmed to be thermally stable at higher temperatures by thermogravimetric (TG) analysis. Furthermore, the maximum sorption capacity of the spent shale increased by about 100% with the DETA modification, and the equilibrium isotherm analyses confirmed the sorption performance to support heterogenous sorption in conjunction with both monolayer and multilayer coverage since they agreed with the Sips, Toth, Langmuir, and Freundlich models. The sorption kinetics confirm that the sorption process is not limited to diffusion, and both physisorption and chemisorption have also occurred. Furthermore, the heat of enthalpy reveals an endothermic reaction observed between the CO2 and amine-modified samples as a result of the chemical bond, which will require more energy to break down. This investigation reveals that optimization of spent shale with amine functional groups can enhance its sorption behavior and the amine-modified spent shale can be a promising sorbent for CO2 sequestration from impure steams of the natural gas.
Collapse
Affiliation(s)
- Asmau Iyabo Balogun
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Eswaran Padmanabhan
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Firas Ayad Abdulkareem
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Haylay Tsegab Gebretsadik
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Cecilia Devi Wilfred
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Hassan Soleimani
- Institute of Hydrocarbon Recovery (IHR), Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
- Geoscience Department, Universiti Teknologi PETRONAS (UTP), Seri Iskandar 32610, Perak, Malaysia
| | - Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri 98009, Sarawak, Malaysia
| | - Boon Siong Wee
- Resource Chemistry Program, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Jemilat Yetunde Yusuf
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| |
Collapse
|
11
|
Zhao D, Liu Y, Ma X, Qian J, Ma Z. Reactive Adsorption Performance and Behavior of Gaseous Cumene on MCM-41 Supported Sulfuric Acid. Molecules 2022; 27:molecules27165129. [PMID: 36014361 PMCID: PMC9416091 DOI: 10.3390/molecules27165129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Efficient removal of cumene from gaseous streams and recovery of its derivatives was accomplished using a MCM-41-supported sulfuric acid (SSA/MCM-41) adsorbent. The results indicated that the removal performance of the SSA/MCM-41 for cumene was significantly influenced by the process conditions such as bed temperature, inlet concentration, bed height, and flow rate. The dose–response model could perfectly describe the collected breakthrough adsorption data. The SSA/MCM-41 adsorbent exhibited a reactive temperature region of 120–170 °C, in which the cumene removal ratios (Xc) were greater than 97%. Rising the bed height or reducing the flow rate enhanced the theoretical adsorption performance metrics, such as theoretical breakthrough time (tB,th) and theoretical breakthrough adsorption capacity (QB,th), whereas increasing the inlet concentration resulted in tB,th shortening and QB,th rising. As demonstrated in this paper, the highest tB,th and QB,th were 69.60 min and 324.50 mg g−1, respectively. Meanwhile, the spent SSA/MCM-41 could be desorbed and regenerated for cyclic reuse. Moreover, two recoverable adsorbed products, 4-isopropylbenzenesulfonic acid and 4, 4′-sulfonyl bis(isopropyl-benzene), were successfully separated and identified using FTIR and 1H/13C NMR characterization. Accordingly, the relevance of a reactive adsorption mechanism was confirmed. This study suggests that the SSA/MCM-41 has remarkable potential for application as an adsorbent for the resource treatment of cumene pollutants.
Collapse
Affiliation(s)
- Dandan Zhao
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yuheng Liu
- Hebei Key Laboratory of Innovative Drug Research and Evaluation, College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
- Correspondence: (Y.L.); (Z.M.); Tel.: +86-0311-80787400 (Z.M.)
| | - Xiaolong Ma
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jinjin Qian
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Correspondence: (Y.L.); (Z.M.); Tel.: +86-0311-80787400 (Z.M.)
| |
Collapse
|