1
|
Huang T, Deng L, Wang S, Tan C, Hu J, Zhu B, Li M, Lu L, Yin Z, Fu B. Effects of Fe(III) on the formation and toxicity alteration of halonitromethanes, dichloroacetonitrile, and dichloroacetamide from polyethyleneimine during UV/chlorine disinfection. WATER RESEARCH 2024; 259:121844. [PMID: 38824795 DOI: 10.1016/j.watres.2024.121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Trace iron ions (Fe(III)) are commonly found in water and wastewater, where free chlorine is very likely to coexist with Fe(III) affecting the disinfectant's stability and N-DBPs' fate during UV/chlorine disinfection, and yet current understanding of these mechanisms is limited. This study investigates the effects of Fe(III) on the formation and toxicity alteration of halonitromethanes (HNMs), dichloroacetonitrile (DCAN), and dichloroacetamide (DCAcAm) from polyethyleneimine (PEI) during UV/chlorine disinfection. Results reveal that the maxima concentrations of HNMs, DCAN, and DCAcAm during UV/chlorine disinfection with additional Fe(III) were 1.39, 1.38, and 1.29 times higher than those without additional Fe(III), instead of being similar to those of Fe(III) inhibited the formation of HNMs, DCAN and DCAcAm during chlorination disinfection. Meanwhile, higher Fe(III) concentration, acidic pH, and higher chlorine dose were more favorable for forming HNMs, DCAN, and DCAcAm during UV/chlorine disinfection, which were highly dependent on the involvement of HO· and Cl·. Fe(III) in the aquatic environment partially hydrolyzed to the photoactive Fe(III)‑hydroxyl complexes Fe(OH)2+ and [Fe(H2O)6]3+, which undergone UV photoactivation and coupling reactions with HOCl to achieve effective Fe(III)/Fe(II) interconversion, a process that facilitated the sustainable production of HO·. Extensive product analysis and comparison verified that the HO· production enhanced by the Fe(III)/Fe(II) internal cycle played a primary role in increasing HNMs, DCAN, and DCAcAm productions during UV/chlorine disinfection. Note that the incorporation of Fe(III) increased the cytotoxicity and genotoxicity of HNMs, DCAN, and DCAcAm formed during UV/chlorine disinfection, and yet Fe(III) did not have a significant effect on the acute toxicity of water samples before, during, and after UV/chlorine disinfection. The new findings broaden the knowledge of Fe(III) affecting HNMs, DCAN, and DCAcAm formation and toxicity alteration during UV/chlorine disinfection.
Collapse
Affiliation(s)
- Tingting Huang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Shui Wang
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Bingqing Zhu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China; School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Mengya Li
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China; School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Zhihua Yin
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Bowen Fu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| |
Collapse
|
2
|
Kim H, Park C, Choi N, Cho K. Congo red dye degradation using Fe-containing mineral as a reactive material derived from waste foundry dust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28443-28453. [PMID: 38546920 PMCID: PMC11058770 DOI: 10.1007/s11356-024-33064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 03/20/2024] [Indexed: 04/30/2024]
Abstract
This study investigated the applicability of industrial waste. The high affinity of Fe-based products is widely used for industrial effluents because of their capability to oxidize contaminants. Waste foundry dust (WFD) is an Fe oxide that has been investigated as a potential reactive material that causes the generation of reactive oxidants. We aimed to investigate the physicochemical properties of WFD and the feasibility in the Fenton oxidation process. The WFD was used as a catalyst for removing Congo red (CR), to evaluate the generation of •OH and dissolution of Fe during the oxidation process. The linkage of •OH generation by WFD with eluted Fe(II) through the Fe dissolution was found. The Fenton oxidation reaction, CR degradation was affected by H2O2 concentration, initial pH, WFD dosage, initial CR concentration, and coexisting anions. The CR degradation efficiency increased with an increase in H2O2 concentration and WFD dosage. In addition, chloride and sulfate in solution promoted CR degradation, whereas carbonate had a negative effect on the Fenton oxidation process. The elution of Fe promotes CR degradation, over three reuse cycles, the degradation performance of the CR decreased from 100 to 81.1%. For the Fenton oxidation process, •OH generation is linked to Fe redox cycling, the surface passivation and Fe complexes interrupted the release of reactive oxidants, which resulted in the degradation of the CR decreased. This study proposed that WFD can serve as catalysts for the removal of CR.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Energy and Resource Engineering, Chosun University, Gwang-Ju, 61452, Korea
| | - Chulhyun Park
- Department of Energy and Resource Engineering, Chosun University, Gwang-Ju, 61452, Korea
| | - Nagchoul Choi
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kanghee Cho
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Ren M, Bai Y, Su J, Min Y, Wang Y, Ali A. Immobilized bioreactor for enhanced ammonia, phosphorus, and phenol removal and effects of phenol on microbial communities, potential functions, and nitrogen metabolism. BIORESOURCE TECHNOLOGY 2024; 393:130161. [PMID: 38065515 DOI: 10.1016/j.biortech.2023.130161] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2024]
Abstract
In the present study, an immobilized bioreactor was established to remove ammonia (NH4+-N), phosphate (PO43--P), and phenol using composite mycelium spheres (CMP) as the immobilization material in combination with Pseudomonas sp. Y1. Under optimal operating conditions, the bioreactor achieved 98.07, 91.71, and 92.57 % removal of NH4+-N, PO43--P, and phenol, respectively. The results showed that the bioreactor removed PO43--P by biomineralization and co-precipitation. Phenol removal relied on a Fenton-like reaction achieved by CMP-induced quinone redox cycling. High-throughput sequencing analysis and functional gene prediction indicated that Pseudomonas was the dominant genus and that the bioreactor had much potential for nitrogen removal, respectively. In addition, phenol affected the performance of functional genes and the associated enzymes, which influenced the nitrogen metabolism process in the bioreactor. This work serves as a guideline for the development of more stable and sustainable composite pollution removal technologies and fungal-bacterial symbiotic systems.
Collapse
Affiliation(s)
- Miqi Ren
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
4
|
Song Z, Xu Y, Wu H, Huang J, Zhang Y. Superior photo-Fenton degradation of acetamiprid by α- Fe 2O 3-pillared bentonite/L-cysteine complex: Synergy of L-cysteine and visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118523. [PMID: 37393869 DOI: 10.1016/j.jenvman.2023.118523] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/16/2023] [Accepted: 06/24/2023] [Indexed: 07/04/2023]
Abstract
Acetamiprid is a potential threat to human health, aquatic life, soil microorganisms and beneficial insects as a recalcitrant pollutant in wastewater treatment plant effluents. In this work, the synthesized α-Fe2O3-pillared bentonite (FPB) was used to degrade acetamiprid in the photo-Fenton process with the assistance of L-cysteine (L-cys) existing in natural aquatic environment. The kinetic constant k of acetamiprid degradation by FPB/L-cys in the photo-Fenton process was far more than that in the Fenton process of FPB/L-cys lacking light and the photo-Fenton process of FPB without L-cys. The positive linear correlation between k and ≡Fe(II) content indicated the synergy of L-cys and visible light accelerated the cycle of Fe(III) to Fe(II) in FPB/L-cys during the degradation of acetamiprid by elevating the visible light response of FPB, and promoting the interfacial electron transfer from the active sites of FPB to hydrogen peroxide and photo-generated electron transfer from conduction band of α-Fe2O3 to the active sites of FPB. The boosting •OH and 1O2 were predominantly responsible for acetamiprid degradation. Acetamiprid could be efficiently degraded into less toxic small molecules in the photo-Fenton process via C-N bond breaking, hydroxylation, demethylation, ketonization, dechlorination, and ring cleavage.
Collapse
Affiliation(s)
- Zhelin Song
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Xu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Honghai Wu
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou, 510006, China
| | - Jiahui Huang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yanlin Zhang
- School of Environment, South China Normal University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & Key Laboratory of Theoretical Chemistry of Environment Ministry of Education, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Fan X, Zhang W, Liu Y, Shi S, Cui Y, Zhao Z, Hou J. Hydrothermal synthesis of sewage sludge biochar for activation of persulfate for antibiotic removal: Efficiency, stability and mechanism. ENVIRONMENTAL RESEARCH 2023; 218:114937. [PMID: 36435489 DOI: 10.1016/j.envres.2022.114937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The use of biochar materials as catalysts to activate persulfate (PS) for the degradation of antibiotics has attracted much attention. In this study, a carbonaceous material (Cu/Zn-SBC) was prepared from sewage sludge by hydrothermal modification. The efficiency of PS activation by Cu/Zn-SBC was investigated using tetracycline (TC) as the model antibiotic. In the Cu/Zn-SBC + PS system, the TC removal rate reached 90.13% at 10 min and exceeded 99% within 4 h. This not only met the requirement of removing large amounts of pollutants in a short time but also achieved the complete removal of pollutants in the subsequent time. Additionally, the Cu/Zn-SBC + PS system was found to be dominated by radical and nonradical pathways. Cu, hydroxyl and carboxyl groups on the surface of Cu/Zn-SBC promoted the production of free radicals and non-free radicals. Under several changes in reaction conditions and water environment factors, the TC removal rate remained above 85% within 10 min. Furthermore, the removal rate of TC was still 85.79% when Cu/Zn-SBC combined with PS was reused twice and 77.14% when reused four times. This study provides an ideal solution for the treatment of sewage sludge, and offers a stable and efficient material for removing antibiotics from wastewater.
Collapse
Affiliation(s)
- Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China; College of Environment, Hohai University, Nanjing, 210098, China; Suzhou Litree Ultra-Filtration Membrane Technology Co., Ltd., Suzhou, 215000, China.
| | - Weiliang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Shang Shi
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Yue Cui
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ziyu Zhao
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Jun Hou
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
6
|
Wei Q, Lu B, Yang Q, Shi C, Wei Y, Xu M, Zhang C, Yuan Y. MoS 2/Au Heterojunction Catalyst for SERS Monitoring of a Fenton-like Reaction. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1169. [PMID: 36770175 PMCID: PMC9920604 DOI: 10.3390/ma16031169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Fenton technology is one of advanced oxidation process (AOP) methods to treat wastewater through chemical oxidation. Due to the limitations of classical iron-based catalysts, it is still challenging to find suitable catalysts for Fenton-like reactions. Here, MoS2/Au heterojunctions were successfully synthesized by reduction of chloroauric acid in the solution of layered MoS2 prepared by hydrothermal method. As a model molecule, methylene blue (MB) was used as the species to be degraded to evaluate the performance of the catalyst. It was determined by UV-visible spectra that the optimal catalyst can be obtained when MoS2 (mg): HAuCl4 (wt. % mL) is 2:2. The Fenton-like reaction process was monitored by introducing highly sensitive surface enhanced Raman spectroscopy (SERS). The results show that MB can be degraded by 83% in the first 10 min of the reaction, indicating that MoS2/Au has good catalytic performance. In addition, as a fingerprint spectrum, SERS was used to preliminarily analyze the molecular structure changes during the degradation process. The result showed that C-N-C bond was easier to break than the C-S-C bond. NH2 group and the fused ring were destroyed at the comparable speed at the first 30 min. In terms of application applicability, it was showed that MB degradation had exceeded 95% at all the three pH values of 1.4, 5.0, and 11.1 after the reaction was carried out for 20 min. The test and analysis of the light environment showed that the catalytic efficiency was significantly improved in the natural light of the laboratory compared to dark conditions. The possible mechanism based on ·OH and ·O2- from ESR data was proposed. In addition, it was demonstrated to be a first-order reaction from the perspective of kinetics. This study made a positive contribution to broaden of the applicable conditions and scope of Fenton-like reaction catalysts. It is expected to be used as a non-iron catalyst in practical industrial applications. From the perspective of detection method, we expect to develop SERS as a powerful tool for the in situ monitoring of Fenton-like reactions, and to further deepen our understanding of the mechanism.
Collapse
Affiliation(s)
- Qian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Beibei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qing Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Can Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yulan Wei
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Minmin Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chenjie Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yaxian Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Wang H, Yu S, Meng X, Wang Z, Gao T, Xiao S. Facile synthesis of fumarate-type iron-cobalt bimetallic MOFs and its application in photo-Fenton degradation of organic dyes. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Niu L, Zhao X, Tang Z, Wu F, Wang J, Lei Q, Liang W, Wang X, Teng M, Zhang X. One-Step mechanochemical preparation of magnetic covalent organic framework for the degradation of organic pollutants by heterogeneous and homogeneous Fenton-like synergistic reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|