1
|
Wei T, Ni H, Ren X, Zhou W, Gao H, Hu S. Fabrication of nitrogen-doped carbon dots biomass composite hydrogel for adsorption of Cu (II) in wastewater or soil and DFT simulation for adsorption mechanism. CHEMOSPHERE 2024; 361:142432. [PMID: 38797204 DOI: 10.1016/j.chemosphere.2024.142432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
With the increase of Cu (II) content, its bioaccumulation becomes a potential pollution to the environment. It is necessary to design an economical and efficient material to remove Cu (II) without causing other environmental hazards. A novel material of alginate composite bead (ALG@NCDs) was synthesized by embedding N-doped carbon dots into pure alginate bead for the adsorption of Cu (II) from wastewater and contaminated soil. The initial concentration, the amount of adsorbent, temperature, adsorption time, and pH value were optimized for the adsorption of Cu (II). According to the Langmuir isothermal adsorption model, the maximum adsorption amount of the material to Cu (II) was 152.44 mg/g. The results of selective adsorption showed that ALG@NCDs had higher affinity to Cu (II) than to Pb (II), Co (II), Ni (II), and Zn (II). After five adsorption-desorption experiment, adsorption capacity of the ALG@NCDs was kept 89% of the initial adsorption capacity. Its Cu (II) adsorption mechanism was studied by density functional theory calculations. In addition, the material could effectively adsorb Cu (II) and release the phytonutrient Ca (II) simultaneously when applied to actual wastewater and soil. The fabricated ALG@NCDs would be a promising material for the adsorption of Cu (II) from wastewater or soil.
Collapse
Affiliation(s)
- Tongyu Wei
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Hanwen Ni
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Xueqin Ren
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Wenfeng Zhou
- Department of Applied Chemistry, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China
| | - Haixiang Gao
- Department of Applied Chemistry, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, PR China.
| | - Shuwen Hu
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Cela-Dablanca R, Barreiro A, Rodríguez-López L, Arias-Estévez M, Fernández-Sanjurjo M, Álvarez-Rodríguez E, Núñez-Delgado A. Azithromycin removal using pine bark, oak ash and mussel shell. ENVIRONMENTAL RESEARCH 2024; 252:119048. [PMID: 38697595 DOI: 10.1016/j.envres.2024.119048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Adsorption is considered an interesting option for removing antibiotics from the environment because of its simple design, low cost, and potential efficiency. In this work we evaluated three by-products (pine bark, oak ash, and mussel shell) as bio-adsorbents for the antibiotic azithromycin (AZM). Furthermore, they were added at doses of 48 t ha-1 to four different soils, then comparing AZM removal for soils with and without bio-adsorbents. Batch-type experiments were used, adding AZM concentrations between 2.5 and 600 μmol L-1 to the different bio-adsorbents and soil + bio-adsorbent mixtures. Regarding the bio-adsorbents, oak ash showed the best adsorption scores (9600 μmol kg-1, meaning >80% retention), followed by pine bark (8280 μmol kg-1, 69%) and mussel shell (between 3000 and 6000 μmol kg-1, 25-50% retention). Adsorption data were adjusted to different models (Linear, Freundlich and Langmuir), showing that just mussel shell presented an acceptable fitting to the Freundlich equation, while pine bark and oak ash did not present a good adjustment to any of the three models. Regarding desorption, the values were always below the detection limit, indicating a rather irreversible adsorption of AZM onto these three by-products. Furthermore, the results showed that when the lowest concentrations of AZM were added to the not amended soils they adsorbed 100% of the antibiotic, whereas when the highest concentrations of AZM were spread, the adsorption decreased to 55%. However, when any of the three bio-adsorbents was added to the soils, AZM adsorption reached 100% for all the antibiotic concentrations used. Desorption was null in all cases for both soils with and without bio-adsorbents. These results, corresponding to an investigation carried out for the first time for the antibiotic AZM, can be seen as relevant in the search of low-cost alternative treatments to face environmental pollution caused by this emerging contaminant.
Collapse
Affiliation(s)
- Raquel Cela-Dablanca
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Ana Barreiro
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain.
| | - Lucía Rodríguez-López
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - Manuel Arias-Estévez
- Soil Science and Agricultural Chemistry, Fac. Sciences, Univ. Vigo, 32004, Ourense, Spain
| | - María Fernández-Sanjurjo
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Esperanza Álvarez-Rodríguez
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| | - Avelino Núñez-Delgado
- Dept. Soil Science and Agricultural Chemistry, Engineering Polytechnic School, Univ. Santiago de Compostela, 27002, Lugo, Spain
| |
Collapse
|
3
|
Algethami JS, Yadav KK, Gacem A, Ali IH, Rezania S, Alhar MSO, Mezni A, Jeon BH, Chaiprapat S. Magnetic sporopollenin supported magnesium nanoparticles for removal of tetracycline as an emerging contaminant from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40257-40268. [PMID: 37294491 DOI: 10.1007/s11356-023-28134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Since the release of antibiotics as emerging contaminants into the environmental water can cause severe difficulties for human health, their removal from the water is necessary. In this regard, a novel environmentally friendly adsorbent was developed based on green sporopollenin, which was magnetized and modified with magnesium oxide nanoparticles to produce MSP@MgO nanocomposite. The newly developed adsorbent was applied to remove tetracycline antibiotic (TC) from aqueous media. The surface morphology of the MSP@MgO nanocomposite was characterized using FTIR, XRD, EDX, and SEM techniques. The effective parameters of the removal process were studied, and it was confirmed that the chemical structure of TC was highly affected by changes in pH solution due to different pKa; therefore, the results showed that pH 5 was the optimum. Also, the maximum sorption capacity of MSP@MgO for TC for adsorption was obtained at 109.89 mg.g-1. In addition, the adsorption models were investigated, and the process was fitted with the Langmuir model. Thermodynamic parameters showed that the process was spontaneous (ΔG < 0), endothermic (ΔH > 0) and the adsorption mechanism was following the physisorption mechanism at room temperature.
Collapse
Affiliation(s)
- Jari S Algethami
- Department of Chemistry, College of Science and Arts, Najran University, P.O. Box, 1988, Najran, 11001, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India.
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq.
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, 21000, Skikda, Algeria
| | - Ismat H Ali
- Department of Chemistry, College of Science, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | | | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sumate Chaiprapat
- Department of Civil and Environmental Engineering, Faculty of Engineering, PSU Energy Systems Research Institute, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
4
|
Flores-Rojas AI, Medellín-Castillo NA, Cisneros-Ontiveros HG, Acosta-Doporto GA, Cruz-Briano SA, Leyva-Ramos R, Berber-Mendoza MS, Díaz-Flores PE, Ocampo-Pérez R, Labrada-Delgado GJ. Detection and mapping of the seasonal distribution of water hyacinth (Eichhornia crassipes) and valorization as a biosorbent of Pb(II) in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40190-40207. [PMID: 37704815 DOI: 10.1007/s11356-023-29780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
In the present research, the presence of water hyacinth (Eichhornia crassipes) on the surface of the San Jose Dam located in the city of San Luis Potosi, S.L.P, Mexico, was monitored and mapped. The monitoring was conducted for 2 years (2018-2020) with remote sensing data from OLI Landsat 8 sensors, based on the normalized difference vegetation index (NDVI). The results demonstrated the capability and accuracy of this method, where it was observed that the aboveground cover area, proliferation, and distribution of water hyacinth are influenced by climatic and anthropogenic factors during the four seasons of the year. As part of a sustainable environmental control of this invasive species, the use of water hyacinth (WH) root (RO), stem (ST), and leaf (LE) components as adsorbent material for Pb(II) present in aqueous solution was proposed. The maximum adsorption capacity was observed at pH 5 and 25 °C and was 107.3, 136.8, and 120.8 mg g-1 for RO, ST, and LE, respectively. The physicochemical characterization of WH consisted of scanning electron microscopy (SEM), N2 physisorption, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), charge distribution, and zero charge point (pHPZC). Due to the chemical nature of WH, several Pb(II) adsorption mechanisms were proposed such as electrostatic attractions, ion exchange, microprecipitation, and π-cation.
Collapse
Affiliation(s)
- Alfredo Israel Flores-Rojas
- Postgraduate Study and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 8, Zona Universitaria, 78290, San Luis Potosi, Mexico
| | - Nahum Andrés Medellín-Castillo
- Postgraduate Study and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 8, Zona Universitaria, 78290, San Luis Potosi, Mexico.
| | - Hilda Guadalupe Cisneros-Ontiveros
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Geiler Abadallan Acosta-Doporto
- Postgraduate Study and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 8, Zona Universitaria, 78290, San Luis Potosi, Mexico
| | - Sergio Armando Cruz-Briano
- Environmental Agenda, Multidisciplinary Graduate Program in Environmental Sciences, University of San Luis Potosi, Av. Dr. M Nava No. 201, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Roberto Leyva-Ramos
- Postgraduate Study and Research Center, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 6, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - María Selene Berber-Mendoza
- Postgraduate Study and Research Center, Faculty of Engineering, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 8, Zona Universitaria, 78290, San Luis Potosi, Mexico
| | - Paola Elizabeth Díaz-Flores
- Postgraduate Study and Research Center, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 6, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | - Raúl Ocampo-Pérez
- Postgraduate Study and Research Center, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Av. Dr. M Nava No. 6, Zona Universitaria, 78210, San Luis Potosi, Mexico
| | | |
Collapse
|
5
|
Worku Z, Tibebu S, Nure JF, Tibebu S, Moyo W, Ambaye AD, Nkambule TTI. Adsorption of chromium from electroplating wastewater using activated carbon developed from water hyacinth. BMC Chem 2023; 17:85. [PMID: 37488644 PMCID: PMC10367414 DOI: 10.1186/s13065-023-00993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/30/2023] [Indexed: 07/26/2023] Open
Abstract
Industrial wastewater polluted with high concentrations of Cr is commonly discharged into water resources without proper treatment. This gives rise to the deterioration of water quality and imposes adverse effects on public health. Therefore, this study is aimed at removing Cr from electroplating wastewater using activated carbon produced from water hyacinth under a full factorial experimental design with three factors and three levels (pH,2,5 and 8, adsorbent dose 0.5,1and1.5 in 100 mL and contact time 30, 60 and120 min). A phosphoric acid solution of 37% was used to activate the carbon, which was then subjected to thermal decomposition for 15 min at 500 °C. The activated carbon was characterized by the presence of a high surface area (203.83 m2/g) of BET, cracking of adsorbent beads of SEM morphology, amorphous nature of XRD, and many functional groups of FTIR such as hydroxyl (3283 cm-1), alkane (2920 cm-1), nitrile (2114 cm-1) and aromatics (1613 cm-1). The minimum Cr adsorption performance of 15.6% was obtained whereas maximum removal of 90.4% was recorded at the experimental condition of pH 2, adsorbent dose of 1.5 g/100 mL, and contact time of 120 min at a fixed value of initial Cr concentration of 100 mg/L. Similarly, the maximum Cr removal from real electroplating wastewater was 81.2% at this optimum point. Langmuir's model best described the experimental value at R2 0.96 which implies the adsorption is chemically bonded, homogeneous, and monolayer. Pseudo-second-order model best fits with the experimental data with R2 value of 0.99. The adsorbent was regenerated for seven cycles and the removal efficiency decreased from 93.25% to 21.35%. Finally, this technology is promising to be scaled up to an industrial level.
Collapse
Affiliation(s)
- Zemene Worku
- Department of Environmental Engineering, Addis Ababa Science, and Technology University, 16417, Addis Ababa, Ethiopia.
| | - Samuel Tibebu
- Department of Environmental Engineering, Addis Ababa Science, and Technology University, 16417, Addis Ababa, Ethiopia
| | - Jemal Fito Nure
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| | - Solomon Tibebu
- Department of Environmental Engineering, Addis Ababa Science, and Technology University, 16417, Addis Ababa, Ethiopia
| | - Welldone Moyo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| | - Abera Demeke Ambaye
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), University of South Africa, Science Campus Florida, Johannesburg, South Africa
| |
Collapse
|
6
|
Dos Reis GS, Schnorr CE, Dotto GL, Vieillard J, Netto MS, Silva LFO, De Brum IAS, Thyrel M, Lima ÉC, Lassi U. Wood waste-based functionalized natural hydrochar for the effective removal of Ce(III) ions from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64067-64077. [PMID: 37060415 DOI: 10.1007/s11356-023-26921-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
In this study, a sustainable and easily prepared hydrochar from wood waste was studied to adsorb and recover the rare earth element cerium (Ce(III)) from an aqueous solution. The results revealed that the hydrochar contains several surface functional groups (e.g., C-O, C = O, OH, COOH), which largely influenced its adsorption capacity. The effect of pH strongly influenced the Ce(III) removal, achieving its maximum removal efficiency at pH 6.0 and very low adsorption capacity under an acidic solution. The hydrochar proved to be highly efficient in Ce(III) adsorption reaching a maximum adsorption capacity of 327.9 mg g-1 at 298 K. The kinetic and equilibrium process were better fitted by the general order and Liu isotherm model, respectively. Possible mechanisms of Ce(III) adsorption on the hydrochar structure could be explained by electrostatic interactions and chelation between surface functional groups and the Ce(III). Furthermore, the hydrochar exhibited an excellent regeneration capacity upon using 1 mol L-1 of sulfuric acid (H2SO4) as eluent, and it was reused for three cycles without losing its adsorption performance. This research proposes a sustainable approach for developing an efficient adsorbent with excellent physicochemical and adsorption properties for Ce(III) removal.
Collapse
Affiliation(s)
- Glaydson S Dos Reis
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Carlos E Schnorr
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 27000, Evreux, France.
| | - Julien Vieillard
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, COBRA (UMR 6014), 27000, Evreux, France
| | - Matias S Netto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Irineu A S De Brum
- Institute of Chemistry, Federal University of Rio Grande Do Sul, P.O.15003, Porto Alegre, 91501-970, Brazil
| | - Mikael Thyrel
- Department of Forest Biomaterials and Technology, Biomass Technology Centre, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Éder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul, P.O.15003, Porto Alegre, 91501-970, Brazil
| | - Ulla Lassi
- Research Unit of Sustainable Chemistry, University of Oulu, P.O. Box 3000, 90014, Oulu, Finland
- Unit of Applied Chemistry, University of Jyvaskyla, Kokkola University Consortium Chydenius, Talonpojankatu 2B, 67100, Kokkola, Finland
| |
Collapse
|
7
|
Checa-Artos M, Barcos-Arias M, Sosa-Del Castillo D, Vanegas ME, Ruiz-Barzola O. Fitorremediación de cinco productos farmaceúticos registrados como contaminantes emergentes en medio acuoso empleando la especie Jacinto de Agua (Eichhornia crassipes). BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
La contaminación de los sistemas acuáticos de agua dulce constituye un problema ambiental recurrente en el ámbito mundial, que se agudiza cada vez más con la presencia frecuente de nuevos compuestos químicos, tal es el caso de los contaminantes emergentes, dentro de los cuales se incluyen los productos farmacéuticos. El objetivo de esta investigación fue estimar la capacidad de la especie jacinto de agua (Eichhornia crassipes) para remover del medio acuoso cinco fármacos altamente recetados y de venta libre como ciprofloxacina, ibuprofeno, sulfametaxazol, diclofenaco y acetaminofén. El trabajo se llevó a cabo en condiciones de invernadero a una temperatura de 25 0C y a un pH de 6,5; con una toma de muestras cada 24 h a diferentes concentraciones (3, 6, 9,12) mg/L.
Para el análisis de las muestras se utilizó Espectrofotometría UV-VIS con lectura directa de las absorbancias de cada uno de los fármacos.
Se empleó la metodología de superficies de respuesta para el análisis estadístico de los datos, lo que permitió determinar los modelos para establecer tiempos y concentraciones óptimas maximizando la absorción de cada producto farmacéutico, así como obtener las pendientes de crecimiento para definir hacia donde se puede proyectar el óptimo.
Los principales resultados en este estudio indican que E. crassipes removió 95% de diclofenaco en soluciones acuosas con una concentración de 3 mg/L en un tiempo de 24 h, seguido de ciprofloxacina y acetaminofén con una remoción máxima de 91,18% y 71% a las 96 h, respectivamente. Mientras que los más bajos porcentajes de remoción se obtuvo para ibuprofeno y sulfametaxazol con 57,56% y 36%, respectivamente.
En el presente estudio, se comprobó la alta capacidad de remoción E. crassipes de los cinco productos farmacéuticos en condiciones controladas, evidenciando una gran posibilidad de aplicación en el campo de la fitorremediación de contaminantes emergentes en medio acuoso, lo cual constituye un importante aporte en este ámbito de la investigación.
Palabras clave: Fitorremediación, contaminantes emergentes, jacinto de agua (Eichhornia crassipes), superficie de respuesta
Collapse
Affiliation(s)
- Miriam Checa-Artos
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador ; Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí-Ecuador
| | - Milton Barcos-Arias
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador; Facultad de Ingenierías. Universidad Espíritu Santo. Samborondón, Ecuador
| | - Daynet Sosa-Del Castillo
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| | - María Eulalia Vanegas
- Centro de Estudios Ambientales, Departamento de Química Aplicada y Sistemas de Producción, Facultad de Ciencias Químicas, Universidad de Cuenca, Av 12 de Abril y Agustín Cueva, Cuenca, Ecuador
| | - Omar Ruiz-Barzola
- Escuela Superior Politécnica del Litoral, Departamento de Estadística, Universidad de Salamanca, USal, Salamanca-España ESPOL, Facultad de Ciencias de la Vida, FCV, Centro de Investigaciones Biotecnológicas del Ecuador, CIBE, Campus Gustavo Galindo Km 30.5 Vía Perimetral, ESPOL, Apartado Postal: 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
8
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
9
|
Xu J, Li X, Gao T. The Multifaceted Function of Water Hyacinth in Maintaining Environmental Sustainability and the Underlying Mechanisms: A Mini Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16725. [PMID: 36554606 PMCID: PMC9779344 DOI: 10.3390/ijerph192416725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Water hyacinth (Eichhornia crassipes) (WH) is a widespread aquatic plant. As a top invasive macrophyte, WH causes enormous economic and ecological losses. To control it, various physical, chemical and biological methods have been developed. However, multiple drawbacks of these methods limited their application. While being a noxious macrophyte, WH has great potential in many areas, such as phytoremediation, manufacture of value-added products, and so on. Resource utilization of WH has enormous benefits and therefore, is a sustainable strategy for its control. In accordance with the increasing urgency of maintaining environmental sustainability, this review concisely introduced up to date WH utilization specifically in pollution remediation and curbing the global warming crisis and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: (J.X.); (T.G.)
| | | | | |
Collapse
|
10
|
Aoudjit L, Salazar H, Zioui D, Sebti A, Martins PM, Lanceros-Méndez S. Solar Photocatalytic Membranes: An Experimental and Artificial Neural Network Modeling Approach for Niflumic Acid Degradation. MEMBRANES 2022; 12:membranes12090849. [PMID: 36135867 PMCID: PMC9504027 DOI: 10.3390/membranes12090849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 05/26/2023]
Abstract
The presence of contaminants of emerging concern (CEC), such as pharmaceuticals, in water sources is one of the main concerns nowadays due to their hazardous properties causing severe effects on human health and ecosystem biodiversity. Niflumic acid (NFA) is a widely used anti-inflammatory drug, and it is known for its non-biodegradability and resistance to chemical and biological degradation processes. In this work, a 10 wt.% TiO2/PVDF-TrFE nanocomposite membrane (NCM) was prepared by the solvent casting technique, fully characterized, and implemented on an up-scaled photocatalytic membrane reactor (PMR). The photocatalytic activity of the NCM was evaluated on NFA degradation under different experimental conditions, including NFA concentration, pH of the media, irradiation time and intensity. The NCM demonstrated a remarkable photocatalytic efficiency on NFA degradation, as efficiency of 91% was achieved after 6 h under solar irradiation at neutral pH. The NCM proved effective in long-term use, with maximum efficiency losses of 7%. An artificial neural network (ANN) model was designed to model NFA's photocatalytic degradation behavior, demonstrating a good agreement between experimental and predicted data, with an R2 of 0.98. The relative significance of each experimental condition was evaluated, and the irradiation time proved to be the most significant parameter affecting the NFA degradation efficiency. The designed ANN model provides a reliable framework l for modeling the photocatalytic activity of TiO2/PVDF-TrFE and related NCM.
Collapse
Affiliation(s)
- Lamine Aoudjit
- Unité de Développement des Équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria
| | - Hugo Salazar
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre/Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Djamila Zioui
- Unité de Développement des Équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria
| | - Aicha Sebti
- Unité de Développement des Équipements Solaires, UDES/Centre de Développement des Energies Renouvelables, CDER, Bou Ismail 42415, Algeria
| | - Pedro Manuel Martins
- Centre of Molecular and Environmental Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Institute of Science and Innovation on Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|